Disordered Systems in Physics, Information Theory and
 Computer Science

Marc Mézard

Ecole normale supérieure PSL University

KITP Santa Barbara, January 2019

Table of
 Contents

1- Ensembles
2- Landscapes
3- Replicas
4- Algorithms
5-Inference
6- Correlations

Chapter One

\leadsto

Ensembles

Spin glasses in the 80's: « ensemble»

CuMn

$$
\begin{aligned}
s_{i} & \in\{ \pm 1\} \\
E_{J}(s) & =-\sum_{i j} J_{i j} s_{i} s_{j} \\
P_{J}(s) & =\frac{1}{Z_{J}} e^{-\beta E_{J}(s)}
\end{aligned}
$$

Strongly disordered system:
Spin glass sample described by the whole set of $J_{i j}$
$O\left(N^{2}\right)$ parameters (if long range)

$$
J_{i j} \sim \mathcal{N}\left(\frac{J_{0}}{N}, \frac{1}{N}\right)
$$

$O(N)$ parameters (if short range)

$$
J_{i j}= \pm 1
$$

on Erdös-Renyi graph

Ensemble:

drawn from a probability distribution. eg iid

Thermodynamic limit and self-averaging

E.g. SK model

$$
\begin{array}{r}
E_{J}(s)=O(N) \\
Z_{J}=e^{-\beta N f_{J}}
\end{array}
$$

$$
\begin{gathered}
s_{i} \in\{ \pm 1\} \quad J_{i j} \sim \mathcal{N}(0,1 / N) \\
E_{J}(s)=-\sum_{i j} J_{i j} s_{i} s_{j} \\
Z_{J}=\sum_{s_{1}, \ldots, s_{N}} e^{-\beta E_{J}(s)}
\end{gathered}
$$

«Self averaging »
Probability of finding a sample with $f_{J}=f: e^{N \Phi(f)}$
Almost all samples have $f_{J}=f^{*}$ therefore they have the same thermodynamics, phase diagram, etc.

Phase diagram

$$
\text { eg SK model } \quad \bar{J}=\frac{J_{0}}{N} \quad \overline{J^{2}}=\frac{1}{N}
$$

Ferro: $\frac{1}{N} \sum_{i=1}^{N}\left\langle s_{i}\right\rangle>0$
SG: Prob(two random configs have overlap q)
$T=1 / \beta$
Para

SG
Ferr

Ensembles and phase transitions in information transmission: Shannon

Fig. 1.1. A drawing of a section through the human eye

Principle of error correction : redundancy

Encoding = add redundancy. Rate L / N

$$
\text { e.g. repetition } \quad 0 \rightarrow 000 \quad 1 \rightarrow 111 \quad \text { rate }=1 / 3
$$

Majority decoding
error probability $\quad p^{3}+3 p^{2}(1-p) \sim 3 p^{2}$

Principle of error correction : redundancy

Encoding = add redundancy. Rate L / N
Shannon's theore
Two ingredients:

- «Thermodynamic limit» $N, L \rightarrow \infty$
- Ensemble of Random Codes (\sim Random Energy Model of spin glasses)

Shannon code ensemble

Unit hypercube in N dimensions

- codewords (random)
- sent codeword
- received word
$2^{R N}$ iid random points, uniform distribution

Phase transitions in decoding

Decoding $=$ find closest codeword
Probability of perfect decoding:

Shannon «bound» geometric phase transition

Ensembles and phase transitions in computer science: Random Satisfiability

N Binary variables $x_{i} \in\{0,1\}$
M Constraints = clauses, e.g.: $\quad x_{1} \vee \bar{x}_{2} \vee x_{3}$
Is there a configuration of the $\left\{x_{i}\right\}$ which satisfies all the constraints?

The grandfather of NP-complete problems. CNF
k -SAT (clauses of length $k \geq 3$) is also NP-complete
Typically hard instances: random k-SAT: Generate each clause with three randomly chosen variables in $\left\{x_{i}, \bar{x}_{i}\right\}$

Phase transition in the random k-SAT ensemble

Random k-SAT: N variables, M clauses. k variables in each clause, randomly chosen, randomly negated:

Large N limit: $\quad \alpha=M / N$ =density of constraints

Phase transition
SAT for $\alpha<\alpha_{s}$
UNSAT for $\alpha>\alpha_{s}$
Proven for k large enough by Ding-Sly-Sun (2015), making rigorous the stat phys approach from MM Parisi Zecchina (2002)

Chapter Two

Landscapes

Statistical physics of satisfiability

- many binary variables $x=\left(x_{1}, \cdots x_{N}\right), N \gg 1$
- Cost function $E(x)=$ Number of violated constraints = sum of three-body terms
- Find configuration of lowest cost

Uniform measure over all SAT assignments

$$
P(x)=C \delta_{E(x), 0}
$$

Kirkpatrick, Selman; Monasson, Zecchina; Biroli, Monasson, Weigt; Mézard, Zecchina; Mézard, Parisi, Zecchina; Krzakala, Montanari, Ricci-Tersenghi, Semerjian, Zdeborova; Coja-Oghlan Panagiotou, Ding Sly Sun..

