Optimization, Sampling and Nonconvexity

Michael I. Jordan University of California, Berkeley

January 8, 2019

Machine Learning (aka, AI) Successes

- First Generation ('90-'00): the backend
 - e.g., fraud detection, search, supply-chain management
- Second Generation ('00-'10): the human side
 - e.g., recommendation systems, commerce, social media
- Third Generation ('10-now): pattern recognition
 - e.g., speech recognition, computer vision, translation
- Fourth Generation (emerging): decisions and markets
 - not just one agent making a decision or sequence of decisions
 - rather, a huge interconnected web of data, agents, decisions
 - many new challenges!

Algorithmic and Theoretical Progress

- Nonconvex optimization
 - avoidance of saddle points
 - rates that have dimension dependence
 - acceleration, dynamical systems and lower bounds
 - statistical guarantees from optimization guarantees
- Computationally-efficient sampling
 - nonconvex functions
 - nonreversible MCMC
 - links to optimization
- Market design
 - approach to saddle points
 - recommendations and two-way markets

Sampling vs. Optimization: The Tortoise and the Hare

- Folk knowledge: Sampling is slow, while optimization is fast
 - but sampling provides inferences, while optimization only provides point estimates
- But there hasn't been a clear theoretical analysis that establishes this folk knowledge as true

Sampling vs. Optimization: The Tortoise and the Hare

- Folk knowledge: Sampling is slow, while optimization is fast
 - but sampling provides inferences, while optimization only provides point estimates
- But there hasn't been a clear theoretical analysis that establishes this folk knowledge as true
- Is it really true?

Sampling vs. Optimization: The Tortoise and the Hare

- Folk knowledge: Sampling is slow, while optimization is fast
 - but sampling provides inferences, while optimization only provides point estimates
- But there hasn't been a clear theoretical analysis that establishes this folk knowledge as true
- Is it really true?
- Define the mixing time:

$$\tau(\epsilon, p^0) = \min\{k \mid ||p^k - p^*||_{\text{TV}} \le \epsilon\}$$

 We'll study the Unadjusted Langevin Algorithm (ULA) and the Metropolis-Adjusted Langevin Algorithm (MALA)

Sampling

Theorem. For $p^* \propto e^{-U}$, we assume that U is m-strongly convex outside of a region of radius R and L-smooth. Let $\kappa = L/m$ denote the condition number of U. Let $p^0 = \mathcal{N}(0, \frac{1}{L}I)$ and let $\epsilon \in (0, 1)$. Then ULA satisfies

$$\tau_{ULA}(\epsilon, p^0) \le \mathcal{O}\left(e^{32LR^2}\kappa^2 \frac{d}{\epsilon^2} \ln\left(\frac{d}{\epsilon^2}\right)\right).$$

For MALA,

$$\tau_{MALA}(\epsilon, p^0) \le \mathcal{O}\left(e^{16LR^2}\kappa^{1.5}\left(d\ln\kappa + \ln\left(\frac{1}{\epsilon}\right)\right)^{3/2}d^{1/2}\right).$$

Optimization

Theorem. For any radius R > 0, Lipschitz and strong convexity constants $L \ge 2m > 0$, probability 0 , there exists an objective function <math>U(x) where $x \in \mathbb{R}^d$ and U is L-Lipschitz smooth and m-strongly convex for $||x||_2 > 2R$, such that for any optimization algorithm that inputs $\{U(x), \nabla U(x), \dots, \nabla^n U(x)\}$, for some n, at least

$$K \ge \mathcal{O}\left(p \cdot (LR^2/\epsilon)^{d/2}\right)$$

steps are required for $\epsilon \leq \mathcal{O}(LR^2)$ so that $P(|U(x_K) - U(x^*)| < \epsilon) \geq p$.

Part I: How to Escape Saddle Points Efficiently

with Chi Jin, Praneeth Netrapalli, Rong Ge, and Sham Kakade

The Importance of Saddle Points

- How to escape?
 - need to have a negative eigenvalue that's strictly negative
- How to escape efficiently?
 - in high dimensions how do we find the direction of escape?
 - should we expect exponential complexity in dimension?

