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Machine Learning (aka, AI) Successes

• First Generation (‘90-’00): the backend
– e.g., fraud detection, search, supply-chain management

• Second Generation (‘00-’10): the human side
– e.g., recommendation systems, commerce, social media

• Third Generation (‘10-now): pattern recognition
– e.g., speech recognition, computer vision, translation

• Fourth Generation (emerging): decisions and markets
– not just one agent making a decision or sequence of decisions
– rather, a huge interconnected web of data, agents, decisions
– many new challenges!



Algorithmic and Theoretical Progress

• Nonconvex optimization
– avoidance of saddle points
– rates that have dimension dependence
– acceleration, dynamical systems and lower bounds
– statistical guarantees from optimization guarantees

• Computationally-efficient sampling
– nonconvex functions
– nonreversible MCMC
– links to optimization

• Market design
– approach to saddle points
– recommendations and two-way markets



Sampling vs. Optimization: The Tortoise 
and the Hare

• Folk knowledge:  Sampling is slow, while optimization is 
fast
– but sampling provides inferences, while optimization only 

provides point estimates
• But there hasn’t been a clear theoretical analysis that 

establishes this folk knowledge as true
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Sampling vs. Optimization: The Tortoise 
and the Hare

• Folk knowledge:  Sampling is slow, while optimization is 
fast
– but sampling provides inferences, while optimization only 

provides point estimates
• But there hasn’t been a clear theoretical analysis that 

establishes this folk knowledge as true
• Is it really true?
• Define the mixing time:

• We’ll study the Unadjusted Langevin Algorithm (ULA) 
and the Metropolis-Adjusted Langevin Algorithm (MALA) 

⌧(✏, p0) = min{k | kpk � p⇤kTV  ✏}



Sampling

Theorem. For p⇤ / e�U
, we assume that U is m-strongly convex outside of a
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Optimization

Theorem. For any radius R > 0, Lipschitz and strong convexity constants L �
2m > 0, probability 0 < p  1, there exists an objective function U(x) where

x 2 Rd
and U is L-Lipschitz smooth and m-strongly convex for kxk2 > 2R, such

that for any optimization algorithm that inputs {U(x),rU(x), . . . ,rn
U(x)}, for
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Part I: How to Escape Saddle Points 
Efficiently 

with Chi Jin, Praneeth Netrapalli, Rong Ge, 
and Sham Kakade



The Importance of Saddle Points 

•  How to escape? 
–  need to have a negative eigenvalue that’s strictly negative 

•  How to escape efficiently? 
–  in high dimensions how do we find the direction of escape? 
–  should we expect exponential complexity in dimension?   



A Few Facts 

•  Gradient descent will asymptotically avoid saddle 
points (Lee, Simchowitz, Jordan & Recht, 2017) 

•  Gradient descent can take exponential time to 
escape saddle points (Du, Jin, Lee, Jordan, & Singh, 
2017) 

•  Stochastic gradient descent can escape saddle 
points in polynomial time (Ge, Huang, Jin & Yuan, 
2015) 
–  but that’s still not an explanation for its practical success 

•  Can we prove a stronger theorem? 

 



Optimization

Consider problem:
min
x∈Rd

f (x)

Gradient Descent (GD):

xt+1 = xt − η∇f (xt).

Convex: converges to global minimum; dimension-free iterations.



Convergence to FOSP

Function f (·) is `-smooth (or gradient Lipschitz)

∀x1, x2, ‖∇f (x1)−∇f (x2)‖ ≤ `‖x1 − x2‖.

Point x is an ε-first-order stationary point (ε-FOSP) if

‖∇f (x)‖ ≤ ε

Theorem [GD Converges to FOSP (Nesterov, 1998)]
For `-smooth function, GD with η = 1/` finds ε-FOSP in iterations:

2`(f (x0)− f ?)

ε2

*Number of iterations is dimension free.



Nonconvex Optimization

Non-convex: converges to Stationary Point (SP) ∇f (x) = 0.

SP : local min / local max / saddle points

Many applications: no spurious local min (see full list later).



Definitions and Algorithm

Function f (·) is ρ-Hessian Lipschitz if

∀x1, x2, ‖∇2f (x1)−∇2f (x2)‖ ≤ ρ‖x1 − x2‖.

Point x is an ε-second-order stationary point (ε-SOSP) if

‖∇f (x)‖ ≤ ε, and λmin(∇2f (x)) ≥ −√ρε

Algorithm Perturbed Gradient Descent (PGD)

1. for t = 0, 1, . . . do

2. if perturbation condition holds then

3. xt ← xt + ξt , ξt uniformly ∼ B0(r)

4. xt+1 ← xt − η∇f (xt)

Adds perturbation when ‖∇f (xt)‖ ≤ ε; no more than once per T steps.
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Main Result

Theorem [PGD Converges to SOSP]
For `-smooth and ρ-Hessian Lipschitz function f , PGD with η = O(1/`)
and proper choice of r ,T w.h.p. finds ε-SOSP in iterations:

Õ

(
`(f (x0)− f ?)