Random k-Satisfiability: clustering

SAT

UNSAT

Disconnected clusters of solutions

Condensation

Dynamical transition

1 RSB glass
transition
transition

Clustered SAT phase: a glass phase

$e^{N \Sigma^{*}}$ clusters. Cluster μ has $\sim e^{N s_{\mu}}$ solutions
$\sim e^{N \Sigma(s)}$ clusters with $s_{\mu}=s$
Total number of solutions:

$$
\begin{array}{r}
e^{N \Sigma^{*}}=\sum_{\mu} e^{N s_{\mu}}=\int d s e^{N[\Sigma(s)+s]} \\
\Sigma^{*}=\max _{s}(\Sigma(s)+s)
\end{array}
$$

$\Sigma(s)$

 0.09

$\alpha_{d}=9.38$ Clusters appear $\quad \Sigma^{*}=\max _{s}(\Sigma(s)+s)$
$\alpha_{c}=9.55$ Condensation on small number of clusters
$\alpha_{s}=9.93$ SAT-UNSAT

Two families of glasses

Probability (2 random configurations have overlap q)

Continuous transition

«Full replica symmetry breaking »

Discontinuous transition
«One step replica symmetry breaking »

Continuous transition

«Full replica symmetry breaking »

Two replicas with small repulsion
$\epsilon<0$
Two replicas with small attraction $\epsilon>0$

$$
\begin{aligned}
& P_{J}\left(s, s^{\prime}\right)= \frac{1}{Z} e^{\beta \sum_{i, j} J_{i j}\left[s_{i} s_{j}+s_{i}^{\prime} s_{j}^{\prime}\right]+\beta H \sum_{i}\left[s_{i}+s_{i}^{\prime}\right]+\epsilon \sum_{i} s_{i} s_{i}^{\prime}} \\
& q=\frac{1}{N} \sum_{i}\left\langle s_{i} s_{i}^{\prime}\right\rangle
\end{aligned}
$$

Spin glass landscape (misleading drawing, but...)

Continuous RSB

1- Glass « phase » : Many pure states, unrelated by symmetry organized in a hierarchical «ultrametric» structure

2- Exploit the hierarchical structure for algorithm (Montanari 2019)

Two main techniques, replicas and cavity/TAP

Spin Glasses

Linear response to a small magnetic field:

New dynamics Memory
E. Vincent et al, SPEC

Discontinuous transition

« Discrete (1 step, 2steps...) replica symmetry breaking "

Two replicas with small repulsion
$\epsilon<0$

Discontinuous transition

Golf-course landscape : harder to find ground state

Discontinuous RSB
If the measure condenses on a small number of clusters: non-trivial $P(q)$
Otherwise: need to study the measure with two coupled configurations at a fixed distance

Chapter Three

Replicas

Replicas, version 1: analytic continuation

E.g. spin glasses

$$
\begin{aligned}
& f_{J}=-\frac{1}{\beta N} \log Z_{J} \\
& \text { is self-averaging }
\end{aligned}
$$

$$
\begin{gathered}
s_{i} \in\{ \pm 1\} \quad J_{i j} \sim \mathcal{N}(0,1 / N) \\
E_{J}(s)=-\sum_{i j} J_{i j} s_{i} s_{j} \\
Z_{J}=\sum_{s} e^{-\beta E_{J}(s)}
\end{gathered}
$$

Compute $\mathcal{E}\left(f_{J}\right)$ average over J
$\mathcal{E}\left(\log Z_{J}\right)=\lim _{n \rightarrow 0} \mathcal{E}\left(\left[Z_{J}^{n}-1\right] / n\right)$

$$
\begin{array}{r}
E_{J}(s)=O(N) \\
Z_{J}=e^{-\beta N f_{J}}
\end{array}
$$

$Z_{J}^{n}=\sum_{s^{1}, \ldots, s^{n}} e^{-\beta\left[E_{J}\left(s^{1}\right)+\cdots+E_{J}\left(s^{n}\right)\right]}:$
n uncoupled replicas, same disorder
$\mathcal{E}\left(Z_{J}^{n}\right): n$ coupled replicas, no disorder

Replicas, version 1: analytic continuation

$\mathcal{E}\left(Z_{J}^{n}\right): n$ coupled replicas, no disorder, \mathcal{S}_{n} symmetry
Analytic continuation $n \rightarrow 0$
Often not unique (Carlson)

- Phase transitions in the $N \rightarrow \infty$ thermodynamic limit (spontaneous breaking of \mathcal{S}_{n} symmetry)
Interchange the $n \rightarrow 0$ and $N \rightarrow \infty$ limits
«The Pandora box is open» (G. Parisi)

Replicas, version 2: large deviations

Free energy of sample $J: \quad f_{J}=-\frac{1}{\beta N} \log Z_{J}$
Probability of finding a sample with $f_{J}=f: e^{N \Phi(f)}$
Almost all samples have $f_{J}=f^{*}$
Reconstruct the large deviation function $\Phi(f)$ and find f^{*}

$$
\mathcal{E}\left(Z_{J}^{n}\right)=\int d f e^{N[-n \beta f+\Phi(f)]}
$$

studied in the thermodynamic limit with the Laplace method

Replicas, version 3: metastable states

Glassy phases, even without disorder (eg structural grasses): proliferation of metastable states
eg K-satisfiability

$$
Z_{J} \simeq \sum_{\alpha} Z_{J}^{\alpha} \quad Z_{J}^{\alpha}=e^{-\beta N f_{J}^{\alpha}}
$$