A Few Facts

- Gradient descent will asymptotically avoid saddle points (Lee, Simchowitz, Jordan & Recht, 2017)
- Gradient descent can take exponential time to escape saddle points (Du, Jin, Lee, Jordan, & Singh, 2017)
- Stochastic gradient descent can escape saddle points in polynomial time (Ge, Huang, Jin & Yuan, 2015)
 - but that's still not an explanation for its practical success
- Can we prove a stronger theorem?

Optimization

Consider problem:

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$$

Gradient Descent (GD):

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \eta \nabla f(\mathbf{x}_t).$$

Convex: converges to global minimum; **dimension-free** iterations.

Convergence to FOSP

Function $f(\cdot)$ is ℓ -smooth (or gradient Lipschitz)

$$\forall \mathbf{x}_1, \mathbf{x}_2, \ \|\nabla f(\mathbf{x}_1) - \nabla f(\mathbf{x}_2)\| \le \ell \|\mathbf{x}_1 - \mathbf{x}_2\|.$$

Point **x** is an ϵ -**first-order stationary point** (ϵ -FOSP) if

$$\|\nabla f(\mathbf{x})\| \leq \epsilon$$

Theorem [GD Converges to FOSP (Nesterov, 1998)]

For ℓ -smooth function, GD with $\eta=1/\ell$ finds ϵ -FOSP in iterations:

$$\frac{2\ell(f(\mathbf{x}_0)-f^{\star})}{\epsilon^2}$$

*Number of iterations is dimension free.

Nonconvex Optimization

Non-convex: converges to Stationary Point (SP) $\nabla f(\mathbf{x}) = 0$.

SP : local min / local max / saddle points

Many applications: no spurious local min (see full list later).

Definitions and Algorithm

Function $f(\cdot)$ is ρ -**Hessian Lipschitz** if

$$\forall \mathbf{x}_1, \mathbf{x}_2, \ \|\nabla^2 f(\mathbf{x}_1) - \nabla^2 f(\mathbf{x}_2)\| \le \rho \|\mathbf{x}_1 - \mathbf{x}_2\|.$$

Point x is an ϵ -second-order stationary point (ϵ -SOSP) if

$$\|\nabla f(\mathbf{x})\| \le \epsilon,$$
 and $\lambda_{\min}(\nabla^2 f(\mathbf{x})) \ge -\sqrt{\rho\epsilon}$

Definitions and Algorithm

Function $f(\cdot)$ is ρ -**Hessian Lipschitz** if

$$\| \forall \mathbf{x}_1, \mathbf{x}_2, \ \| \nabla^2 f(\mathbf{x}_1) - \nabla^2 f(\mathbf{x}_2) \| \le \rho \| \mathbf{x}_1 - \mathbf{x}_2 \|.$$

Point **x** is an ϵ -second-order stationary point (ϵ -SOSP) if

$$\|\nabla f(\mathbf{x})\| \le \epsilon,$$
 and $\lambda_{\min}(\nabla^2 f(\mathbf{x})) \ge -\sqrt{\rho\epsilon}$

Algorithm Perturbed Gradient Descent (PGD)

- 1. for t = 0, 1, ... do
- 2. **if** perturbation condition holds **then**
- 3. $\mathbf{x}_t \leftarrow \mathbf{x}_t + \xi_t$, ξ_t uniformly $\sim \mathbb{B}_0(r)$
- 4. $\mathbf{x}_{t+1} \leftarrow \mathbf{x}_t \eta \nabla f(\mathbf{x}_t)$

Adds perturbation when $\|\nabla f(\mathbf{x}_t)\| \leq \epsilon$; no more than once per T steps.

Main Result

Theorem [PGD Converges to SOSP]

For ℓ -smooth and ρ -Hessian Lipschitz function f, PGD with $\eta = O(1/\ell)$ and proper choice of r, T w.h.p. finds ϵ -SOSP in iterations:

$$\tilde{O}\left(\frac{\ell(f(\mathbf{x}_0) - f^*)}{\epsilon^2}\right)$$

*Dimension dependence in iteration is $\log^4(d)$ (almost dimension free).

	GD (Nesterov 1998)	PGD(This Work)
Assumptions	ℓ -grad-Lip	ℓ -grad-Lip $+$ $ ho$ -Hessian-Lip
Guarantees	$\epsilon ext{-FOSP}$	$\epsilon extsf{-}SOSP$
Iterations	$2\ell(f(\mathbf{x}_0)-f^\star)/\epsilon^2$	$ ilde{O}(\ell(f(\mathbf{x}_0)-f^\star)/\epsilon^2)$

Geometry and Dynamics around Saddle Points

Challenge: non-constant Hessian + large step size $\eta = O(1/\ell)$.

