The hypersimplex and the m = 2 amplituhedron

Lauren K. Williams, Harvard

Slides at http://people.math.harvard.edu/~williams/TropAmpKITP.pdf

Based on:

- "The positive tropical Grassmannian, the hypersimplex, and the m = 2 amplituhedron," with Tomasz Lukowski and Matteo Parisi, arXiv:2002.06164
- "The positive Dressian equals the positive tropical Grassmannian," with David Speyer, arXiv:2003.10231

I. Amplituhedron '13 Arkani-Hamed–Trnka $\mathcal{N} = 4$ SYM II. Hypersimplex and moment map '87 Gelfand-Goresky-MacPherson-Serganova matroids, torus orbits on $Gr_{k,n}$

III. Positive tropical Grassmannian '05 Speyer–W. associahedron, cluster algebras connected to amplitudes, "pos. configuration space"

I. Amplituhedron '13 Arkani-Hamed–Trnka $\mathcal{N}=4$ SYM II. Hypersimplex and moment map '87 Gelfand-Goresky-MacPherson-Serganova matroids, torus orbits on $Gr_{k,n}$

 III. Positive tropical Grassmannian '05 Speyer–W.
associahedron, cluster algebras
connected to amplitudes, "pos. configuration space"

Overview of the talk

I. Amplituhedron '13 Arkani-Hamed–Trnka $\mathcal{N}=4$ SYM II. Hypersimplex and moment map '87 Gelfand-Goresky-MacPherson-Serganova matroids, torus orbits on $Gr_{k,n}$

III. Positive tropical Grassmannian '05 Speyer–W. associahedron, cluster algebras connected to amplitudes, "pos. configuration space"

2020 2 / 29

۲

• Background on the Grassmannian and amplituhedron

- •
- •

・ 御 ト ・ 臣 ト ・ 臣 ト

• • • •

• Background on the Grassmannian and amplituhedron

Lauren K. Williams (Harvard)

< E ► < E ►

- Background on the Grassmannian and amplituhedron
- (Positroid) triangulations of the amplituhedron

۲

- •
- •
- •
- •

< E

•

- Background on the Grassmannian and amplituhedron
- (Positroid) triangulations of the amplituhedron
- (Positroid) triangulations of the hypersimplex

- Background on the Grassmannian and amplituhedron
- (Positroid) triangulations of the amplituhedron
- (Positroid) triangulations of the hypersimplex
- T-duality map connects amplituhedron triangulations and hypersimplex triangulations

۲

۲

- Background on the Grassmannian and amplituhedron
- (Positroid) triangulations of the amplituhedron
- (Positroid) triangulations of the hypersimplex
- T-duality map connects amplituhedron triangulations and hypersimplex triangulations
- Results and conjectures
- ۲

- Background on the Grassmannian and amplituhedron
- (Positroid) triangulations of the amplituhedron
- (Positroid) triangulations of the hypersimplex
- T-duality map connects amplituhedron triangulations and hypersimplex triangulations
- Results and conjectures
- How we discovered this: the (positive) tropical Grassmannian

- Background on the Grassmannian and amplituhedron
- (Positroid) triangulations of the amplituhedron
- (Positroid) triangulations of the hypersimplex
- T-duality map connects amplituhedron triangulations and hypersimplex triangulations
- Results and conjectures
- How we discovered this: the (positive) tropical Grassmannian
- Summary

The **Grassmannian** $Gr_{k,n} = Gr_{k,n}(\mathbb{R}) := \{V \mid V \subset \mathbb{R}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}(\mathbb{R})$ by a full-rank $k \times n$ matrix A.

 $\begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 3 & 2 \end{pmatrix}$

Can think of $Gr_{k,n}(\mathbb{R})$ as $Mat_{k,n}/\sim$.

Given $I \in {\binom{\lfloor n \rfloor}{k}}$, the **Plücker coordinate** $p_I(A)$ is the minor of the $k \times k$ submatrix of A in column set I.

The **TNN (totally nonnegative) Grassmannian** $(Gr_{k,n})_{\geq 0}$ is the subset of $Gr_{k,n}(\mathbb{R})$ where $p_I(A) \geq 0$.

Def due to Postnikov from early 2000's. Earlier Lusztig defined $(G/P)_{\geq 0}$. Not obvious that Lusztig's definition – in the case of $Gr_{k,n}$ – agrees with Postnikov's – but this is true (Rietsch 2007).

The **Grassmannian** $Gr_{k,n} = Gr_{k,n}(\mathbb{R}) := \{V \mid V \subset \mathbb{R}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}(\mathbb{R})$ by a full-rank $k \times n$ matrix A.

$$\begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 3 & 2 \end{pmatrix}$$

Can think of $Gr_{k,n}(\mathbb{R})$ as $Mat_{k,n}/\sim$.

Given $I \in {[n] \choose k}$, the **Plücker coordinate** $p_I(A)$ is the minor of the $k \times k$ submatrix of A in column set I.

The **TNN (totally nonnegative) Grassmannian** $(Gr_{k,n})_{\geq 0}$ is the subset of $Gr_{k,n}(\mathbb{R})$ where $p_l(A) \geq 0$.

Def due to Postnikov from early 2000's. Earlier Lusztig defined $(G/P)_{\geq 0}$. Not obvious that Lusztig's definition – in the case of $Gr_{k,n}$ – agrees with Postnikov's – but this is true (Rietsch 2007).

The **Grassmannian** $Gr_{k,n} = Gr_{k,n}(\mathbb{R}) := \{V \mid V \subset \mathbb{R}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}(\mathbb{R})$ by a full-rank $k \times n$ matrix A.

$$\begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 3 & 2 \end{pmatrix}$$

Can think of $Gr_{k,n}(\mathbb{R})$ as $Mat_{k,n}/\sim$.

Given $I \in {[n] \choose k}$, the **Plücker coordinate** $p_I(A)$ is the minor of the $k \times k$ submatrix of A in column set I.

The **TNN (totally nonnegative) Grassmannian** $(Gr_{k,n})_{\geq 0}$ is the subset of $Gr_{k,n}(\mathbb{R})$ where $p_I(A) \geq 0$.

Def due to Postnikov from early 2000's. Earlier Lusztig defined $(G/P)_{\geq 0}$. Not obvious that Lusztig's definition – in the case of $Gr_{k,n}$ – agrees with Postnikov's – but this is true (Rietsch 2007).

The **Grassmannian** $Gr_{k,n} = Gr_{k,n}(\mathbb{R}) := \{V \mid V \subset \mathbb{R}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}(\mathbb{R})$ by a full-rank $k \times n$ matrix A.

$$\begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 3 & 2 \end{pmatrix}$$

Can think of $Gr_{k,n}(\mathbb{R})$ as $Mat_{k,n}/\sim$.

Given $I \in {[n] \choose k}$, the **Plücker coordinate** $p_I(A)$ is the minor of the $k \times k$ submatrix of A in column set I.

The **TNN (totally nonnegative) Grassmannian** $(Gr_{k,n})_{\geq 0}$ is the subset of $Gr_{k,n}(\mathbb{R})$ where $p_I(A) \geq 0$.

Def due to Postnikov from early 2000's. Earlier Lusztig defined $(G/P)_{\geq 0}$. Not obvious that Lusztig's definition – in the case of $Gr_{k,n}$ – agrees with Postnikov's – but this is true (Rietsch 2007).

イロト (個) (言) (言) (言) (句)

The **Grassmannian** $Gr_{k,n} = Gr_{k,n}(\mathbb{R}) := \{V \mid V \subset \mathbb{R}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}(\mathbb{R})$ by a full-rank $k \times n$ matrix A.

$$\begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 3 & 2 \end{pmatrix}$$

Can think of $Gr_{k,n}(\mathbb{R})$ as $Mat_{k,n}/\sim$.

Given $I \in {[n] \choose k}$, the **Plücker coordinate** $p_I(A)$ is the minor of the $k \times k$ submatrix of A in column set I.

The **TNN (totally nonnegative) Grassmannian** $(Gr_{k,n})_{\geq 0}$ is the subset of $Gr_{k,n}(\mathbb{R})$ where $p_l(A) \geq 0$.

Def due to Postnikov from early 2000's. Earlier Lusztig defined $(G/P)_{\geq 0}$. Not obvious that Lusztig's definition – in the case of $Gr_{k,n}$ – agrees with Postnikov's – but this is true (Rietsch 2007).

-▲토▶▲토▶ 토|티 ∽의의

The **Grassmannian** $Gr_{k,n} = Gr_{k,n}(\mathbb{R}) := \{V \mid V \subset \mathbb{R}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}(\mathbb{R})$ by a full-rank $k \times n$ matrix A.

$$\begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 3 & 2 \end{pmatrix}$$

Can think of $Gr_{k,n}(\mathbb{R})$ as $Mat_{k,n}/\sim$.

Given $I \in {[n] \choose k}$, the **Plücker coordinate** $p_I(A)$ is the minor of the $k \times k$ submatrix of A in column set I.

The **TNN (totally nonnegative) Grassmannian** $(Gr_{k,n})_{\geq 0}$ is the subset of $Gr_{k,n}(\mathbb{R})$ where $p_l(A) \geq 0$.

Def due to Postnikov from early 2000's. Earlier Lusztig defined $(G/P)_{\geq 0}$. Not obvious that Lusztig's definition – in the case of $Gr_{k,n}$ – agrees with Postnikov's – but this is true (Rietsch 2007).

One can partition $(Gr_{k,n})_{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let $\mathcal{M} \subseteq {\binom{[n]}{k}}$. Let $S_{\mathcal{M}}^{tnn} := \{A \in (Gr_{k,n})_{\geq 0} \mid p_I(A) > 0 \text{ iff } I \in \mathcal{M}\}.$

- Decorated permutations π on [n] with k antiexcedances.
- other combinatorial objects such as on-shell (plabic) diagrams.

One can partition $(Gr_{k,n})_{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let $\mathcal{M} \subseteq {\binom{[n]}{k}}$. Let $S_{\mathcal{M}}^{tnn} := \{A \in (Gr_{k,n})_{\geq 0} \mid p_I(A) > 0 \text{ iff } I \in \mathcal{M}\}.$

- Decorated permutations π on [n] with k antiexcedances.
- other combinatorial objects such as on-shell (plabic) diagrams.

One can partition $(Gr_{k,n})_{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let $\mathcal{M} \subseteq {\binom{[n]}{k}}$. Let $S_{\mathcal{M}}^{tnn} := \{A \in (Gr_{k,n})_{\geq 0} \mid p_I(A) > 0 \text{ iff } I \in \mathcal{M}\}.$

- Decorated permutations π on [n] with k antiexcedances.
- other combinatorial objects such as on-shell (plabic) diagrams.