Complexity $\Sigma_{J}(f): \sim e^{N \Sigma_{J}(f)}$ metastable states with $f_{J}^{\alpha}=f$ Introduce m replicas (or «clones») constrained to be in the same states

$$
Z_{J}^{[m]}=\sum_{\alpha}\left(Z_{J}^{\alpha}\right)^{m}=\int d f e^{N\left[\Sigma_{J}(f)-m \beta f\right]}
$$

Can then average over J, with $n \rightarrow 0$ replicas 1 -step RSB

Replicas «philosophy»

Many pure states or metastable states, sample dependent. Only the sample knows them. Compare several «replicas» : configurations generated from the equilibrium measure; measure the distance between them, also in presence of couplings between them; count them (entropy, complexity).

Chapter Four

Algorithms

Analysis of one given sample: mean field

Historical development of mean field equations :

- In homogeneous ferromagnets:
- Weiss (infinite range, 1907)
- Bethe Peierls (finite connectivity, 1935)
- In glassy systems:
- Thouless Anderson Palmer 1977 (infinite range)
- M. Parisi Virasoro 1986 (infinite range)
- M. Parisi 2001 (finite connectivity)
- As an algorithm: - Gallager 1963
- Pearl 1986
- Kabashima Saad 1998
- M. Parisi Zecchina 2002

Mean-Field 111 years ago

Paul Langevin (1905): $\quad M=M_{0} L\left(\frac{B}{T}\right) ; \quad L(x)=\operatorname{coth} x-1 / x$
One spin in a magnetic field B
Pierre Weiss (1907):

$$
B=B_{e x t}+\alpha M
$$

One spin in a magnet: external field+ field from neighbors Spontaneous magnetization in zero external field:

$$
M=M_{0} L\left(\frac{\alpha M}{T}\right)
$$

Simple Mean-Field : Ising model

$$
\begin{aligned}
& P(S)=\frac{1}{Z} e^{-E(S) / T} \\
& \left\langle s_{i}\right\rangle \simeq \tanh \left(\beta \sum_{j} J_{i j}\left\langle s_{j}\right\rangle\right)
\end{aligned}
$$

$$
E(S)=-\sum_{i j} J_{i j} s_{i} s_{j}
$$

N coupled equations for the local magnetization $m_{i}=\left\langle s_{i}\right\rangle$

If homogeneous: $M \simeq \tanh (\beta z J M)$
Generally useless in disordered systems. Neglects fluctuations. Correct formula:

$$
\left\langle s_{i}\right\rangle=\left\langle\tanh \left(\beta \sum_{j} J_{i j} s_{j}\right)\right\rangle
$$

Does not close on

Mean-Field 83 years ago

Hans Bethe (1935)

Rudolf Peierls (1936)

Exact solution for central spin and its neighbors, themselves independent

Mean-Field 83 years ago

Hans Bethe (1935)

Rudolf Peierls (1936)

Exact solution for central spin and its neighbors, themselves independent

$$
\begin{aligned}
& P\left(s_{i}, s_{j}, s_{k}, s_{\ell}\right)=\frac{1}{z} e^{\beta J s_{i}\left[s_{j}+s_{k}+s_{l}\right]} \\
& h=\frac{z-1}{\beta} \operatorname{atanh}[\tanh (\beta J) \tanh (\beta h)]
\end{aligned}
$$

Bethe-Peierls adapted to disordered case

Exact solution for central spin and its neighbors, themselves independent

$$
\begin{aligned}
& P\left(s_{i}, s_{j}, s_{k}, s_{\ell}\right)=\frac{1}{z} e^{\beta J s_{i}\left[s_{j}+s_{k}+s_{l}\right]} \\
& P\left(s_{i}, s_{j}, s_{k}, s_{\ell}\right)=\frac{1}{z} e^{\beta s_{i}\left[J_{i j} s_{j}+J_{i k} s_{k}+J_{i l} s_{l}\right]} \\
& e^{\beta h_{\backslash \backslash i} s_{j}} e^{\beta h_{k \backslash i} s_{k}} e^{\beta h_{\ell \backslash i} s_{\ell}}
\end{aligned}
$$

Bethe-Peierls adapted to disordered case

$h_{i \backslash j}=$ Effective field on i due all of its neighbors in absence of ;
$h_{i \backslash j}=\frac{1}{\beta} \operatorname{atanh}\left[\tanh \left(\beta J_{k i}\right) \tanh \left(\beta h_{k \backslash i}\right)\right]$

$$
+\frac{1}{\beta} \operatorname{atanh}\left[\tanh \left(\beta J_{\ell i}\right) \tanh \left(\beta h_{\ell \backslash i}\right)\right]
$$

Bethe-Peierls
 Belief Propagation algorithm

$h_{i \backslash j}=$ Effective field on i due all of its neighbors in absence of j

$$
\begin{aligned}
h_{i \backslash j} & =\frac{1}{\beta} \operatorname{atanh}\left[\tanh \left(\beta J_{k i}\right) \tanh \left(\beta h_{k \backslash i}\right)\right] \\
& +\frac{1}{\beta} \operatorname{atanh}\left[\tanh \left(\beta J_{\ell i}\right) \tanh \left(\beta h_{\ell \backslash i}\right)\right]
\end{aligned}
$$