Around saddle point, **stuck region** forms a non-flat "pancake" shape.

Key Observation: although we don't know its shape, we know it's thin! (Based on an analysis of two nearly coupled sequences)

How Fast Can We Go?

- Important role of lower bounds (Nemirovski & Yudin)
 - strip away inessential aspects of the problem to reveal fundamentals
- The acceleration phenomenon (Nesterov)
 - achieve the lower bounds
 - second-order dynamics
 - a conceptual mystery
- Our perspective: it's essential to go to continuous time
 - the notion of "acceleration" requires a continuum topology to support it

Part II: Variational, Hamiltonian and Symplectic Perspectives on Acceleration

with Andre Wibisono, Ashia Wilson and Michael Betancourt

Accelerated gradient descent

Setting: Unconstrained convex optimization

$$\min_{x \in \mathbb{R}^d} f(x)$$

Classical gradient descent:

$$x_{k+1} = x_k - \beta \nabla f(x_k)$$

obtains a convergence rate of O(1/k)

Accelerated gradient descent

Setting: Unconstrained convex optimization

$$\min_{x \in \mathbb{R}^d} f(x)$$

Classical gradient descent:

$$x_{k+1} = x_k - \beta \nabla f(x_k)$$

obtains a convergence rate of O(1/k)

Accelerated gradient descent:

$$y_{k+1} = x_k - \beta \nabla f(x_k)$$

$$x_{k+1} = (1 - \lambda_k)y_{k+1} + \lambda_k y_k$$

obtains the (optimal) convergence rate of $O(1/k^2)$

Accelerated methods: Continuous time perspective

Gradient descent is discretization of gradient flow

$$\dot{X}_t = -\nabla f(X_t)$$

(and mirror descent is discretization of natural gradient flow)

Accelerated methods: Continuous time perspective

Gradient descent is discretization of gradient flow

$$\dot{X}_t = -\nabla f(X_t)$$

(and mirror descent is discretization of natural gradient flow)

➤ Su, Boyd, Candes '14: Continuous time limit of accelerated gradient descent is a second-order ODE

$$\ddot{X}_t + \frac{3}{t}\dot{X}_t + \nabla f(X_t) = 0$$

Accelerated methods: Continuous time perspective

Gradient descent is discretization of gradient flow

$$\dot{X}_t = -\nabla f(X_t)$$

(and mirror descent is discretization of natural gradient flow)

► Su, Boyd, Candes '14: Continuous time limit of accelerated gradient descent is a second-order ODE

$$\ddot{X}_t + \frac{3}{t}\dot{X}_t + \nabla f(X_t) = 0$$

► These ODEs are obtained by taking continuous time limits. Is there a deeper generative mechanism?

Our work: A general variational approach to acceleration A systematic discretization methodology

Bregman Lagrangian

$$\mathcal{L}(x,\dot{x},t) = e^{\gamma_t + \alpha_t} \left(D_h(x + e^{-\alpha_t}\dot{x},x) - e^{\beta_t} f(x) \right)$$

Variational problem over curves:

$$\min_{X} \int \mathcal{L}(X_t, \dot{X}_t, t) dt$$

Optimal curve is characterized by **Euler-Lagrange** equation:

$$\frac{d}{dt} \left\{ \frac{\partial \mathcal{L}}{\partial \dot{x}} (X_t, \dot{X}_t, t) \right\} = \frac{\partial \mathcal{L}}{\partial x} (X_t, \dot{X}_t, t)$$

E-L equation for Bregman Lagrangian under ideal scaling:

$$\ddot{X}_t + (e^{\alpha_t} - \dot{\alpha}_t)\dot{X}_t + e^{2\alpha_t + \beta_t} \left[\nabla^2 h(X_t + e^{-\alpha_t}\dot{X}_t) \right]^{-1} \nabla f(X_t) = 0$$

Mysteries

- Why can't we discretize the dynamics when we are using exponentially fast clocks?
- What happens when we arrive at a clock speed that we can discretize?
- How do we discretize once it's possible?