One can partition $(Gr_{k,n})_{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let $\mathcal{M} \subseteq {\binom{[n]}{k}}$. Let $S_{\mathcal{M}}^{tnn} := \{A \in (Gr_{k,n})_{\geq 0} \mid p_I(A) > 0 \text{ iff } I \in \mathcal{M}\}.$

- Decorated permutations π on [n] with k antiexcedances.
- other combinatorial objects such as on-shell (plabic) diagrams.

One can partition $(Gr_{k,n})_{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let
$$\mathcal{M} \subseteq {\binom{[n]}{k}}$$
. Let $S_{\mathcal{M}}^{tnn} := \{A \in (Gr_{k,n})_{\geq 0} \mid p_I(A) > 0 \text{ iff } I \in \mathcal{M}\}.$

- Decorated permutations π on [n] with k antiexcedances.
- other combinatorial objects such as on-shell (plabic) diagrams.

One can partition $(Gr_{k,n})_{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let
$$\mathcal{M} \subseteq {\binom{[n]}{k}}$$
. Let $S_{\mathcal{M}}^{tnn} := \{A \in (Gr_{k,n})_{\geq 0} \mid p_I(A) > 0 \text{ iff } I \in \mathcal{M}\}.$

- Decorated permutations π on [n] with k antiexcedances.
- other combinatorial objects such as on-shell (plabic) diagrams.

 $(Gr_{k,n})_{\geq 0}$ is the subset of $Gr_{k,n}$ where $p_I \geq 0$ for all I.

One can partition $(Gr_{k,n})_{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let
$$\mathcal{M} \subseteq {\binom{[n]}{k}}$$
. Let $S_{\mathcal{M}}^{tnn} := \{A \in (Gr_{k,n})_{\geq 0} \mid p_I(A) > 0 \text{ iff } I \in \mathcal{M}\}.$

- Decorated permutations π on [n] with k antiexcedances.
- other combinatorial objects such as on-shell (plabic) diagrams.

 $(Gr_{k,n})_{\geq 0}$ is the subset of $Gr_{k,n}$ where $p_I \geq 0$ for all I.

One can partition $(Gr_{k,n})_{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let
$$\mathcal{M} \subseteq {\binom{[n]}{k}}$$
. Let $S_{\mathcal{M}}^{tnn} := \{A \in (Gr_{k,n})_{\geq 0} \mid p_I(A) > 0 \text{ iff } I \in \mathcal{M}\}.$

- Decorated permutations π on [n] with k antiexcedances.
- other combinatorial objects such as on-shell (plabic) diagrams.

- The amplituhedron $\mathcal{A}_{n,k,m}$ was introduced by Arkani-Hamed and Trnka in 2013.
- $A_{n,k,m}$ is the image of the TNN Grassmannian under a simple map.

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \leq n$.

Let Z be a $n \times (k + m)$ matrix with maximal minors positive. Let \widetilde{Z} be map $(Gr_{k,n})_{\geq 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\geq 0}) \subset Gr_{k,k+m}$.

- $\mathcal{A}_{n,k,m}$ has full dimension km inside $Gr_{k,k+m}$.
- When m = 4, its "volume" computes scattering amplitudes in N = 4 super Yang Mills theory.

- The amplituhedron $\mathcal{A}_{n,k,m}$ was introduced by Arkani-Hamed and Trnka in 2013.
- $A_{n,k,m}$ is the image of the TNN Grassmannian under a simple map.

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \leq n$.

Let Z be a $n \times (k + m)$ matrix with maximal minors positive. Let \widetilde{Z} be map $(Gr_{k,n})_{\geq 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\geq 0}) \subset Gr_{k,k+m}$.

- $A_{n,k,m}$ has full dimension km inside $Gr_{k,k+m}$.
- When m = 4, its "volume" computes scattering amplitudes in N = 4 super Yang Mills theory.

- The amplituhedron $\mathcal{A}_{n,k,m}$ was introduced by Arkani-Hamed and Trnka in 2013.
- $A_{n,k,m}$ is the image of the TNN Grassmannian under a simple map.

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \leq n$. Let Z be a $n \times (k + m)$ matrix with maximal minors positive. Let \widetilde{Z} be map $(Gr_{k,n})_{\geq 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\geq 0}) \subset Gr_{k,k+m}$.

- $\mathcal{A}_{n,k,m}$ has full dimension km inside $Gr_{k,k+m}$.
- When m = 4, its "volume" computes scattering amplitudes in N = 4 super Yang Mills theory.

- The amplituhedron $\mathcal{A}_{n,k,m}$ was introduced by Arkani-Hamed and Trnka in 2013.
- $A_{n,k,m}$ is the image of the TNN Grassmannian under a simple map.

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$. Let Z be a $n \times (k + m)$ matrix with maximal minors positive. Let \widetilde{Z} be map $(Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

- $A_{n,k,m}$ has full dimension km inside $Gr_{k,k+m}$.
- When m = 4, its "volume" computes scattering amplitudes in N = 4 super Yang Mills theory.

- The amplituhedron $\mathcal{A}_{n,k,m}$ was introduced by Arkani-Hamed and Trnka in 2013.
- $A_{n,k,m}$ is the image of the TNN Grassmannian under a simple map.

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \leq n$.

Let Z be a $n \times (k + m)$ matrix with maximal minors positive. Let \widetilde{Z} be map $(Gr_{k,n})_{\geq 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\geq 0}) \subset Gr_{k,k+m}$.

- $\mathcal{A}_{n,k,m}$ has full dimension km inside $Gr_{k,k+m}$.
- When m = 4, its "volume" computes scattering amplitudes in N = 4 super Yang Mills theory.

- The amplituhedron $\mathcal{A}_{n,k,m}$ was introduced by Arkani-Hamed and Trnka in 2013.
- $A_{n,k,m}$ is the image of the TNN Grassmannian under a simple map.

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$. Let Z be a $n \times (k + m)$ matrix with maximal minors positive. Let \widetilde{Z} be map $(Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

- $A_{n,k,m}$ has full dimension km inside $Gr_{k,k+m}$.
- When m = 4, its "volume" computes scattering amplitudes in N = 4 super Yang Mills theory.

- The amplituhedron $\mathcal{A}_{n,k,m}$ was introduced by Arkani-Hamed and Trnka in 2013.
- $A_{n,k,m}$ is the image of the TNN Grassmannian under a simple map.

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$. Let Z be a $n \times (k + m)$ matrix with maximal minors positive. Let \widetilde{Z} be map $(Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

- $A_{n,k,m}$ has full dimension km inside $Gr_{k,k+m}$.
- When m = 4, its "volume" computes scattering amplitudes in N = 4 super Yang Mills theory.

A B K A B K B

- The amplituhedron $\mathcal{A}_{n,k,m}$ was introduced by Arkani-Hamed and Trnka in 2013.
- $A_{n,k,m}$ is the image of the TNN Grassmannian under a simple map.

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$. Let Z be a $n \times (k + m)$ matrix with maximal minors positive. Let \widetilde{Z} be map $(Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

- $\mathcal{A}_{n,k,m}$ has full dimension km inside $Gr_{k,k+m}$.
- When m = 4, its "volume" computes scattering amplitudes in N = 4 super Yang Mills theory.

A B K A B K B

- The amplituhedron $\mathcal{A}_{n,k,m}$ was introduced by Arkani-Hamed and Trnka in 2013.
- $A_{n,k,m}$ is the image of the TNN Grassmannian under a simple map.

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$. Let Z be a $n \times (k + m)$ matrix with maximal minors positive. Let \widetilde{Z} be map $(Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

• $\mathcal{A}_{n,k,m}$ has full dimension km inside $Gr_{k,k+m}$.

 When m = 4, its "volume" computes scattering amplitudes in N = 4 super Yang Mills theory.

▲ 분 ▲ 분 ▶ 분 분 ● 9 0 0

- The amplituhedron $\mathcal{A}_{n,k,m}$ was introduced by Arkani-Hamed and Trnka in 2013.
- $A_{n,k,m}$ is the image of the TNN Grassmannian under a simple map.

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$. Let Z be a $n \times (k + m)$ matrix with maximal minors positive. Let \widetilde{Z} be map $(Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

- $\mathcal{A}_{n,k,m}$ has full dimension km inside $Gr_{k,k+m}$.
- When m = 4, its "volume" computes scattering amplitudes in $\mathcal{N} = 4$ super Yang Mills theory.

米国ト 米国ト 座
The amplituhedron $\mathcal{A}_{n,k,n'}$

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^+$ (max minors > 0). Let \widetilde{Z} be map $(Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

- The m = 4 amplituhedron $\mathcal{A}_{n,k,4}$:
 - encodes the geometry of (tree-level) scattering amplitudes in planar $\mathcal{N}=4$ SYM.
- The m = 2 amplituhedron $A_{n,k,2}$ (subject of today's talk):
 - considered a toy-model for m = 4 case.
 - governs geometry of scattering amplitudes in $\mathcal{N} = 4$ SYM at subleading order in perturbation theory for the 'MHV' sector of the theory (cf def of loop amplituhedron).
 - is relevant to the 'next to MHV' sector, enhancing connection with geometries of loop amplitudes (Kojima–Langer).

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^+$ (max minors > 0). Let \widetilde{Z} be map $(Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

- The m = 4 amplituhedron $\mathcal{A}_{n,k,4}$:
 - encodes the geometry of (tree-level) scattering amplitudes in planar $\mathcal{N}=4$ SYM.
- The m = 2 amplituhedron $A_{n,k,2}$ (subject of today's talk):
 - considered a toy-model for m = 4 case.
 - governs geometry of scattering amplitudes in $\mathcal{N} = 4$ SYM at subleading order in perturbation theory for the 'MHV' sector of the theory (cf def of loop amplituhedron).
 - is relevant to the 'next to MHV' sector, enhancing connection with geometries of loop amplitudes (Kojima–Langer).

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^+$ (max minors > 0). Let \widetilde{Z} be map $(Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

- The m = 4 amplituhedron $A_{n,k,4}$:
 - encodes the geometry of (tree-level) scattering amplitudes in planar $\mathcal{N}=4$ SYM.
- The m = 2 amplituhedron $A_{n,k,2}$ (subject of today's talk):
 - considered a toy-model for m = 4 case.
 - governs geometry of scattering amplitudes in $\mathcal{N} = 4$ SYM at subleading order in perturbation theory for the 'MHV' sector of the theory (cf def of loop amplituhedron).
 - is relevant to the 'next to MHV' sector, enhancing connection with geometries of loop amplitudes (Kojima-Langer).