$N_{\text {edge coupled }}$ equations for the cavity fields

$$
h_{i \backslash j}^{t+1}=f\left(h_{k \backslash i}^{t}, h_{\ell \backslash i}^{t}\right)
$$

Generalizable to any constraint satisfaction problem:

$$
P(S)=\frac{1}{Z} \prod_{a} \psi_{a}\left(S_{\partial a}\right)
$$

A remark: the cavity method

$h_{i \backslash j}=$ Effective field on i due all of its neighbors in absence of j
$\mathrm{BP}: \quad h_{i \backslash j}^{t+1}=f\left(h_{k \backslash i}^{t}, h_{\ell \backslash i}^{t}\right)$

Cavity: statistical analysis of the fixed point. All the messages in the rhs are iid from $P(h)$. The BP equation then leads to a self consistent functional equation for $P(h)$. Sometimes solved by moments (large connectivity), or by population dynamics. Replicas

Cavity seeks a fixed point distribution of $P^{t+1}(h)=F\left[P^{t}(h)\right]$

State evolution does not focus only on fixed-point. It follows the mapping at each iteration generated by the BP iteration. Analytic control of algorithm.

Validity of Mean-field

1) When is simple mean-field exact?

$$
\left\langle s_{i}\right\rangle \simeq \tanh \left(\beta \sum_{j} J_{i j}\left\langle s_{j}\right\rangle\right)
$$

Ferromagnet with long-range interactions: $J_{i j}=J / N$ (Curie-Weiss) Fluctuations of $\sum_{j} J_{i j} s_{j}$ can be neglected

Validity of Mean-field

2) When is BP exact?

$$
h_{i \backslash j}^{t+1}=f\left(h_{k \backslash i}^{t}, h_{\ell \backslash i}^{t}\right)
$$

Fluctuations are handled correctly, but beware of correlations

- Exact in one dimension (transfer matrix)
- Exact on a tree (uncorrelated b.c)
- Exact on locally tree-like graphs (Erdös Renyi etc.) if correlations decay fast enough (single pure state)
- Exact in infinite range problems (SK) if

Validity of Mean-field

2) When is BP exact?

$$
h_{i \backslash j}^{t+1}=f\left(h_{k \backslash i}^{t}, h_{\ell \backslash i}^{t}\right)
$$

Typically, j and k are far apart in absence of i

If correlations decay fast enough BP is exact asymptotically

Away from phase transitions Within one pure state

Loop length $O(\log N)$

Three important developments

1) The special case of infinite-range models (TAP 1976, cavity method 1987)
2) What happens if the elementary variables (spins) are real instead of discrete?
3) What happens in a glass phase, when there are many pure states, and therefore many solutions?

1) The special case of infinite range models

 SK model $\quad J_{i j}=O\left(\frac{1}{\sqrt{N}}\right)$Correlations can be neglected (in the glass phase: within one pure state)

$$
\begin{gathered}
h_{i \backslash j}=\frac{1}{\beta} \sum_{k(\neq i)} \operatorname{atanh}\left[\tanh \left(\beta J_{k i}\right) \tanh \left(\beta h_{k \backslash i}\right)\right] \simeq \sum_{k(\neq i)} J_{k i} \tanh \left(\beta h_{k \backslash i}\right) \\
H_{i}=\frac{1}{\beta} \sum_{k} \operatorname{atanh}\left[\tanh \left(\beta J_{k i}\right) \tanh \left(\beta h_{k \backslash i}\right)\right] \simeq \sum_{k} J_{k i} \tanh \left(\beta h_{k \backslash i}\right) \\
h_{i \backslash j} \simeq H_{i}-O\left(\frac{1}{\sqrt{N}}\right)
\end{gathered}
$$

Corrections can be handled to first order in perturbation theory, and all the equations close on the N variables $H_{i} \longrightarrow$ TAP equations (AMP)

$$
\stackrel{t+1}{H_{i}}=\sum_{k} J_{k i} \tanh \left(\beta H_{k}\right)-\beta \stackrel{t-1}{\tanh \left(\beta H_{i}\right)} \sum_{k} J_{k i}^{2}\left[1-\tanh ^{2}\left(\beta H_{k}\right)\right]
$$

Time iteration (Bolthausen): AMP algorithm in information theory

Three important developments

1) The special case of infinite-range models (cavity method 1987)
2) What happens if the elementary variables (spins) are real instead of discrete?
3) What happens in a glass phase, when there are many pure states, and therefore many solutions?

Real variables

$$
h_{i \backslash j}^{t+1}=f\left(h_{k \backslash i}^{t}, h_{\ell \backslash i}^{t}\right)
$$

becomes
$p_{i \backslash j}\left(x_{i}\right)=F\left[p_{k \backslash i}\left(x_{k}\right), p_{\ell \backslash i}\left(x_{\ell}\right)\right]$

BP messages are cavity probability densities of the local variables. Simple case : large connectivity $p_{i \backslash j}\left(x_{i}\right)$ approximately Gaussian Generalized Approximate Message Passing (GAMP).
MM1989: cavity. Rangan 2010 : algorithm,...