Towards A Symplectic Perspective

- We've discussed discretization of Lagrangian-based dynamics
- Discretization of Lagrangian dynamics is often fragile and requires small step sizes
- We can build more robust solutions by taking a Legendre transform and considering a Hamiltonian formalism:

$$L(q, v, t) \to H(q, p, t, \mathcal{E})$$

$$\left(\frac{\mathrm{d}q}{\mathrm{d}t}, \frac{\mathrm{d}v}{\mathrm{d}t}\right) \to \left(\frac{\mathrm{d}q}{\mathrm{d}\tau}, \frac{\mathrm{d}p}{\mathrm{d}\tau}, \frac{\mathrm{d}t}{\mathrm{d}\tau}, \frac{\mathrm{d}\mathcal{E}}{\mathrm{d}\tau}\right)$$

Symplectic Integration of Bregman Hamiltonian

Symplectic vs Nesterov

Symplectic vs Nesterov

Part III: Acceleration and Saddle Points

with Chi Jin and Praneeth Netrapalli

Hamiltonian Analysis

Convergence Result

PAGD Converges to SOSP Faster (Jin et al. 2017)

For ℓ -gradient Lipschitz and ρ -Hessian Lipschitz function f, PAGD with proper choice of $\eta, \theta, r, T, \gamma, s$ w.h.p. finds ϵ -SOSP in iterations:

$$ilde{O}\left(rac{\ell^{1/2}
ho^{1/4}(f(\mathsf{x}_0)-f^\star)}{\epsilon^{7/4}}
ight)$$

	Strongly Convex	Nonconvex (SOSP)
Assumptions	ℓ -grad-Lip & $lpha$ -str-convex	ℓ -grad-Lip & $ ho$ -Hessian-Lip
(Perturbed) GD	$ ilde{O}(\ell/lpha)$	$ ilde{O}(\Delta_f \cdot {\ell/\epsilon^2})$
(Perturbed) AGD	$ ilde{\mathcal{O}}(\sqrt{\ell/lpha})$	$ ilde{O}(\Delta_f \cdot \ell^{rac{1}{2}} ho^{rac{1}{4}} / \epsilon^{rac{7}{4}})$
Condition κ	$\ell/lpha$	$\ell/\sqrt{ ho\epsilon}$
Improvement	$\sqrt{\kappa}$	$\sqrt{\kappa}$

Part IV: Acceleration and Stochastics

with Xiang Cheng, Niladri Chatterji and Peter Bartlett

Acceleration and Stochastics

- Can we accelerate diffusions?
- There have been negative results...
- ...but they've focused on classical overdamped diffusions

Acceleration and Stochastics

- Can we accelerate diffusions?
- There have been negative results...
- ...but they've focused on classical overdamped diffusions
- Inspired by our work on acceleration, can we accelerate underdamped diffusions?

Overdamped Langevin MCMC

Described by the Stochastic Differential Equation (SDE):

$$dx_t = -\nabla U(x_t)dt + \sqrt{2}dB_t$$

where $U(x): \mathbb{R}^d \to \mathbb{R}$ and B_t is standard Brownian motion.

The stationary distribution is $p^*(x) \propto \exp(U(x))$

Corresponding Markov Chain Monte Carlo Algorithm (MCMC):

$$\tilde{x}_{(k+1)\delta} = \tilde{x}_{k\delta} - \nabla U(\tilde{x}_{k\delta}) + \sqrt{2\delta}\xi_k$$

where δ is the *step-size* and $\xi_k \sim N(0, I_{d \times d})$

Guarantees under Convexity

Assuming U(x) is L-smooth and m-strongly convex:

Dalalyan'14: Guarantees in Total Variation

If
$$n \ge O\left(\frac{d}{\epsilon^2}\right)$$
 then, $TV(p^{(n)}, p^*) \le \epsilon$

Durmus & Moulines'16: Guarantees in 2-Wasserstein

If
$$n \ge O\left(\frac{d}{\epsilon^2}\right)$$
 then, $W_2(p^{(n)}, p^*) \le \epsilon$

Cheng and Bartlett'17: Guarantees in KL divergence

If
$$n \ge O\left(\frac{d}{\epsilon^2}\right)$$
 then, $\mathsf{KL}(p^{(n)}, p^*) \le \epsilon$

Underdamped Langevin Diffusion

Described by the second-order equation:

$$dx_t = v_t dt$$

$$dv_t = -\gamma v_t dt + \lambda \nabla U(x_t) dt + \sqrt{2\gamma \lambda} dB_t$$