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^+$ (max minors > 0). Let \widetilde{Z} be map $(Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

Special cases

• The m = 4 amplituhedron $A_{n,k,4}$:

- encodes the geometry of (tree-level) scattering amplitudes in planar $\mathcal{N}=4$ SYM.
- The m = 2 amplituhedron $A_{n,k,2}$ (subject of today's talk):
 - considered a toy-model for m = 4 case.
 - governs geometry of scattering amplitudes in $\mathcal{N} = 4$ SYM at subleading order in perturbation theory for the 'MHV' sector of the theory (cf def of loop amplituhedron).
 - is relevant to the 'next to MHV' sector, enhancing connection with geometries of loop amplitudes (Kojima–Langer).

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^+$ (max minors > 0). Let \widetilde{Z} be map $(Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

Special cases

• The m = 4 amplituhedron $A_{n,k,4}$:

- encodes the geometry of (tree-level) scattering amplitudes in planar $\mathcal{N}=4$ SYM.
- The m = 2 amplituhedron $A_{n,k,2}$ (subject of today's talk):
 - considered a toy-model for m = 4 case.
 - governs geometry of scattering amplitudes in N = 4 SYM at subleading order in perturbation theory for the 'MHV' sector of the theory (cf def of loop amplituhedron).
 - is relevant to the 'next to MHV' sector, enhancing connection with geometries of loop amplitudes (Kojima–Langer).

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^+$ (max minors > 0). Let \widetilde{Z} be map $(Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

- The m = 4 amplituhedron $\mathcal{A}_{n,k,4}$:
 - encodes the geometry of (tree-level) scattering amplitudes in planar $\mathcal{N}=4$ SYM.
- The m = 2 amplituhedron $A_{n,k,2}$ (subject of today's talk):
 - considered a toy-model for m = 4 case.
 - governs geometry of scattering amplitudes in $\mathcal{N} = 4$ SYM at subleading order in perturbation theory for the 'MHV' sector of the theory (cf def of loop amplituhedron).
 - is relevant to the 'next to MHV' sector, enhancing connection with geometries of loop amplitudes (Kojima–Langer).

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^+$ (max minors > 0). Let \widetilde{Z} be map $(Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

Special cases

• The m = 4 amplituhedron $\mathcal{A}_{n,k,4}$:

- encodes the geometry of (tree-level) scattering amplitudes in planar $\mathcal{N}=4$ SYM.
- The m = 2 amplituhedron $A_{n,k,2}$ (subject of today's talk):
 - considered a toy-model for m = 4 case.
 - governs geometry of scattering amplitudes in $\mathcal{N} = 4$ SYM at subleading order in perturbation theory for the 'MHV' sector of the theory (cf def of loop amplituhedron).
 - is relevant to the 'next to MHV' sector, enhancing connection with geometries of loop amplitudes (Kojima–Langer).

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^+$ (max minors > 0). Let \widetilde{Z} be map $(Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

Special cases

• The m = 4 amplituhedron $\mathcal{A}_{n,k,4}$:

- encodes the geometry of (tree-level) scattering amplitudes in planar $\mathcal{N}=4$ SYM.
- The m = 2 amplituhedron $A_{n,k,2}$ (subject of today's talk):
 - considered a toy-model for m = 4 case.
 - governs geometry of scattering amplitudes in $\mathcal{N} = 4$ SYM at subleading order in perturbation theory for the 'MHV' sector of the theory (cf def of loop amplituhedron).
 - is relevant to the 'next to MHV' sector, enhancing connection with geometries of loop amplitudes (Kojima-Langer).

Lauren K. Williams (Harvard)

The amplituhedron $\mathcal{A}_{n,k,n}$

Fix n, k, m with $k + m \leq n$. Let $Z \in Mat^+_{n,k+m}$. Have $\widetilde{Z} : (Gr_{k,n})_{\geq 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m} = \mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\geq 0}) \subset Gr_{k,k+m}$.

- Have dim $\mathcal{A}_{n,k,m} = km \leq \dim(Gr_{k,n})_{\geq 0}$, so Z generally not injective.
- Recall we have cell decomposition of $(Gr_{k,n})_{\geq 0}$ into positroid cells.
- Problem: Find collection of km-dimensional cells of $(Gr_{k,n})_{\geq 0}$ where \widetilde{Z} is injective, such that their images are disjoint and cover (dense subset of) $\mathcal{A}_{n,k,m}$.
- Following the physicists, call this a triangulation.
- The BCFW recurrence can (conjecturally) be formulated as giving triangulations of A_{n,k,4}.

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$. Let $Z \in Mat^+_{n,k+m}$. Have $\widetilde{Z} : (Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m} = \mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

- Have dim $\mathcal{A}_{n,k,m} = km \leq \dim(Gr_{k,n})_{\geq 0}$, so Z generally not injective.
- Recall we have cell decomposition of (Gr_{k,n})_{≥0} into positroid cells.
- Problem: Find collection of *km*-dimensional cells of (*Gr_{k,n}*)≥0 where *Ž* is injective, such that their images are disjoint and cover (dense subset of) *A_{n,k,m}*.
- Following the physicists, call this a triangulation.
- The BCFW recurrence can (conjecturally) be formulated as giving triangulations of A_{n,k,4}.

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$. Let $Z \in Mat^+_{n,k+m}$. Have $\widetilde{Z} : (Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m} = \mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

- Have dim $\mathcal{A}_{n,k,m} = km \leq \dim(Gr_{k,n})_{\geq 0}$, so Z generally not injective.
- Recall we have cell decomposition of $(Gr_{k,n})_{\geq 0}$ into positroid cells.
- Problem: Find collection of km-dimensional cells of (Gr_{k,n})≥0 where Z̃ is injective, such that their images are disjoint and cover (dense subset of) A_{n,k,m}.
- Following the physicists, call this a triangulation.
- The BCFW recurrence can (conjecturally) be formulated as giving triangulations of A_{n,k,4}.

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$. Let $Z \in Mat^+_{n,k+m}$. Have $\widetilde{Z} : (Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m} = \mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

- Have dim $\mathcal{A}_{n,k,m} = km \leq \dim(Gr_{k,n})_{\geq 0}$, so \widetilde{Z} generally not injective.
- Recall we have cell decomposition of $(Gr_{k,n})_{\geq 0}$ into positroid cells.
- Problem: Find collection of *km*-dimensional cells of (*Gr_{k,n}*)≥0 where *Ž* is injective, such that their images are disjoint and cover (dense subset of) *A_{n,k,m}*.
- Following the physicists, call this a triangulation.
- The BCFW recurrence can (conjecturally) be formulated as giving triangulations of $A_{n,k,4}$.

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$. Let $Z \in Mat^+_{n,k+m}$. Have $\widetilde{Z} : (Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m} = \mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

- Have dim $\mathcal{A}_{n,k,m} = km \leq \dim(Gr_{k,n})_{\geq 0}$, so \widetilde{Z} generally not injective.
- Recall we have cell decomposition of $(Gr_{k,n})_{\geq 0}$ into positroid cells.
- Problem: Find collection of km-dimensional cells of $(Gr_{k,n})_{\geq 0}$ where \widetilde{Z} is injective, such that their images are disjoint and cover (dense subset of) $\mathcal{A}_{n,k,m}$.
- Following the physicists, call this a triangulation.
- The BCFW recurrence can (conjecturally) be formulated as giving triangulations of $\mathcal{A}_{n,k,4}$.

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$. Let $Z \in Mat^+_{n,k+m}$. Have $\widetilde{Z} : (Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m} = \mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

- Have dim $\mathcal{A}_{n,k,m} = km \leq \dim(Gr_{k,n})_{\geq 0}$, so \widetilde{Z} generally not injective.
- Recall we have cell decomposition of $(Gr_{k,n})_{\geq 0}$ into positroid cells.
- Problem: Find collection of km-dimensional cells of (Gr_{k,n})≥0 where *Ž* is injective, such that their images are disjoint and cover (dense subset of) A_{n,k,m}.
- Following the physicists, call this a triangulation.
- The BCFW recurrence can (conjecturally) be formulated as giving triangulations of $A_{n,k,4}$.

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$. Let $Z \in Mat^+_{n,k+m}$. Have $\widetilde{Z} : (Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m} = \mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

- Have dim $\mathcal{A}_{n,k,m} = km \leq \dim(Gr_{k,n})_{\geq 0}$, so \widetilde{Z} generally not injective.
- Recall we have cell decomposition of $(Gr_{k,n})_{\geq 0}$ into positroid cells.
- Problem: Find collection of km-dimensional cells of (Gr_{k,n})≥0 where Z̃ is injective, such that their images are disjoint and cover (dense subset of) A_{n,k,m}.
- Following the physicists, call this a triangulation.
- The BCFW recurrence can (conjecturally) be formulated as giving triangulations of $A_{n,k,4}$.

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$. Let $Z \in Mat^+_{n,k+m}$. Have $\widetilde{Z} : (Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m} = \mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

- Have dim $\mathcal{A}_{n,k,m} = km \leq \dim(Gr_{k,n})_{\geq 0}$, so \widetilde{Z} generally not injective.
- Recall we have cell decomposition of $(Gr_{k,n})_{\geq 0}$ into positroid cells.
- Problem: Find collection of km-dimensional cells of $(Gr_{k,n})_{\geq 0}$ where \widetilde{Z} is injective, such that their images are disjoint and cover (dense subset of) $\mathcal{A}_{n,k,m}$.
- Following the physicists, call this a triangulation.
- The BCFW recurrence can (conjecturally) be formulated as giving triangulations of $A_{n,k,4}$.

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$. Let $Z \in Mat^+_{n,k+m}$. Have $\widetilde{Z} : (Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m} = \mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

- Have dim $\mathcal{A}_{n,k,m} = km \leq \dim(Gr_{k,n})_{\geq 0}$, so \widetilde{Z} generally not injective.
- Recall we have cell decomposition of $(Gr_{k,n})_{\geq 0}$ into positroid cells.
- Problem: Find collection of km-dimensional cells of $(Gr_{k,n})_{\geq 0}$ where \widetilde{Z} is injective, such that their images are disjoint and cover (dense subset of) $\mathcal{A}_{n,k,m}$.
- Following the physicists, call this a triangulation.
- The BCFW recurrence can (conjecturally) be formulated as giving triangulations of $\mathcal{A}_{n,k,4}$.

Wild conjecture (Steven Karp – Yan Zhang – W)

For *m* even, # of cells in a triangulation of $\mathcal{A}_{n,k,m}$ is $M(k, n-k-m, rac{m}{2})$ where

$$M(a, b, c) := \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}.$$

Remark: Consistent with results/conjectures for m = 2, m = 4, k = 1.

Wild conjecture (Steven Karp – Yan Zhang – W)

For *m* even, # of cells in a triangulation of $\mathcal{A}_{n,k,m}$ is $M(k, n-k-m, rac{m}{2})$ where

$$M(a, b, c) := \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}.$$

Remark: Consistent with results/conjectures for m = 2, m = 4, k = 1.