Three important developments

1) The special case of infinite-range models (cavity method 1987)
2) What happens if the elementary variables (spins) are real instead of discrete?
3) What happens in a glass phase, when there are many pure states, and therefore many solutions?
4) What happens in a glass phase, when there are many pure states, and therefore many solutions?

BP equations

$$
h_{i \backslash j}=f\left(h_{k \backslash i}, h_{\ell \backslash i}\right)
$$

Correct if, in absence of the $i-j$ interaction, the correlations between k and ℓ can be neglected.

$$
h_{i \backslash j}^{\alpha}=f\left(h_{k \backslash i}^{\alpha}, h_{\ell \backslash i}^{\alpha}\right)
$$

Loop length $O(\log N)$
Glassy phase: many states, many solutions of BP
3) What happens in a glass phase, when there are many pure states, and therefore many solutions?

BP equations $\quad h_{i \backslash j}=f\left(h_{k \backslash i}, h_{\ell \backslash i}\right)$

Correct if, in absence of the $i-j$ interaction, the correlations between k and ℓ can be neglected.

Configurations
Glassy phase: many states, many solutions of BP

Statistics of $h_{i \backslash j}^{\alpha}$ over the many states α $P_{i \backslash j}(h)$
related to $\quad P_{k \backslash i}(h)$

$$
P_{\ell \backslash i}(h)
$$

Survey propagation MM Parisi Zecchina 2002

Power of message passing algorithms

Approximate solution of very hard, and very large constraint satisfaction problems, ...FAST! (typically linear time)

- BP: Best decoders for LDPC error correcting codes
- SP: Best solver of random satisfiability problems
- BP: Best algorithm for learning patterns in neural networks (e.g. binary perceptron)
- Data clustering, graph coloring, Steiner trees, etc... Fully connected networks : TAP (=AMP). Compressed sensing, linear estimation, near ground-state of SK model (with overlap annealing)

Local, simple update equations: Each message is updated using information from incoming messages on the same node. Distributed, solves hard global pb

Chapter Five

Inference

Inference

Infer a hidden rule, or hidden variables, from data.
Restricted sense : find parameters of a probability distribution

Bayesian inference

Unknown parameters x
Measurements
y

Prior
$P(x)$
Likelihood
$P(y \mid x)$

Posterior $\quad P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}$

Bayesian inference with many unknown and many measurements

Unknown parameters $\quad x=\left(x_{1}, \ldots, x_{N}\right)$
Measurements
$y=\left(y_{1}, \ldots, y_{M}\right)$
Large M, N $\alpha=M / N$

Often (but not necessarily):
Independent measurements

$$
P(y \mid x)=\prod P_{\mu}\left(y_{\mu} \mid x\right)
$$

Factorized prior

$$
P^{0}(x)=\prod P_{i}^{0}\left(x_{i}\right)
$$

Posterior $P(x)=\frac{1}{Z(y)}\left(\prod_{i} P_{i}^{0}\left(x_{i}\right)\right) \exp \left[-\sum_{\mu} E_{\mu}\left(x, y_{\mu}\right)\right]$

$$
E_{\mu}\left(x, y_{\mu}\right)=-\log P_{\mu}\left(y_{\mu} \mid x\right)
$$

Bayesian inference with many unknown

and many measurements

$$
\begin{aligned}
& P(x)=\frac{1}{Z(y)}\left(\prod_{i} P_{i}^{0}\left(x_{i}\right)\right) \exp \left[-\sum_{\mu} E_{\mu}\left(x, y_{\mu}\right)\right] \\
& E_{\mu}\left(x, y_{\mu}\right)=-\log P_{\mu}\left(y_{\mu} \mid x\right)
\end{aligned}
$$

Statistical mechanics. Disordered system
\rightarrow Discrete or continuous variables x_{i}
\measuredangle Interactions through $e^{-E_{\mu}\left(x, y_{\mu}\right)}$ can be
-short-range

- long (or infinite) range

Machine learning

Machine,

Input ξ parameters W
 Output y

Machine learning

$$
y=f\left(w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}\right)
$$

Formal neural network

Simple perceptron

Decouples into independent single output machines

Input

ξ

Example of a machine: two-layers feedforward neural network

Support Vector Machines: $\quad y=\sum_{i=1}^{N_{1}} a_{i} f_{i}\left(W_{i} \cdot \xi\right)$

Example of a machine: two-layers feedforward neural network for digits recognition

W = all synaptic weights and thresholds: 11925 parameters
Fixed through the study of many examples
$\left.\begin{array}{l|l|l|l|l|l|l|l}0 & 4 & 1 & 9 & 2 & 1 & 3 & 1 \\ \hline\end{array}\right)$

MNIST database : 70,000 images of digits, segmented, 28×28 pixels each, greyscale

Machine learning: training

$$
y=f(W, \xi)
$$

Database $=M$ examples of input-output $\left(\xi_{\mu}, y_{\mu}\right)$
Training $=$ find a set of parameters W such that the machines perform well on the training set

Minimize a training error, e.g. $E_{t}=\sum_{\mu}\left[y_{\mu}-f\left(W, \xi_{\mu}\right)\right]^{2}$
NB: output could be noisy: $\quad P(y) \propto e^{-E_{t} /\left(2 \Delta^{2}\right)}$