The stationary distribution is $p^*(x, v) \propto \exp\left(-U(x) - \frac{|v|_2^2}{2\lambda}\right)$

Intuitively, x_t is the position and v_t is the velocity

 $\nabla U(x_t)$ is the force and γ is the drag coefficient

Quadratic Improvement

Let $p^{(n)}$ denote the distribution of $(\tilde{x}_{n\delta}, \tilde{v}_{n\delta})$. Assume U(x) is strongly convex

Cheng, Chatterji, Bartlett, Jordan '17:

If
$$n \ge O\left(\frac{\sqrt{d}}{\epsilon}\right)$$
 then $W_2(p^{(n)}, p^*) \le \epsilon$

Compare with Durmus & Moulines '16 (Overdamped)

If
$$n \ge O\left(\frac{d}{\epsilon^2}\right)$$
 then $W_2(p^{(n)}, p^*) \le \epsilon$

Proof Idea: Reflection Coupling

Tricky to prove continuous-time process contracts. Consider two processes,

$$dx_t = -\nabla U(x_t)dt + \sqrt{2} dB_t^x$$

$$dy_t = -\nabla U(y_t)dt + \sqrt{2} dB_t^y$$

where $x_0 \sim p_0$ and $y_0 \sim p^*$. Couple these through Brownian motion

$$dB_{t}^{y} = \left[I_{d \times d} - \frac{2 \cdot (x_{t} - y_{t})(x_{t} - y_{t})^{\mathsf{T}}}{|x_{t} - y_{t}|_{2}^{2}} \right] dB_{t}^{x}$$

"reflection along line separating the two processes"

Reduction to One Dimension

By Itô's Lemma we can monitor the evolution of the separation distance

$$d|x_t - y_t|_2 = -\left\langle \frac{x_t - y_t}{|x_t - y_t|_2}, \nabla U(x_t) - \nabla U(y_t) \right\rangle dt + 2\sqrt{2}dB_t^1$$
'Drift'
'1-d random walk'

Two cases are possible

- 1. If $|x_t y_t|_2 \le R$ then we have strong convexity; the drift helps.
- 2. If $|x_t y_t|_2 \ge R$ then the drift hurts us, but Brownian motion helps stick

Rates not exponential in d as we have a 1-d random walk

*Under a clever choice of Lyapunov function.

Part VI: Acceleration and Sampling

With Yi-An Ma, Niladri Chatterji, and Xiang Cheng

Acceleration of SDEs

 The underdamped Langevin stochastic differential equation is Nesterov acceleration on the manifold of probability distributions, with respect to the KL divergence (Ma, et al., to appear)

Part V: Population Risk and Empirical Risk

with Chi Jin and Lydia Liu

Population Risk vs Empirical Risk

- Even when R is smooth, \hat{R}_n can be **non-smooth** and may even have many **additional local minima** (ReLU deep networks).
- ▶ Typically $||R \hat{R}_n||_{\infty} \le O(1/\sqrt{n})$ by empirical process results.

Can we finds local min of R given only access to the function value \hat{R}_n ?

Our Contribution

Our answer: **Yes!** Our SGD approach finds ϵ -SOSP of F if $\nu \leq \epsilon^{1.5}/d$, which is **optimal among all polynomial queries algorithms**.

Complete characterization of error ν vs accuracy ϵ and dimension d.

Part VII: Market Design Meets Gradient-Based Learning

with Lydia Liu, Horia Mania and Eric Mazumdar

What Intelligent Systems Currently Exist?

What Intelligent Systems Currently Exist?

Brains and Minds

What Intelligent Systems Currently Exist?

Brains and Minds

Markets

Two Examples of Current Projects

- How to find saddle points in high dimensions?
 - not just any saddle points; we want to find the Nash equilibria (and only the Nash equilibria)
- Competitive bandits and two-way markets
 - how to find the "best action" when supervised training data is not available, when other agents are also searching for best actions, and when there is conflict (e.g., scarcity)

Executive Summary

- ML (AI) has come of age
- But it is far from being a solid engineering discipline that can yield robust, scalable solutions to modern dataanalytic problems
- There are many hard problems involving uncertainty, inference, decision-making, robustness and scale that are far from being solved
 - not to mention economic, social and legal issues