Wild conjecture (Steven Karp – Yan Zhang – W)

For *m* even, # of cells in a triangulation of $\mathcal{A}_{n,k,m}$ is $M(k, n-k-m, rac{m}{2})$ where

$$M(a, b, c) := \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}.$$

Remark: Consistent with results/conjectures for m = 2, m = 4, k = 1

Wild conjecture (Steven Karp – Yan Zhang – W)

For *m* even, # of cells in a triangulation of $\mathcal{A}_{n,k,m}$ is $M(k, n-k-m, rac{m}{2})$ where

$$M(a, b, c) := \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}.$$

Remark: Consistent with results/conjectures for m = 2, m = 4, k = 1.

Wild conjecture (Steven Karp – Yan Zhang – W)

For *m* even, # of cells in a triangulation of $A_{n,k,m}$ is $M(k, n - k - m, \frac{m}{2})$, where

$$M(a, b, c) := \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}.$$

Remark: Consistent with results/conjectures for m = 2, m = 4, k = 1.

Wild conjecture (Steven Karp – Yan Zhang – W)

For *m* even, # of cells in a triangulation of $A_{n,k,m}$ is $M(k, n - k - m, \frac{m}{2})$, where

$$M(a, b, c) := \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}.$$

Remark: Consistent with results/conjectures for m = 2, m = 4, k = 1

< □ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Wild conjecture (Steven Karp – Yan Zhang – W)

For *m* even, # of cells in a triangulation of $\mathcal{A}_{n,k,m}$ is $M(k, n-k-m, \frac{m}{2})$, where

$$M(a, b, c) := \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}.$$

Remark: Consistent with results/conjectures for m = 2, m = 4, k = 1

< □ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Wild conjecture (Steven Karp – Yan Zhang – W)

For *m* even, # of cells in a triangulation of $\mathcal{A}_{n,k,m}$ is $M(k, n-k-m, \frac{m}{2})$, where

$$M(a, b, c) := \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}.$$

Remark: Consistent with results/conjectures for m = 2, m = 4, k = 1

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 三国目 ののの

Wild conjecture (Steven Karp – Yan Zhang – W)

For *m* even, # of cells in a triangulation of $A_{n,k,m}$ is $M(k, n-k-m, \frac{m}{2})$, where

$$M(a, b, c) := \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}.$$

Remark: Consistent with results/conjectures for m = 2, m = 4, k = 1.

M(a, b, c) is a famous number in combinatorics, which counts:

- the number of plane partitions contained in a × b × c box.
- collections of c noncrossing lattice paths inside a × b rectangle

M(a, b, c) is a famous number in combinatorics, which counts:

- the number of *plane partitions* contained in $a \times b \times c$ box.
- collections of c noncrossing lattice paths inside $a \times b$ rectangle
- op rhombic tilings, perfect matchings, Kekule structures, of Anna 2

M(a, b, c) is a famous number in combinatorics, which counts:

- the number of *plane partitions* contained in $a \times b \times c$ box.
- collections of c noncrossing lattice paths inside $a \times b$ rectangle
- rhombic tilings, perfect matchings, Kekule structures, ...

M(a, b, c) is a famous number in combinatorics, which counts:

- the number of *plane partitions* contained in $a \times b \times c$ box.
- collections of c noncrossing lattice paths inside $a \times b$ rectangle

• rhombic tilings, perfect matchings, Kekule structures, ...

M(a, b, c) is a famous number in combinatorics, which counts:

- the number of *plane partitions* contained in $a \times b \times c$ box.
- collections of c noncrossing lattice paths inside $a \times b$ rectangle
- rhombic tilings, perfect matchings, Kekule structures, ...

M(a, b, c) is a famous number in combinatorics, which counts:

- the number of *plane partitions* contained in $a \times b \times c$ box.
- collections of c noncrossing lattice paths inside $a \times b$ rectangle
- rhombic tilings, perfect matchings, Kekule structures, ...

- Let $\{e_1, \ldots, e_n\}$ be standard basis of \mathbb{R}^n , and let $e_I := \sum_{i \in I} e_i$.
- The hypersimplex $\Delta_{k,n}$ is the convex hull $Conv\{e_{I} : |I| = k\}$.
- Equiv: it's the intersection of unit cube with hyperplane $\sum_i x_i = k$.
- Polytope of dim n-1.
- Our example is $\Delta_{2,4} \subset \mathbb{R}^4$.

- Let $\{e_1, \ldots, e_n\}$ be standard basis of \mathbb{R}^n , and let $e_l := \sum_{i \in I} e_i$.
- The hypersimplex $\Delta_{k,n}$ is the convex hull $Conv\{e_I : |I| = k\}$.
- Equiv: it's the intersection of unit cube with hyperplane $\sum_i x_i = k$.
- Polytope of dim n-1.
- Our example is $\Delta_{2,4} \subset \mathbb{R}^4$.

- Let $\{e_1, \ldots, e_n\}$ be standard basis of \mathbb{R}^n , and let $e_I := \sum_{i \in I} e_i$.
- The hypersimplex $\Delta_{k,n}$ is the convex hull $Conv\{e_I : |I| = k\}$.
- Equiv: it's the intersection of unit cube with hyperplane $\sum_i x_i = k$.
- Polytope of dim n-1.
- Our example is $\Delta_{2,4} \subset \mathbb{R}^4$.

- Let $\{e_1, \ldots, e_n\}$ be standard basis of \mathbb{R}^n , and let $e_I := \sum_{i \in I} e_i$.
- The hypersimplex $\Delta_{k,n}$ is the convex hull $Conv\{e_I : |I| = k\}$.
- Equiv: it's the intersection of unit cube with hyperplane $\sum_i x_i = k$.
- Polytope of dim n-1.
- Our example is $\Delta_{2,4} \subset \mathbb{R}^4$.
The hypersimplex $\Delta_{k,n}$

- Let $\{e_1, \ldots, e_n\}$ be standard basis of \mathbb{R}^n , and let $e_l := \sum_{i \in I} e_i$.
- The hypersimplex $\Delta_{k,n}$ is the convex hull $Conv\{e_I : |I| = k\}$.
- Equiv: it's the intersection of unit cube with hyperplane $\sum_i x_i = k$.
- Polytope of dim n-1.
- Our example is $\Delta_{2,4} \subset \mathbb{R}^4$.

The hypersimplex $\Delta_{k,n}$

- Let $\{e_1, \ldots, e_n\}$ be standard basis of \mathbb{R}^n , and let $e_l := \sum_{i \in I} e_i$.
- The hypersimplex $\Delta_{k,n}$ is the convex hull $Conv\{e_I : |I| = k\}$.
- Equiv: it's the intersection of unit cube with hyperplane $\sum_{i} x_i = k$.
- Polytope of dim n-1.
- Our example is $\Delta_{2,4} \subset \mathbb{R}^4$.

Recall $\{e_1, \ldots, e_n\}$ is basis of \mathbb{R}^n , and $e_I := \sum_{i \in I} e_i$. The *hypersimplex* $\Delta_{k,n} := \text{Conv}\{e_I : |I| = k\}$. Has dim n - 1.

The moment map μ : $Gr_{k,n} \to \mathbb{R}^n$ is defined by

 $\mu(A) = \frac{\sum_{I \in \binom{[n]}{k}} |p_I(A)|^2 e_I}{\sum_{I \in \binom{[n]}{k}} |p_I(A)|^2} \subset \mathbb{R}^n.$

The images $\mu(Gr_{k,n}) = \mu((Gr_{k,n})_{\geq 0})$ are exactly $\Delta_{k,n}$. Images of positroid cells S_{π} called **positroid polytopes** $\Gamma_{\pi} \subset \Delta_{k,n}$.

Define a (positroid) **triangulation** of $\Delta_{k,n}$ to be a collection $\{S_{\pi^{(1)}}, \ldots, S_{\pi^{(\ell)}}\}$ of (n-1)-dim'l cells of $(Gr_{k,n})_{\geq 0}$ where μ is injective, such that their images $\{\Gamma_{\pi^{(1)}}, \ldots, \Gamma_{\pi^{(\ell)}}\}$ are disjoint and cover $\Delta_{k,n}$.

Recall $\{e_1, \ldots, e_n\}$ is basis of \mathbb{R}^n , and $e_I := \sum_{i \in I} e_i$. The hypersimplex $\Delta_{k,n} := \text{Conv}\{e_I : |I| = k\}$. Has dim n - 1.

The moment map μ : $Gr_{k,n} \to \mathbb{R}^n$ is defined by

 $\mu(A) = \frac{\sum_{I \in \binom{[n]}{k}} |p_I(A)|^2 e_I}{\sum_{I \in \binom{[n]}{k}} |p_I(A)|^2} \subset \mathbb{R}^n.$

The images $\mu(Gr_{k,n}) = \mu((Gr_{k,n})_{\geq 0})$ are exactly $\Delta_{k,n}$. Images of positroid cells S_{π} called **positroid polytopes** $\Gamma_{\pi} \subset \Delta_{k,n}$.

Define a (positroid) **triangulation** of $\Delta_{k,n}$ to be a collection $\{S_{\pi^{(1)}}, \ldots, S_{\pi^{(\ell)}}\}$ of (n-1)-dim'l cells of $(Gr_{k,n})_{\geq 0}$ where μ is injective, such that their images $\{\Gamma_{\pi^{(1)}}, \ldots, \Gamma_{\pi^{(\ell)}}\}$ are disjoint and cover $\Delta_{k,n}$.

Recall $\{e_1, \ldots, e_n\}$ is basis of \mathbb{R}^n , and $e_I := \sum_{i \in I} e_i$. The hypersimplex $\Delta_{k,n} := \text{Conv}\{e_I : |I| = k\}$. Has dim n - 1.

The **moment map** μ : $Gr_{k,n} \to \mathbb{R}^n$ is defined by

$$\mu(A) = \frac{\sum_{I \in \binom{[n]}{k}} |p_I(A)|^2 e_I}{\sum_{I \in \binom{[n]}{k}} |p_I(A)|^2} \subset \mathbb{R}^n.$$

The images $\mu(Gr_{k,n}) = \mu((Gr_{k,n}) \ge 0)$ are exactly $\Delta_{k,n}$. Images of positroid cells S_{π} called **positroid polytopes** $\Gamma_{\pi} \subset \Delta_{k,n}$.

Define a (positroid) **triangulation** of $\Delta_{k,n}$ to be a collection $\{S_{\pi^{(1)}}, \ldots, S_{\pi^{(\ell)}}\}$ of (n-1)-dim'l cells of $(Gr_{k,n})_{\geq 0}$ where μ is injective, such that their images $\{\Gamma_{\pi^{(1)}}, \ldots, \Gamma_{\pi^{(\ell)}}\}$ are disjoint and cover $\Delta_{k,n}$.