Machine learning: training and generalization

$$
y=f(W, \xi)
$$

Database $=M$ examples of input-outp,

Bayesian learning:

 Unkn Other ata Prior

Generalization: having found the best (a « typical») set of parameters W^{*}, compute the performance of the machine on some new data

$$
E_{g}=\sum_{\nu}\left[y_{\nu}-f\left(W^{*}, \xi_{\nu}\right)\right]^{2}
$$

Machine learning: training and generalization

Learning: $\left.P\left(W \mid\left\{\xi_{\mu}, y_{\mu}\right\}\right)=\frac{1}{Z} P^{0}(W) \exp \left(-\beta \sum_{\mu}\left[f\left(W, \xi_{\mu}\right)-y_{\mu}\right)\right]^{2}\right)$
Generalization: $\quad E_{g}=\sum_{\nu}\left[y_{\nu}-f\left(W^{*}, \xi_{\nu}\right)\right]^{2}$
Two main issues:

- Algorithmic
-Theoretical
Algorithm: optimization in a large dimensional space, with a disordered «energy function », a priori « glassy ». Landscape issues!

Theory: Large size OK. But needs a model of data. Ideally a generative model, or a smart description of the type of data. Also very useful for algorithm design and analysis. Ensemble.

Model of data: ensemble

Learning:

$$
\left.P\left(W \mid\left\{\xi_{\mu}, y_{\mu}\right\}\right)=\frac{1}{Z} P^{0}(W) \exp \left(-\beta \sum_{\mu}\left[f\left(W, \xi_{\mu}\right)-y_{\mu}\right)\right]^{2}\right)
$$

Algorithmic studies typically uses one (or several) databases for $\left\{\xi_{\mu}, y_{\mu}\right\}:$ data $=$ quenched disorder

Theoretical analysis usually relies on a generative model of data (« model of the world»)
Examples from the 80's: iid patterns

Challenge: Find good generative models of the world

Generative model of data : teacher-student

An important case for theoretical studies of machine learning: teacher-student.
Data generated by a teacher. The teacher has his own set of parameters $W=T$
Given an input ξ_{μ}, the output is $y_{\mu}=f\left(T, \xi_{\mu}\right)$
If the student knows the architecture of the teacher, and uses the same, he needs to find his own parameters by minimizing the training error:

$$
E_{t}=\sum_{\mu}\left[f\left(W, \xi_{\mu}\right)-f\left(T, \xi_{\mu}\right)\right]^{2}
$$

Generative model: generate ξ_{μ} from some input data distribution, generate T from some distribution $\quad P^{T}(T)$

Generative model of data : teacher-student

Teacher: generates parameters w^{*} from teacher prior $P^{T}(w)$ generates data y from teacher prior $P^{T}\left(y \mid w^{*}\right)$

Smart student : knows the teacher's architecture and the generative distribution. $\quad P^{S}(W)=P^{T}(W)$

Bayes optimal: student's prior $=$ teacher's prior

Student seeks a special « planted » configuration w^{*} with zero training error: a «crystal»

Chapter Six

Correlations

The problem of correlations in the ensemble (the world)

Mean field equations (BP, TAP, AMP) with correlated disorder?

$$
\begin{aligned}
h_{i \backslash j}^{t+1} & =f\left(h_{k \backslash i}^{t}, h_{\ell \backslash i}^{t}\right) \\
H_{i} & =\sum_{k} J_{k i} \tanh \left(\beta H_{k}\right)-\beta \tanh \left(\beta H_{i}\right) \sum_{k} J_{k i}^{2}\left[1-\tanh ^{2}\left(\beta H_{k}\right)\right]
\end{aligned}
$$

Correct only if local quenched disordered variables $J_{k i}$ are independent

Beyond independent variables: rotationally invariant disorder

$$
J=O^{T} D O
$$

when O is chosen uniformly in $\mathrm{O}(\mathrm{N})$ and D has a limiting distribution of eigenvalues: Parisi Potters 1995, Shinzato Kabashima 2008, Rangan Schniter Fletcher 2016, ...
«Usual» TAP equations

$$
H_{i}=\sum_{k} J_{k i} \tanh \left(\beta H_{k}\right)-\beta \tanh \left(\beta H_{i}\right) \sum_{k} J_{k i}^{2}\left[1-\tanh ^{2}\left(\beta H_{k}\right)\right]
$$

$$
\text { must be modified to } \quad H_{i}=\sum_{k} J_{k i} \tanh \left(\beta H_{k}\right)-\beta \tanh \left(\beta H_{i}\right) G^{\prime}(1-q)
$$

$q=(1 / N) \sum_{i} \tanh ^{2}\left(\beta H_{i}\right)$

$$
G(z)=\operatorname{extr}_{\mu}\left[\mu z-\int d \lambda D(\lambda) \log (\mu-\lambda)\right]-\log z-1
$$