ε2

)

*Dimension dependence in iteration is log4(d) (almost dimension free).

GD(Nesterov 1998) PGD(This Work)

Assumptions `-grad-Lip `-grad-Lip + ρ-Hessian-Lip

Guarantees ε-FOSP ε-SOSP

Iterations 2`(f (x0)− f ?)/ε2 Õ(`(f (x0)− f ?)/ε2)



Geometry and Dynamics around Saddle Points

Challenge: non-constant Hessian + large step size η = O(1/`).

Around saddle point, stuck region forms a non-flat “pancake” shape.

w

Key Observation: although we don’t know its shape, we know it’s thin!
(Based on an analysis of two nearly coupled sequences)



How Fast Can We Go?

• Important role of lower bounds (Nemirovski & Yudin)
– strip away inessential aspects of the problem to reveal 

fundamentals

• The acceleration phenomenon (Nesterov)
– achieve the lower bounds
– second-order dynamics
– a conceptual mystery

• Our perspective: it’s essential to go to continuous 
time
– the notion of ”acceleration” requires a continuum topology to 

support it



Part II: Variational, Hamiltonian and
Symplectic Perspectives on Acceleration

with Andre Wibisono, Ashia Wilson and 
Michael Betancourt 



Accelerated gradient descent

Setting: Unconstrained convex optimization

min
x∈Rd

f (x)

I Classical gradient descent:

xk+1 = xk − β∇f (xk)

obtains a convergence rate of O(1/k)

I Accelerated gradient descent:

yk+1 = xk − β∇f (xk)

xk+1 = (1− λk)yk+1 + λkyk

obtains the (optimal) convergence rate of O(1/k2)
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Accelerated methods: Continuous time perspective

I Gradient descent is discretization of gradient flow

Ẋt = −∇f (Xt)

(and mirror descent is discretization of natural gradient flow)

I Su, Boyd, Candes ’14: Continuous time limit of accelerated
gradient descent is a second-order ODE

Ẍt +
3

t
Ẋt +∇f (Xt) = 0

I These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology
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Bregman Lagrangian

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)

Variational problem over curves:

min
X

∫
L(Xt , Ẋt , t) dt

t

x

Optimal curve is characterized by Euler-Lagrange equation:

d

dt

{
∂L
∂ẋ

(Xt , Ẋt , t)

}
=
∂L
∂x

(Xt , Ẋt , t)

E-L equation for Bregman Lagrangian under ideal scaling:

Ẍt + (eαt − α̇t)Ẋt + e2αt+βt
[
∇2h(Xt + e−αt Ẋt)

]−1
∇f (Xt) = 0



Mysteries

• Why can’t we discretize the dynamics when we are 
using exponentially fast clocks?

• What happens when we arrive at a clock speed that 
we can discretize?

• How do we discretize once it’s possible?



 Towards A Symplectic Perspective 
• We’ve discussed discretization of Lagrangian-based

dynamics
• Discretization of Lagrangian dynamics is often fragile

and requires small step sizes
• We can build more robust solutions by taking a Legendre 

transform and considering a Hamiltonian formalism:



Symplectic Integration of Bregman 
Hamiltonian 



Symplectic vs Nesterov

10
-8

10
-4

10
0

10
4

 1  10  100  1000  10000

Nesterov

Symplectic

f(
x
)

Iterations

p = 2, N = 2, C = 0.0625, ε = 0.1



Symplectic vs Nesterov

10
-8

10
-4

10
0

10
4

 1  10  100  1000  10000

Nesterov
Symplectic

f(
x
)

Iterations

p = 2, N = 2, C = 0.0625, ε = 0.25



Part III: Acceleration and Saddle Points

with Chi Jin and Praneeth Netrapalli



Hamiltonian Analysis
! ⋅ between #$ and #$ + &$

! #$ + '
() &$ ( decreases

AGD step

&$*' = 0 Move in ±&$ direction

Not too nonconvex Too nonconvex
(Negative curvature exploitation)

&$ large &$ small

Enough decrease 
in a single step

Do an 
amortized 

analysis



Convergence Result

PAGD Converges to SOSP Faster (Jin et al. 2017)

For `-gradient Lipschitz and ρ-Hessian Lipschitz function f , PAGD with

proper choice of η, θ, r ,T , γ, s w.h.p. finds ε-SOSP in iterations:

Õ

(
`1/2ρ1/4(f (x0)− f ?)

ε7/4

)

Strongly Convex Nonconvex (SOSP)

Assumptions
`-grad-Lip &

α-str-convex

`-grad-Lip &

ρ-Hessian-Lip

(Perturbed) GD Õ(`/α) Õ(∆f · `/ε2)

(Perturbed) AGD Õ(
√
`/α) Õ(∆f · `

1
2 ρ

1
4 /ε

7
4 )

Condition κ `/α `/
√
ρε

Improvement
√
κ

√
κ

14 / 14 Michael Jordan AGD Escape Saddle Points Faster than GD



Part IV: Acceleration and Stochastics

with Xiang Cheng, Niladri Chatterji and Peter 
Bartlett



Acceleration and Stochastics

• Can we accelerate diffusions?
• There have been negative results…
• …but they’ve focused on classical overdamped

diffusions



Acceleration and Stochastics

• Can we accelerate diffusions?
• There have been negative results…
• …but they’ve focused on classical overdamped

diffusions
• Inspired by our work on acceleration, can we accelerate 

underdamped diffusions?