Recall $\{e_1, \ldots, e_n\}$ is basis of \mathbb{R}^n , and $e_I := \sum_{i \in I} e_i$. The hypersimplex $\Delta_{k,n} := \text{Conv}\{e_I : |I| = k\}$. Has dim n - 1.

The moment map μ : $Gr_{k,n} \to \mathbb{R}^n$ is defined by

 $\mu(A) = \frac{\sum_{I \in \binom{[n]}{k}} |p_I(A)|^2 e_I}{\sum_{I \in \binom{[n]}{k}} |p_I(A)|^2} \subset \mathbb{R}^n.$

The images $\mu(Gr_{k,n}) = \mu((Gr_{k,n})_{\geq 0})$ are exactly $\Delta_{k,n}$. Images of positroid cells S_{π} called **positroid polytopes** $\Gamma_{\pi} \subset \Delta_{k,n}$.

Define a (positroid) **triangulation** of $\Delta_{k,n}$ to be a collection $\{S_{\pi^{(1)}}, \ldots, S_{\pi^{(\ell)}}\}$ of (n-1)-dim'l cells of $(Gr_{k,n})_{\geq 0}$ where μ is injective, such that their images $\{\Gamma_{\pi^{(1)}}, \ldots, \Gamma_{\pi^{(\ell)}}\}$ are disjoint and cover $\Delta_{k,n}$.

Recall $\{e_1, \ldots, e_n\}$ is basis of \mathbb{R}^n , and $e_I := \sum_{i \in I} e_i$. The hypersimplex $\Delta_{k,n} := \text{Conv}\{e_I : |I| = k\}$. Has dim n - 1.

The **moment map** μ : $Gr_{k,n} \to \mathbb{R}^n$ is defined by

$$\mu(A) = \frac{\sum_{I \in \binom{[n]}{k}} |p_I(A)|^2 e_I}{\sum_{I \in \binom{[n]}{k}} |p_I(A)|^2} \subset \mathbb{R}^n.$$

The images $\mu(Gr_{k,n}) = \mu((Gr_{k,n})_{\geq 0})$ are exactly $\Delta_{k,n}$. Images of positroid cells S_{π} called **positroid polytopes** $\Gamma_{\pi} \subset \Delta_{k,n}$.

Define a (positroid) **triangulation** of $\Delta_{k,n}$ to be a collection $\{S_{\pi^{(1)}}, \ldots, S_{\pi^{(\ell)}}\}$ of (n-1)-dim'l cells of $(Gr_{k,n})_{\geq 0}$ where μ is injective, such that their images $\{\Gamma_{\pi^{(1)}}, \ldots, \Gamma_{\pi^{(\ell)}}\}$ are disjoint and cover $\Delta_{k,n}$.

Recall $\{e_1, \ldots, e_n\}$ is basis of \mathbb{R}^n , and $e_I := \sum_{i \in I} e_i$. The hypersimplex $\Delta_{k,n} := \text{Conv}\{e_I : |I| = k\}$. Has dim n - 1.

The **moment map** μ : $Gr_{k,n} \to \mathbb{R}^n$ is defined by

$$\mu(A) = \frac{\sum_{I \in \binom{[n]}{k}} |p_I(A)|^2 e_I}{\sum_{I \in \binom{[n]}{k}} |p_I(A)|^2} \subset \mathbb{R}^n.$$

The images $\mu(Gr_{k,n}) = \mu((Gr_{k,n}) \ge 0)$ are exactly $\Delta_{k,n}$. Images of positroid cells S_{π} called **positroid polytopes** $\Gamma_{\pi} \subset \Delta_{k,n}$.

Define a (positroid) **triangulation** of $\Delta_{k,n}$ to be a collection $\{S_{\pi^{(1)}}, \ldots, S_{\pi^{(\ell)}}\}$ of (n-1)-dim'l cells of $(Gr_{k,n})_{\geq 0}$ where μ is injective, such that their images $\{\Gamma_{\pi^{(1)}}, \ldots, \Gamma_{\pi^{(\ell)}}\}$ are disjoint and cover $\Delta_{k,n}$.

Recall $\{e_1, \ldots, e_n\}$ is basis of \mathbb{R}^n , and $e_I := \sum_{i \in I} e_i$. The hypersimplex $\Delta_{k,n} := \text{Conv}\{e_I : |I| = k\}$. Has dim n - 1.

The **moment map** μ : $Gr_{k,n} \to \mathbb{R}^n$ is defined by

$$\mu(A) = \frac{\sum_{I \in \binom{[n]}{k}} |p_I(A)|^2 e_I}{\sum_{I \in \binom{[n]}{k}} |p_I(A)|^2} \subset \mathbb{R}^n.$$

The images $\mu(Gr_{k,n}) = \mu((Gr_{k,n})_{\geq 0})$ are exactly $\Delta_{k,n}$. Images of positroid cells S_{π} called **positroid polytopes** $\Gamma_{\pi} \subset \Delta_{k,n}$.

Define a (positroid) **triangulation** of $\Delta_{k,n}$ to be a collection $\{S_{\pi^{(1)}}, \ldots, S_{\pi^{(\ell)}}\}$ of (n-1)-dim'l cells of $(Gr_{k,n})_{\geq 0}$ where μ is injective, such that their images $\{\Gamma_{\pi^{(1)}}, \ldots, \Gamma_{\pi^{(\ell)}}\}$ are disjoint and cover $\Delta_{k,n}$.

Recall $\{e_1, \ldots, e_n\}$ is basis of \mathbb{R}^n , and $e_I := \sum_{i \in I} e_i$. The hypersimplex $\Delta_{k,n} := \text{Conv}\{e_I : |I| = k\}$. Has dim n - 1.

The **moment map** μ : $Gr_{k,n} \to \mathbb{R}^n$ is defined by

$$\mu(A) = \frac{\sum_{I \in \binom{[n]}{k}} |p_I(A)|^2 e_I}{\sum_{I \in \binom{[n]}{k}} |p_I(A)|^2} \subset \mathbb{R}^n.$$

The images $\mu(Gr_{k,n}) = \mu((Gr_{k,n})_{\geq 0})$ are exactly $\Delta_{k,n}$. Images of positroid cells S_{π} called **positroid polytopes** $\Gamma_{\pi} \subset \Delta_{k,n}$.

Define a (positroid) **triangulation** of $\Delta_{k,n}$ to be a collection $\{S_{\pi^{(1)}}, \ldots, S_{\pi^{(\ell)}}\}$ of (n-1)-dim'l cells of $(Gr_{k,n})_{\geq 0}$ where μ is injective, such that their images $\{\Gamma_{\pi^{(1)}}, \ldots, \Gamma_{\pi^{(\ell)}}\}$ are disjoint and cover $\Delta_{k,n}$.

Recall $\{e_1, \ldots, e_n\}$ is basis of \mathbb{R}^n , and $e_I := \sum_{i \in I} e_i$. The hypersimplex $\Delta_{k,n} := \text{Conv}\{e_I : |I| = k\}$. Has dim n - 1.

The **moment map** μ : $Gr_{k,n} \to \mathbb{R}^n$ is defined by

$$\mu(A) = \frac{\sum_{I \in \binom{[n]}{k}} |p_I(A)|^2 e_I}{\sum_{I \in \binom{[n]}{k}} |p_I(A)|^2} \subset \mathbb{R}^n.$$

The images $\mu(Gr_{k,n}) = \mu((Gr_{k,n})_{\geq 0})$ are exactly $\Delta_{k,n}$. Images of positroid cells S_{π} called **positroid polytopes** $\Gamma_{\pi} \subset \Delta_{k,n}$.

Define a (positroid) **triangulation** of $\Delta_{k,n}$ to be a collection $\{S_{\pi^{(1)}}, \ldots, S_{\pi^{(\ell)}}\}$ of (n-1)-dim'l cells of $(Gr_{k,n})_{\geq 0}$ where μ is injective, such that their images $\{\Gamma_{\pi^{(1)}}, \ldots, \Gamma_{\pi^{(\ell)}}\}$ are disjoint and cover $\Delta_{k,n}$.

Claim is weird because:

- dim $\Delta_{k+1,n} = n-1$ while dim $\mathcal{A}_{n,k,2} = 2k$.
- $\Delta_{k+1,n}$ is a polytope but $\mathcal{A}_{n,k,2}$ is not.
- $\Delta_{k+1,n}$ is related to $Gr_{k+1,n}$ while $\mathcal{A}_{n,k,2}$ is related to $Gr_{k,n}$.

 The moment map (taking linear combination of vectors based on norms of Plücker coordinates) does not look at all like the amplituhedron map (matrix multiplication).

- dim $\Delta_{k+1,n} = n-1$ while dim $\mathcal{A}_{n,k,2} = 2k$.
- $\Delta_{k+1,n}$ is a polytope but $\mathcal{A}_{n,k,2}$ is not.
- $\Delta_{k+1,n}$ is related to $Gr_{k+1,n}$ while $\mathcal{A}_{n,k,2}$ is related to $Gr_{k,n}$.
- The moment map (taking linear combination of vectors based on norms of Plücker coordinates) does not look at all like the amplituhedron map (matrix multiplication).

- dim $\Delta_{k+1,n} = n-1$ while dim $\mathcal{A}_{n,k,2} = 2k$.
- $\Delta_{k+1,n}$ is a polytope but $\mathcal{A}_{n,k,2}$ is not.
- $\Delta_{k+1,n}$ is related to $Gr_{k+1,n}$ while $A_{n,k,2}$ is related to $Gr_{k,n}$.
- The moment map (taking linear combination of vectors based on norms of Plücker coordinates) does not look at all like the amplituhedron map (matrix multiplication).

- dim $\Delta_{k+1,n} = n-1$ while dim $\mathcal{A}_{n,k,2} = 2k$.
- $\Delta_{k+1,n}$ is a polytope but $\mathcal{A}_{n,k,2}$ is not.
- $\Delta_{k+1,n}$ is related to $Gr_{k+1,n}$ while $A_{n,k,2}$ is related to $Gr_{k,n}$.
- The moment map (taking linear combination of vectors based on norms of Plücker coordinates) does not look at all like the amplituhedron map (matrix multiplication).

- dim $\Delta_{k+1,n} = n-1$ while dim $\mathcal{A}_{n,k,2} = 2k$.
- $\Delta_{k+1,n}$ is a polytope but $\mathcal{A}_{n,k,2}$ is not.
- $\Delta_{k+1,n}$ is related to $Gr_{k+1,n}$ while $\mathcal{A}_{n,k,2}$ is related to $Gr_{k,n}$.
- The moment map (taking linear combination of vectors based on norms of Plücker coordinates) does not look at all like the amplituhedron map (matrix multiplication).