A special example: Hopfield model

Neurons $=N$ binary spins: $\vec{s}=\left(s_{1}, \ldots, s_{N}\right)$

Patterns to be memorized:
 $\vec{\xi}^{\mu}$
 $$
\mu=1, \ldots, P
$$

$s_{i} \in\{ \pm 1\}$

Hopfield model

Neurons $=N$ binary spins: $\quad s_{i} \in\{ \pm 1\}$
Patterns to be memorized

$$
\xi_{i}^{\mu}= \pm 1, \quad i \in\{1, \ldots n\}, \mu \in\{1, \ldots p\}
$$

$$
\begin{array}{lc}
E=-\frac{1}{2} \sum_{i, j} J_{i j} s_{i} s_{j} & J_{i j}=\frac{1}{N} \sum_{\mu} \xi_{i}^{\mu} \xi_{j}^{\mu} \\
P_{J}(s)=\frac{1}{Z} e^{(\beta / 2) \sum_{i, j} J_{i j} s_{i} s_{j}} & Z=\sum_{s} e^{(\beta / 2) \sum_{i, j} J_{i j} s_{i} s_{j}}
\end{array}
$$

Hopfield model

$$
\begin{array}{ll}
E=-\frac{1}{2} \sum_{i, j} J_{i j} s_{i} s_{j} & J_{i j}=\frac{1}{N} \sum_{\mu} \xi_{i}^{\mu} \xi_{j}^{\mu} \\
P_{J}(s)=\frac{1}{Z} e^{(\beta / 2) \sum_{i, j} J_{i j} s_{i} s_{j}} & Z=\sum_{s} e^{(\beta / 2) \sum_{i, j} J_{i j} s_{i} s_{j}}
\end{array}
$$

Hopfield model

Phase diagram (Amit Gutfreund Sompolinsky 1985)

Mean field equations for solving the Hopfield model (find local magnetizations)

First attempt: TAP equations

$$
H_{i}=\sum_{k} J_{k i} \tanh \left(\beta H_{k}\right)-\beta \tanh \left(\beta H_{i}\right) \sum_{k} J_{k i}^{2}\left[1-\tanh ^{2}\left(\beta H_{k}\right)\right]
$$

Disordered and infinite range

WRONG

TAP is valid only if indirect interaction from i to j through other sites can be neglected

TAP in the Hopfield model: more subtle!

$$
J_{i j}=\frac{1}{N} \sum_{\mu} \xi_{i}^{\mu} \xi_{j}^{\mu} \quad \overline{J_{i j} J_{j k} J_{k i}} \neq 0
$$

Indirect interactions matter « Naive » TAP does not apply

The Hopfield model as a Restricted Boltzmann Machine

$$
\begin{aligned}
Z & =\sum_{s} e^{(\beta / 2) \sum_{i, j} J_{i j} s_{i} s_{j}} \quad J_{i j}=\frac{1}{N} \sum_{\mu} \xi_{i}^{\mu} \xi_{j}^{\mu} \\
Z & =\sum_{s} \exp \left(\frac{\beta}{2 N} \sum_{\mu}\left[\sum_{i} \xi_{i}^{\mu} s_{i}\right]^{2}\right)
\end{aligned}
$$

Hubbard Stratonovitch (Gaussian transform) :

$$
Z=\sum_{s} \int \prod_{\mu} \frac{d \lambda_{\mu}}{\sqrt{2 \pi \beta}} \exp \left[-\frac{\beta}{2} \sum_{\mu} \lambda_{\mu}^{2}+\beta \sum_{\mu, i} \frac{\xi_{i}^{\mu}}{\sqrt{N}} s_{i} \lambda_{\mu}\right]
$$

$$
\begin{aligned}
& \begin{array}{l}
Z=\sum_{s} \int \prod_{\mu} \frac{d \lambda_{\mu}}{\sqrt{2 \pi \beta}} \exp \left[-\frac{\beta}{2} \sum_{\mu} \lambda_{\mu}^{2}+\beta \sum_{\mu, i} \frac{\xi_{i}^{\mu}}{\sqrt{N}} s_{i} \lambda_{\mu}\right] \\
\text { Spin-variable Pattern-variable }
\end{array} \text { Coupling }
\end{aligned}
$$

Hopfield model is a restricted Boltzmann machine, with a
specific set of
couplings

$$
\frac{\xi_{i}^{\mu}}{\sqrt{N}}
$$

that store P patterns. iid couplings

$$
\left.\left\langle\lambda_{\mu}\right\rangle=\frac{1}{\sqrt{N}} \sum_{i} \xi_{i}^{\mu} s_{i}\right\rangle
$$

Pattern-variable describes the projection on the pattern
$\Theta(1) \quad$ if uncorrelated
$\Theta(\sqrt{N})$ if spins are polarized towards the pattern

$$
\begin{aligned}
h_{i \rightarrow \mu} & =\sum_{\nu(\neq \mu)} \frac{\xi_{i}^{\nu}}{\sqrt{N}} a_{\nu \rightarrow i} \\
a_{\mu \rightarrow i} & =\frac{1}{\sqrt{N}} \frac{\sum_{j(\neq i)} \xi_{j}^{\mu} \tanh \left(\beta h_{j \rightarrow \mu}\right)}{1-(\beta / N) \sum_{j(\neq i)}\left[1-\tanh ^{2}\left(\beta h_{j \rightarrow \mu}\right)\right]}
\end{aligned}
$$

$$
m_{i \rightarrow \mu}\left(s_{i}\right) \propto \exp \left(h_{i \rightarrow \mu} s_{i}\right)
$$

$$
m_{\mu \rightarrow i}\left(\lambda_{\mu}\right)
$$

Parameterized in terms of its mean $a_{\mu \rightarrow i}$ and variance

Next step : from relaxed BP to AMP equations

$$
\begin{aligned}
& h_{i \rightarrow \mu}=\sum_{\nu(\neq \mu)} \frac{\xi_{i}^{\nu}}{\sqrt{N}} a_{\nu \rightarrow i} \simeq \sum_{\nu} \frac{\xi_{i}^{\nu}}{\sqrt{N}} a_{\nu \rightarrow i}=H_{i} \\
& a_{\mu \rightarrow i} \simeq A_{\mu}
\end{aligned}
$$