Overdamped Langevin MCMC

Described by the Stochastic Differential Equation (SDE):
!"# = −∇' "# !( + 2!+#

where ' " : -. → - and +# is standard Brownian motion.
The stationary distribution is 0∗ " ∝ exp ' "

Corresponding Markov Chain Monte Carlo Algorithm 
(MCMC):

6" 789 : = 6"7: − ∇' 6"7: + 2;<7
where ; is the step-size and <7 ∼ >(0, B.×.)



Guarantees under Convexity

Assuming ! " is #-smooth and $-strongly convex:

Dalalyan’14: Guarantees in Total Variation
If  % ≥ ' (

)* then, +,(. / , .∗) ≤ 4

Durmus & Moulines’16: Guarantees in 2-Wasserstein

If  % ≥ ' (
)* then, 56(. / , .∗) ≤ 4

Cheng and Bartlett’17: Guarantees in KL divergence

If  % ≥ ' (
)* then, KL(. / , .∗) ≤ 4



Underdamped Langevin Diffusion

Described by the second-order equation:

!"# = %#!&
!%# = −(%#!& + *∇, "# !& + 2(* !.#

The stationary distribution is /∗ ", % ∝ exp −, " − |7|88
9:

Intuitively, "# is the position and %# is the velocity

∇, "# is the force and ( is the drag coefficient



Quadratic Improvement

Let !(#) denote the distribution of %&#', %)#' . Assume + & is
strongly convex

Cheng, Chatterji, Bartlett, Jordan ’17:

If . ≥ 0 1
2 then 34 ! # , !∗ ≤ 7

Compare with Durmus & Moulines ’16 (Overdamped)

If . ≥ 0 1
28 then 34 ! # , !∗ ≤ 7



Proof Idea: Reflection Coupling

Tricky to prove continuous-time process contracts. Consider 
two processes,

!"# = −∇' "# !( + 2 !+#,
!-# = −∇' -# !( + 2 !+#.

where "/ ∼ 1/ and -/ ∼ 1∗. Couple these through Brownian motion

!+#. = 34×4 −
2 ⋅ "# − -# "# − -# 7

|"# − -#|99
!+#,

“reflection along line separating the two processes”



Reduction to One Dimension

By Itô’s Lemma we can monitor the evolution of the separation distance 

!|#$ − &$|' = − #$ − &$
|#$ − &$|'

, ∇+ #$ − ∇+ &$ !, + 2 2!/$0

‘Drift’ ’1-d random walk’

Two cases are possible

1. If |#$ − &$|' ≤ 2 then we have strong convexity; the drift helps.

2. If |#$ − &$|' ≥ 2 then the drift hurts us, but Brownian motion helps stick*.

*Under a clever choice of Lyapunov function.

Rates not exponential in ! as we have a 1-! random walk



Part VI: Acceleration and Sampling
With Yi-An Ma, Niladri Chatterji, and Xiang Cheng



Acceleration of SDEs

• The underdamped Langevin stochastic differential 
equation is Nesterov acceleration on the manifold of 
probability distributions, with respect to the KL 
divergence (Ma, et al., to appear)



Part V: Population Risk and Empirical Risk

with Chi Jin and Lydia Liu



Population Risk vs Empirical Risk

Well-behaved population risk ⇒ rough empirical risk

I Even when R is smooth, R̂n can be non-smooth and may even have
many additional local minima (ReLU deep networks).

I Typically ‖R − R̂n‖∞ ≤ O(1/
√
n) by empirical process results.

Can we finds local min of R given only access to the function value R̂n?



Our Contribution

Our answer: Yes! Our SGD approach finds ε−SOSP of F if ν ≤ ε1.5/d ,
which is optimal among all polynomial queries algorithms.

Complete characterization of error ν vs accuracy ε and dimension d .



Part VII: Market Design Meets Gradient-
Based Learning

with Lydia Liu, Horia Mania and Eric Mazumdar



What Intelligent Systems Currently Exist?
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What Intelligent Systems Currently Exist?

• Brains and Minds

• Markets



Two Examples of Current Projects

• How to find saddle points in high dimensions? 

– not just any saddle points; we want to find the Nash equilibria
(and only the Nash equilibria)

• Competitive bandits and two-way markets

– how to find the “best action” when supervised training data is not
available, when other agents are also searching for best actions, 

and when there is conflict (e.g., scarcity)







Executive Summary

• ML (AI) has come of age
• But it is far from being a solid engineering discipline that 

can yield robust, scalable solutions to modern data-
analytic problems

• There are many hard problems involving uncertainty, 
inference, decision-making, robustness and scale that 
are far from being solved
– not to mention economic, social and legal issues