- dim $\Delta_{k+1,n} = n-1$ while dim $\mathcal{A}_{n,k,2} = 2k$.
- $\Delta_{k+1,n}$ is a polytope but $\mathcal{A}_{n,k,2}$ is not.
- $\Delta_{k+1,n}$ is related to $Gr_{k+1,n}$ while $\mathcal{A}_{n,k,2}$ is related to $Gr_{k,n}$.
- The moment map (taking linear combination of vectors based on norms of Plücker coordinates) does not look at all like the amplituhedron map (matrix multiplication).

- dim $\Delta_{k+1,n} = n-1$ while dim $\mathcal{A}_{n,k,2} = 2k$.
- $\Delta_{k+1,n}$ is a polytope but $\mathcal{A}_{n,k,2}$ is not.
- $\Delta_{k+1,n}$ is related to $Gr_{k+1,n}$ while $\mathcal{A}_{n,k,2}$ is related to $Gr_{k,n}$.
- The moment map (taking linear combination of vectors based on norms of Plücker coordinates) does not look at all like the amplituhedron map (matrix multiplication).

- dim $\Delta_{k+1,n} = n-1$ while dim $\mathcal{A}_{n,k,2} = 2k$.
- $\Delta_{k+1,n}$ is a polytope but $\mathcal{A}_{n,k,2}$ is not.
- $\Delta_{k+1,n}$ is related to $Gr_{k+1,n}$ while $\mathcal{A}_{n,k,2}$ is related to $Gr_{k,n}$.
- The moment map (taking linear combination of vectors based on norms of Plücker coordinates) does not look at all like the amplituhedron map (matrix multiplication).

- dim $\Delta_{k+1,n} = n-1$ while dim $\mathcal{A}_{n,k,2} = 2k$.
- $\Delta_{k+1,n}$ is a polytope but $\mathcal{A}_{n,k,2}$ is not.
- $\Delta_{k+1,n}$ is related to $Gr_{k+1,n}$ while $\mathcal{A}_{n,k,2}$ is related to $Gr_{k,n}$.
- The moment map (taking linear combination of vectors based on norms of Plücker coordinates) does not look at all like the amplituhedron map (matrix multiplication).

- dim $\Delta_{k+1,n} = n-1$ while dim $\mathcal{A}_{n,k,2} = 2k$.
- $\Delta_{k+1,n}$ is a polytope but $\mathcal{A}_{n,k,2}$ is not.
- $\Delta_{k+1,n}$ is related to $Gr_{k+1,n}$ while $\mathcal{A}_{n,k,2}$ is related to $Gr_{k,n}$.
- The moment map (taking linear combination of vectors based on norms of Plücker coordinates) does not look at all like the amplituhedron map (matrix multiplication).

- Have amplituhedron map Z

 : (Gr_{k,n})≥0 → A_{n,k,2}, associated to matrix Z ∈ Mat⁺_{n,k+2}, sending matrix A ↦ AZ.
- Have moment map $\mu : (Gr_{k+1,n})_{\geq 0} \rightarrow \Delta_{k+1,n}$, defined by

$$\mu(A) = \frac{\sum_{I \in \binom{[n]}{k+1}} |p_I(A)|^2 e_I}{\sum_{I \in \binom{[n]}{k+1}} |p_I(A)|^2}, \text{ with } e_I := \sum_{i \in I} e_i.$$

- A collection of 2k-dim'l positroid cells of (Gr_{k,n})≥0 where Z is injective, such that images are disjoint and cover A_{n,k,2}.
- A collection of (n − 1)-dim'l positroid cells of (Gr_{k+1,n})_{≥0} where µ is injective, such that images are disjoint and cover Δ_{k+1,n}.

- Have amplituhedron map Z̃: (Gr_{k,n})≥0 → A_{n,k,2}, associated to matrix Z ∈ Mat⁺_{n,k+2}, sending matrix A → AZ.
- Have moment map $\mu : (Gr_{k+1,n})_{\geq 0} \rightarrow \Delta_{k+1,n}$, defined by

$$\mu(A) = \frac{\sum_{I \in \binom{[n]}{k+1}} |p_I(A)|^2 e_I}{\sum_{I \in \binom{[n]}{k+1}} |p_I(A)|^2}, \text{ with } e_I := \sum_{i \in I} e_i.$$

- A collection of 2k-dim'l positroid cells of (Gr_{k,n})≥0 where Z is injective, such that images are disjoint and cover A_{n,k,2}.
- A collection of (n − 1)-dim'l positroid cells of (Gr_{k+1,n})_{≥0} where µ is injective, such that images are disjoint and cover Δ_{k+1,n}.

- Have amplituhedron map Z̃: (Gr_{k,n})≥0 → A_{n,k,2}, associated to matrix Z ∈ Mat⁺_{n,k+2}, sending matrix A → AZ.
- Have moment map $\mu: (\mathit{Gr}_{k+1,n})_{\geq 0} o \Delta_{k+1,n},$ defined by

$$\mu(A) = \frac{\sum_{I \in \binom{[n]}{k+1}} |p_I(A)|^2 e_I}{\sum_{I \in \binom{[n]}{k+1}} |p_I(A)|^2}, \text{ with } e_I := \sum_{i \in I} e_i.$$

- A collection of 2k-dim'l positroid cells of (Gr_{k,n})≥0 where Z is injective, such that images are disjoint and cover A_{n,k,2}.
- A collection of (n − 1)-dim'l positroid cells of (Gr_{k+1,n})_{≥0} where µ is injective, such that images are disjoint and cover Δ_{k+1,n}.

- Have amplituhedron map Z̃: (Gr_{k,n})≥0 → A_{n,k,2}, associated to matrix Z ∈ Mat⁺_{n,k+2}, sending matrix A → AZ.
- Have moment map $\mu:(\mathit{Gr}_{k+1,n})_{\geq 0} o \Delta_{k+1,n},$ defined by

$$\mu(A) = \frac{\sum_{I \in \binom{[n]}{k+1}} |p_I(A)|^2 e_I}{\sum_{I \in \binom{[n]}{k+1}} |p_I(A)|^2}, \text{ with } e_I := \sum_{i \in I} e_i.$$

(Positroid) triangulations for $\mathcal{A}_{n,k,2}$ and $\Delta_{k+1,n}$

- A collection of 2k-dim'l positroid cells of (Gr_{k,n})≥0 where Z is injective, such that images are disjoint and cover A_{n,k,2}.
- A collection of (n − 1)-dim'l positroid cells of (Gr_{k+1,n})≥0 where µ is injective, such that images are disjoint and cover Δ_{k+1,n}.

(日) (周) (日) (日) (日) (日)

- Have amplituhedron map Z

 (Gr_{k,n})≥0 → A_{n,k,2}, associated to matrix Z ∈ Mat⁺_{n,k+2}, sending matrix A → AZ.
- Have moment map $\mu:(\mathit{Gr}_{k+1,n})_{\geq 0} o \Delta_{k+1,n},$ defined by

$$\mu(A) = \frac{\sum_{I \in \binom{[n]}{k+1}} |p_I(A)|^2 e_I}{\sum_{I \in \binom{[n]}{k+1}} |p_I(A)|^2}, \text{ with } e_I := \sum_{i \in I} e_i.$$

(Positroid) triangulations for $\mathcal{A}_{n,k,2}$ and $\Delta_{k+1,n}$

 A collection of 2k-dim'l positroid cells of (Gr_{k,n})≥0 where Z is injective, such that images are disjoint and cover A_{n,k,2}.

 A collection of (n − 1)-dim'l positroid cells of (Gr_{k+1,n})≥0 where µ is injective, such that images are disjoint and cover Δ_{k+1,n}.

(日) (周) (日) (日) (日) (日)

- Have amplituhedron map Z

 (Gr_{k,n})≥0 → A_{n,k,2}, associated to matrix Z ∈ Mat⁺_{n,k+2}, sending matrix A → AZ.
- Have moment map $\mu:(\mathit{Gr}_{k+1,n})_{\geq 0} o \Delta_{k+1,n},$ defined by

$$\mu(A) = \frac{\sum_{I \in \binom{[n]}{k+1}} |p_I(A)|^2 e_I}{\sum_{I \in \binom{[n]}{k+1}} |p_I(A)|^2}, \text{ with } e_I := \sum_{i \in I} e_i.$$

- A collection of 2k-dim'l positroid cells of (Gr_{k,n})≥0 where Z is injective, such that images are disjoint and cover A_{n,k,2}.
- A collection of (n − 1)-dim'l positroid cells of (Gr_{k+1,n})_{≥0} where µ is injective, such that images are disjoint and cover Δ_{k+1,n}.

Triangulations of $A_{n,k,2}$ consist of 2k-dimensional cells of $(Gr_{k,n})_{\geq 0}$, while triangs of $\Delta_{k+1,n}$ consist of (n-1)-dimensional cells of $(Gr_{k+1,n})_{\geq 0}$!

Nevertheless, compare # of cells comprising the triangulations \ldots

Karp–W.–Zhang conj: there are $\binom{n-2}{k}$ cells in any triangulation of $\mathcal{A}_{n,k,2}$.

Theorem (Speyer–W. 2020)

Every (regular) positroidal triangulation of $\Delta_{k+1,n}$ uses precisely $\binom{n-2}{k}$ cells.

Triangulations of $A_{n,k,2}$ consist of 2k-dimensional cells of $(Gr_{k,n})_{\geq 0}$, while triangs of $\Delta_{k+1,n}$ consist of (n-1)-dimensional cells of $(Gr_{k+1,n})_{\geq 0}$

Nevertheless, compare # of cells comprising the triangulations \ldots

Karp–W.–Zhang conj: there are $\binom{n-2}{k}$ cells in any triangulation of $\mathcal{A}_{n,k,2}$.

Theorem (Speyer–W. 2020)

Every (regular) positroidal triangulation of $\Delta_{k+1,n}$ uses precisely $\binom{n-2}{k}$ cells.

Triangulations of $A_{n,k,2}$ consist of 2k-dimensional cells of $(Gr_{k,n})_{\geq 0}$, while triangs of $\Delta_{k+1,n}$ consist of (n-1)-dimensional cells of $(Gr_{k+1,n})_{\geq 0}$!

Nevertheless, compare # of cells comprising the triangulations \ldots

Karp–W.–Zhang conj: there are $\binom{n-2}{k}$ cells in any triangulation of $\mathcal{A}_{n,k,2}$.

Theorem (Speyer–W. 2020)

Every (regular) positroidal triangulation of $\Delta_{k+1,n}$ uses precisely $\binom{n-2}{k}$ cells.

Triangulations of $A_{n,k,2}$ consist of 2k-dimensional cells of $(Gr_{k,n})_{\geq 0}$, while triangs of $\Delta_{k+1,n}$ consist of (n-1)-dimensional cells of $(Gr_{k+1,n})_{\geq 0}$!