Work out the correction terms ("cavity »)

AMP equations in the paramagnetic or SG phase

$$
\begin{aligned}
H_{i} & \simeq \sum_{\nu} \frac{\xi_{i}^{\nu}}{\sqrt{N}} A_{\nu}-\frac{\alpha}{1-\beta(1-q)} \tanh \left(\beta H_{i}\right) \\
A_{\mu} & =\frac{1}{\sqrt{N}} \sum_{j} \xi_{j}^{\mu} \tanh \left(\beta H_{j}\right) \\
q & =\frac{1}{N} \sum_{i} \tanh ^{2}\left(\beta H_{i}\right)
\end{aligned}
$$

First written in MPV 1987, claimed wrong in Nakanishi-Takayama 1997, Shamir Sompolinsky 2000 , actually correct. Can be used as an iterative algorithm (with correct time indices)

Towards multilayered networks: structured patterns

Modified Hopfield model: Combinatorial patterns

$$
\vec{\xi}^{\mu}=\left(\xi_{1}^{\mu}, \cdots, \xi_{N}^{\mu}\right)
$$

$\vec{\xi}^{\mu}$ built from superposition of elementary features \vec{u}^{r}

$$
\vec{\xi}^{\mu}=\frac{1}{\sqrt{\gamma N}} \sum_{r} v_{r}^{\mu} \vec{u}^{r}, \text { binary } v_{r}^{\mu} \in\{ \pm 1\}
$$

TAP equations in the Hopfield model with structured patterns

Modified Hopfield model: Combinatorial patterns

$$
Z=\sum_{s} \int \prod_{\mu} \frac{d \lambda_{\mu} e^{-\beta \lambda_{\mu}^{2} / 2}}{\sqrt{2 \pi \beta}} \exp \left[\frac{\beta}{\sqrt{\gamma}} \sum_{r=1}^{\gamma N}\left(\frac{1}{\sqrt{N}} \sum_{i} u_{i}^{r} s_{i}\right)\left(\frac{1}{\sqrt{N}} \sum_{\mu} v_{\mu}^{r} \lambda_{\mu}\right)\right]
$$

Disentangle the last term by another Hubbard Stratonovitch representation

$Z=\sum_{s} \prod_{\mu} d \lambda_{\mu} \int \prod d \overrightarrow{t^{r}} \exp \left[-\frac{\beta}{2} \sum_{\mu} \lambda_{\mu}^{2}+\beta \sum_{r=1}^{\gamma N}\left(+\frac{1}{\sqrt{\gamma}} U^{r} V^{r}-\hat{U}^{r} U^{r}-\hat{V}^{r} V^{r}\right)\right]$

$$
\exp \left[\frac{\beta}{\sqrt{N}} \sum_{r=1}^{\gamma N} \sum_{i=1}^{N} \hat{U}^{r} u_{i}^{r} s_{i}+\frac{\beta}{\sqrt{N}} \sum_{r=1}^{\gamma N} \sum_{\mu=1}^{\alpha N} \hat{V}^{r} v_{\mu}^{r} \lambda_{\mu}+\frac{\beta}{\sqrt{\gamma}} \sum_{r=1}^{\gamma N} U^{r} V^{r}\right]
$$

Hidden: features

TAP equations in the Hopfield model with structured patterns

Write the cavity/BP equations. Simplify them to TAP-AMP form, involving: H_{i}, p_{r}, A_{μ}

TAP equations in the Hopfield model with structured patterns

	Restricted
	\qquad
Hopfield model	with
	$\begin{array}{cc}\text { combinatorial } & \text { Two } \\ \text { patterns } & \text { hidden }\end{array}$
	layers

Hypothesis about the success of deep networks: successive disentanglement of combinatorial correlations?

Visible input \leftrightarrows Subfeatures \leftrightarrows Features \leftrightarrows Patterns
Combinatorial correlations $=$ new type of correlations.
Present in images, in semantics, etc.

Take-home messages

- The spin glass cornucopia!

Spin glasses: Totally useless (few grams) of boring material...
Intellectual interest. Tens of thousands of papers over the last 30 years. Some of the most fascinating developments in statistical physics: Glasses, Neural networks, Optimization, Information theory, Evolution, Economy and finance,...

Powerful new concepts. Hidden order known only by the system itself \Rightarrow replicas.

Take-home messages

- Inference with many variables = stat phys problem of disordered system. Search of a special configuration ("crystal»)
Theory needs an ensemble; in machine learning it means a model of data, of the world

Mean-field approaches provide very powerful algorithms. Used in codes, in linear reconstruction, compressed sensing, tomography, community detection etc. But often tailored on a specific type of data. Limited by a dynamical phase transition

The End