Nevertheless, compare # of cells comprising the triangulations \ldots

Karp–W.–Zhang conj: there are $\binom{n-2}{k}$ cells in any triangulation of $\mathcal{A}_{n,k,2}$.

Theorem (Speyer–W. 2020)

Every (regular) positroidal triangulation of $\Delta_{k+1,n}$ uses precisely $\binom{n-2}{k}$ cells.

Triangulations of $A_{n,k,2}$ consist of 2k-dimensional cells of $(Gr_{k,n})_{\geq 0}$, while triangs of $\Delta_{k+1,n}$ consist of (n-1)-dimensional cells of $(Gr_{k+1,n})_{\geq 0}$!

Nevertheless, compare # of cells comprising the triangulations \ldots

Karp–W.–Zhang conj: there are $\binom{n-2}{k}$ cells in any triangulation of $\mathcal{A}_{n,k,2}$.

Theorem (Speyer–W. 2020)

Every (regular) positroidal triangulation of $\Delta_{k+1,n}$ uses precisely $\binom{n-2}{k}$ cells.

How can we connect the two kinds of triangulations?

Triangulations of $A_{n,k,2}$ consist of 2k-dimensional cells of $(Gr_{k,n})_{\geq 0}$, while triangs of $\Delta_{k+1,n}$ consist of (n-1)-dimensional cells of $(Gr_{k+1,n})_{\geq 0}$!

Nevertheless, compare # of cells comprising the triangulations \ldots

Karp–W.–Zhang conj: there are $\binom{n-2}{k}$ cells in any triangulation of $\mathcal{A}_{n,k,2}$.

Theorem (Speyer–W. 2020)

Every (regular) positroidal triangulation of $\Delta_{k+1,n}$ uses precisely $\binom{n-2}{k}$ cells.

How can we connect the two kinds of triangulations?

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 三国目 ののの

Triangulations of $A_{n,k,2}$ consist of 2k-dimensional cells of $(Gr_{k,n})_{\geq 0}$, while triangs of $\Delta_{k+1,n}$ consist of (n-1)-dimensional cells of $(Gr_{k+1,n})_{\geq 0}$!

Nevertheless, compare # of cells comprising the triangulations \ldots

Karp–W.–Zhang conj: there are $\binom{n-2}{k}$ cells in any triangulation of $\mathcal{A}_{n,k,2}$.

Theorem (Speyer–W. 2020)

Every (regular) positroidal triangulation of $\Delta_{k+1,n}$ uses precisely $\binom{n-2}{k}$ cells.

How can we connect the two kinds of triangulations?

T-duality map on positroid cells

A **decorated permutation** is a permutation in which each fixed point is designated either **loop** or **coloop** (Postnikov). Cells S_{π} of $(Gr_{k,n})_{\geq 0} \leftrightarrow$ dec perms π on [n] with k antiexcedances, where **antiexcedance** is position i where $\pi(i) < i$ or $\pi(i) = i$ is coloop.

- Triangulations of A_{n,k,2} consist of 2k-dimensional cells of (Gr_{k,n})≥0, while triangs of Δ_{k+1,n} consist of (n − 1)-dim'l cells of (Gr_{k+1,n})≥0.
- So we need to map (n-1)-dimensional cells of $(Gr_{k+1,n})_{\geq 0}$ to 2k-dimensional cells of $(Gr_{k,n})_{\geq 0}$.

Given loopless decorated permutation $\pi = (a_1, \ldots, a_n)$ on [n], define

$$\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1}),$$

where any fixed points declared to be loops. Call it **T-duality map**. (The generalization of this map to m = 4 is what physicists have already observed as a duality between the formulations of scattering amplitudes for $\mathcal{N} = 4$ SYM in momentum space and in momentum twistor space.)

 $\Delta_{k+1,n}$ and $\mathcal{A}_{n,k,2}$

T-duality map on positroid cells

A **decorated permutation** is a permutation in which each fixed point is designated either **loop** or **coloop** (Postnikov). Cells S_{π} of $(Gr_{k,n})_{\geq 0} \leftrightarrow$ dec perms π on [n] with k antiexcedances, where articles is particular for $r(i) \in i$ is palaent.

• Triangulations of $A_{n,k,2}$ consist of 2k-dimensional cells of $(Gr_{k,n})_{\geq 0}$, while triangs of $A_{n+1,n}$ consist of (n-1)-dim'l cells of $(Gr_{k+1,n})_{\geq 0}$

• So we need to map (n-1)-dimensional cells of $(Gr_{k+1,n})_{\geq 0}$ to 2k-dimensional cells of $(Gr_{k,n})_{\geq 0}$.

Given loopless decorated permutation $\pi = (a_1, \ldots, a_n)$ on [n], define

$$\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1}),$$

where any fixed points declared to be loops. Call it **T-duality map**. (The generalization of this map to m = 4 is what physicists have already observed as a duality between the formulations of scattering amplitudes for $\mathcal{N} = 4$ SYM in momentum space and in momentum twistor space.)

 $\Delta_{k+1,n}$ and $\mathcal{A}_{n,k,2}$
A **decorated permutation** is a permutation in which each fixed point is designated either **loop** or **coloop** (Postnikov).

Cells S_{π} of $(Gr_{k,n})_{\geq 0} \leftrightarrow$ dec perms π on [n] with k antiexcedances, where **antiexcedance** is position i where $\pi(i) < i$ or $\pi(i) = i$ is coloop.

- Triangulations of A_{n,k,2} consist of 2k-dimensional cells of (Gr_{k,n})≥0, while triangs of Δ_{k+1,n} consist of (n − 1)-dim'l cells of (Gr_{k+1,n})≥0.
- So we need to map (n-1)-dimensional cells of $(Gr_{k+1,n})_{\geq 0}$ to 2k-dimensional cells of $(Gr_{k,n})_{\geq 0}$.

Given loopless decorated permutation $\pi = (a_1, \dots, a_n)$ on [n], define

$$\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1}),$$

where any fixed points declared to be loops. Call it **T-duality map**. (The generalization of this map to m = 4 is what physicists have already observed as a duality between the formulations of scattering amplitudes for $\mathcal{N} = 4$ SYM in momentum space and in momentum twistor space.)

A decorated permutation is a permutation in which each fixed point is designated either loop or coloop (Postnikov). Cells S_{π} of $(Gr_{k,n})_{\geq 0} \leftrightarrow$ dec perms π on [n] with k antiexcedances, where antiexcedance is position i where $\pi(i) < i$ or $\pi(i) = i$ is coloop.

- Triangulations of $A_{n,k,2}$ consist of 2k-dimensional cells of $(Gr_{k,n})_{\geq 0}$, while triangs of $\Delta_{k+1,n}$ consist of (n-1)-dim'l cells of $(Gr_{k+1,n})_{\geq 0}$.
- So we need to map (n-1)-dimensional cells of $(Gr_{k+1,n})_{\geq 0}$ to 2k-dimensional cells of $(Gr_{k,n})_{\geq 0}$.

Given loopless decorated permutation $\pi = (a_1, \ldots, a_n)$ on [n], define

$$\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1}),$$

where any fixed points declared to be loops. Call it **T-duality map**. (The generalization of this map to m = 4 is what physicists have already observed as a duality between the formulations of scattering amplitudes for $\mathcal{N} = 4$ SYM in momentum space and in momentum twistor space.)

A **decorated permutation** is a permutation in which each fixed point is designated either **loop** or **coloop** (Postnikov). Cells S_{π} of $(Gr_{k,n})_{\geq 0} \leftrightarrow$ dec perms π on [n] with k antiexcedances, where **antiexcedance** is position i where $\pi(i) < i$ or $\pi(i) = i$ is coloop.

- Triangulations of A_{n,k,2} consist of 2k-dimensional cells of (Gr_{k,n})≥0, while triangs of Δ_{k+1,n} consist of (n − 1)-dim'l cells of (Gr_{k+1,n})≥0.
- So we need to map (n-1)-dimensional cells of $(Gr_{k+1,n})_{\geq 0}$ to 2k-dimensional cells of $(Gr_{k,n})_{\geq 0}$.

Given loopless decorated permutation $\pi = (a_1, \ldots, a_n)$ on [n], define

$$\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1}),$$

where any fixed points declared to be loops. Call it **T-duality map**. (The generalization of this map to m = 4 is what physicists have already observed as a duality between the formulations of scattering amplitudes for $\mathcal{N} = 4$ SYM in momentum space and in momentum twistor space.)

A **decorated permutation** is a permutation in which each fixed point is designated either **loop** or **coloop** (Postnikov).

Cells S_{π} of $(Gr_{k,n})_{\geq 0} \leftrightarrow$ dec perms π on [n] with k antiexcedances, where **antiexcedance** is position i where $\pi(i) < i$ or $\pi(i) = i$ is coloop.

 Triangulations of A_{n,k,2} consist of 2k-dimensional cells of (Gr_{k,n})_{≥0}, while triangs of Δ_{k+1,n} consist of (n − 1)-dim'l cells of (Gr_{k+1,n})_{≥0}.

• So we need to map (n-1)-dimensional cells of $(Gr_{k+1,n})_{\geq 0}$ to 2k-dimensional cells of $(Gr_{k,n})_{\geq 0}$.

Given loopless decorated permutation $\pi = (a_1, \ldots, a_n)$ on [n], define

$$\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1}),$$

where any fixed points declared to be loops. Call it **T-duality map**. (The generalization of this map to m = 4 is what physicists have already observed as a duality between the formulations of scattering amplitudes for $\mathcal{N} = 4$ SYM in momentum space and in momentum twistor space.)

A **decorated permutation** is a permutation in which each fixed point is designated either **loop** or **coloop** (Postnikov).

Cells S_{π} of $(Gr_{k,n})_{\geq 0} \leftrightarrow$ dec perms π on [n] with k antiexcedances, where **antiexcedance** is position i where $\pi(i) < i$ or $\pi(i) = i$ is coloop.

- Triangulations of A_{n,k,2} consist of 2k-dimensional cells of (Gr_{k,n})_{≥0}, while triangs of Δ_{k+1,n} consist of (n − 1)-dim'l cells of (Gr_{k+1,n})_{≥0}.
- So we need to map (n-1)-dimensional cells of $(Gr_{k+1,n})_{\geq 0}$ to 2k-dimensional cells of $(Gr_{k,n})_{\geq 0}$.

Given loopless decorated permutation $\pi = (a_1, \ldots, a_n)$ on [n], define

$$\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1}),$$

where any fixed points declared to be loops. Call it **T-duality map**. (The generalization of this map to m = 4 is what physicists have already observed as a duality between the formulations of scattering amplitudes for $\mathcal{N} = 4$ SYM in momentum space and in momentum twistor space.)

A **decorated permutation** is a permutation in which each fixed point is designated either **loop** or **coloop** (Postnikov).

Cells S_{π} of $(Gr_{k,n})_{\geq 0} \leftrightarrow$ dec perms π on [n] with k antiexcedances, where **antiexcedance** is position i where $\pi(i) < i$ or $\pi(i) = i$ is coloop.

- Triangulations of A_{n,k,2} consist of 2k-dimensional cells of (Gr_{k,n})_{≥0}, while triangs of Δ_{k+1,n} consist of (n − 1)-dim'l cells of (Gr_{k+1,n})_{≥0}.
- So we need to map (n-1)-dimensional cells of $(Gr_{k+1,n})_{\geq 0}$ to 2k-dimensional cells of $(Gr_{k,n})_{\geq 0}$.

Given loopless decorated permutation $\pi = (a_1, \ldots, a_n)$ on [n], define

$$\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1}),$$

where any fixed points declared to be loops. Call it T-duality map.

The generalization of this map to m=4 is what physicists have already observed as a duality between the formulations of

scattering amplitudes for ${\cal N}=$ 4 SYM in momentum space and in momentum twistor space.)

A **decorated permutation** is a permutation in which each fixed point is designated either **loop** or **coloop** (Postnikov).

Cells S_{π} of $(Gr_{k,n})_{\geq 0} \leftrightarrow$ dec perms π on [n] with k antiexcedances, where **antiexcedance** is position i where $\pi(i) < i$ or $\pi(i) = i$ is coloop.

- Triangulations of A_{n,k,2} consist of 2k-dimensional cells of (Gr_{k,n})_{≥0}, while triangs of Δ_{k+1,n} consist of (n − 1)-dim'l cells of (Gr_{k+1,n})_{≥0}.
- So we need to map (n-1)-dimensional cells of $(Gr_{k+1,n})_{\geq 0}$ to 2k-dimensional cells of $(Gr_{k,n})_{\geq 0}$.

Given loopless decorated permutation $\pi = (a_1, \ldots, a_n)$ on [n], define

$$\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1}),$$

where any fixed points declared to be loops. Call it T-duality map.

(The generalization of this map to m=4 is what physicists have already observed as a duality between the formulations of

scattering amplitudes for ${\cal N}=$ 4 SYM in momentum space and in momentum twistor space.)

A **decorated permutation** is a permutation in which each fixed point is designated either **loop** or **coloop** (Postnikov).

Cells S_{π} of $(Gr_{k,n})_{\geq 0} \leftrightarrow$ dec perms π on [n] with k antiexcedances, where **antiexcedance** is position i where $\pi(i) < i$ or $\pi(i) = i$ is coloop.

- Triangulations of A_{n,k,2} consist of 2k-dimensional cells of (Gr_{k,n})≥0, while triangs of Δ_{k+1,n} consist of (n − 1)-dim'l cells of (Gr_{k+1,n})≥0.
- So we need to map (n-1)-dimensional cells of $(Gr_{k+1,n})_{\geq 0}$ to 2k-dimensional cells of $(Gr_{k,n})_{\geq 0}$.

Given loopless decorated permutation $\pi = (a_1, \ldots, a_n)$ on [n], define

$$\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1}),$$

where any fixed points declared to be loops. Call it **T-duality map.**

(The generalization of this map to m = 4 is what physicists have already observed as a duality between the formulations of

scattering amplitudes for $\mathcal{N}=4$ SYM in momentum space and in momentum twistor space.)

Given loopless decorated permutation $\pi = (a_1, \ldots, a_n)$ on [n], define $\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1})$, where any fixed points declared to be loops.

Lemma (Lukowski–Parisi–W.)

The T-duality map gives a bijection

loopless cells of $(\mathit{Gr}_{k+1,n})_{\geq 0} \leftrightarrow$ coloopless cells of $(\mathit{Gr}_{k,n})_{\geq 0}$

Moreover, dim $(S_{\hat{\pi}}) = \dim(S_{\pi}) + 2k - (n - 1)$. So it maps cells of dim n - 1 to cells of dimension 2k.

Conjecture (Lukowski–Parisi–W.)

A collection $\{S_{\pi}\}$ of cells of $Gr_{k+1,n}^+$ gives a triangulation of $\Delta_{k+1,n}$ if and only if the collection $\{S_{\hat{\pi}}\}$ of cells of $Gr_{k,n}^+$ gives a triangulation of $\mathcal{A}_{n,k,2}$.

Given loopless decorated permutation $\pi = (a_1, \ldots, a_n)$ on [n], define $\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1})$, where any fixed points declared to be loops.

Lemma (Lukowski–Parisi–W.

The T-duality map gives a bijection

loopless cells of $(Gr_{k+1,n})_{\geq 0} \leftrightarrow$ coloopless cells of $(Gr_{k,n})_{\geq 0}$

Moreover, dim $(S_{\hat{\pi}}) = \dim(S_{\pi}) + 2k - (n - 1)$. So it maps cells of dim n - 1 to cells of dimension 2k.

Conjecture (Lukowski–Parisi–W.)

A collection $\{S_{\pi}\}$ of cells of $Gr_{k+1,n}^+$ gives a triangulation of $\Delta_{k+1,n}$ if and only if the collection $\{S_{\hat{\pi}}\}$ of cells of $Gr_{k,n}^+$ gives a triangulation of $\mathcal{A}_{n,k,2}$.

Given loopless decorated permutation $\pi = (a_1, \ldots, a_n)$ on [n], define $\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1})$, where any fixed points declared to be loops.

Lemma (Lukowski–Parisi–W.)

The T-duality map gives a bijection

loopless cells of $(Gr_{k+1,n})_{\geq 0} \leftrightarrow$ coloopless cells of $(Gr_{k,n})_{\geq 0}$.

Moreover, dim $(S_{\hat{\pi}}) = \dim(S_{\pi}) + 2k - (n - 1)$. So it maps cells of dim n - 1 to cells of dimension 2k.

Conjecture (Lukowski–Parisi–W.)

A collection $\{S_{\pi}\}$ of cells of $Gr_{k+1,n}^+$ gives a triangulation of $\Delta_{k+1,n}$ if and only if the collection $\{S_{\hat{\pi}}\}$ of cells of $Gr_{k,n}^+$ gives a triangulation of $\mathcal{A}_{n,k,2}$.

Given loopless decorated permutation $\pi = (a_1, \ldots, a_n)$ on [n], define $\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1})$, where any fixed points declared to be loops.

Lemma (Lukowski–Parisi–W.)

The T-duality map gives a bijection

loopless cells of $(Gr_{k+1,n})_{\geq 0} \leftrightarrow$ coloopless cells of $(Gr_{k,n})_{\geq 0}$.

Moreover, dim $(S_{\hat{\pi}}) = \dim(S_{\pi}) + 2k - (n-1)$. So it maps cells of dim n - 1 to cells of dimension 2k.

Conjecture (Lukowski–Parisi–W.)

A collection $\{S_{\pi}\}$ of cells of $Gr_{k+1,n}^+$ gives a triangulation of $\Delta_{k+1,n}$ if and only if the collection $\{S_{\hat{\pi}}\}$ of cells of $Gr_{k,n}^+$ gives a triangulation of $\mathcal{A}_{n,k,2}$.

Given loopless decorated permutation $\pi = (a_1, \ldots, a_n)$ on [n], define $\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1})$, where any fixed points declared to be loops.

Lemma (Lukowski-Parisi-W.)

The T-duality map gives a bijection

loopless cells of $(Gr_{k+1,n})_{\geq 0} \leftrightarrow$ coloopless cells of $(Gr_{k,n})_{\geq 0}$.

Moreover, $\dim(S_{\hat{\pi}}) = \dim(S_{\pi}) + 2k - (n - 1)$. So it maps cells of dim n - 1 to cells of dimension 2*l*

Conjecture (Lukowski–Parisi–W.)

A collection $\{S_{\pi}\}$ of cells of $Gr_{k+1,n}^+$ gives a triangulation of $\Delta_{k+1,n}$ if and only if the collection $\{S_{\hat{\pi}}\}$ of cells of $Gr_{k,n}^+$ gives a triangulation of $\mathcal{A}_{n,k,2}$.

Given loopless decorated permutation $\pi = (a_1, \ldots, a_n)$ on [n], define $\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1})$, where any fixed points declared to be loops.

Lemma (Lukowski–Parisi–W.)

The T-duality map gives a bijection

loopless cells of $(Gr_{k+1,n})_{\geq 0} \leftrightarrow$ coloopless cells of $(Gr_{k,n})_{\geq 0}$.

Moreover, $\dim(S_{\hat{\pi}}) = \dim(S_{\pi}) + 2k - (n-1)$. So it maps cells of dim n - 1 to cells of dimension 2k.

Conjecture (Lukowski–Parisi–W.)

A collection $\{S_{\pi}\}$ of cells of $Gr_{k+1,n}^+$ gives a triangulation of $\Delta_{k+1,n}$ if and only if the collection $\{S_{\hat{\pi}}\}$ of cells of $Gr_{k,n}^+$ gives a triangulation of $\mathcal{A}_{n,k,2}$.

Given loopless decorated permutation $\pi = (a_1, \ldots, a_n)$ on [n], define $\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1})$, where any fixed points declared to be loops.

Lemma (Lukowski-Parisi-W.)

The T-duality map gives a bijection

loopless cells of $(Gr_{k+1,n})_{\geq 0} \leftrightarrow$ coloopless cells of $(Gr_{k,n})_{\geq 0}$.

Moreover, $\dim(S_{\hat{\pi}}) = \dim(S_{\pi}) + 2k - (n-1)$. So it maps cells of dim n - 1 to cells of dimension 2k.

Conjecture (Lukowski–Parisi–W.)

A collection $\{S_{\pi}\}$ of cells of $Gr_{k+1,n}^+$ gives a triangulation of $\Delta_{k+1,n}$ if and only if the collection $\{S_{\hat{\pi}}\}$ of cells of $Gr_{k,n}^+$ gives a triangulation of $\mathcal{A}_{n,k,2}$.

《日》《四》《日》《日》 (四)

Given loopless decorated permutation $\pi = (a_1, \ldots, a_n)$ on [n], define $\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1})$, where any fixed points declared to be loops.

Lemma (Lukowski–Parisi–W.)

The T-duality map gives a bijection

loopless cells of $(Gr_{k+1,n})_{\geq 0} \leftrightarrow$ coloopless cells of $(Gr_{k,n})_{\geq 0}$.

Moreover, $\dim(S_{\hat{\pi}}) = \dim(S_{\pi}) + 2k - (n-1)$. So it maps cells of dim n - 1 to cells of dimension 2k.

Conjecture (Lukowski–Parisi–W.)

A collection $\{S_{\pi}\}$ of cells of $Gr_{k+1,n}^+$ gives a triangulation of $\Delta_{k+1,n}$ if and only if the collection $\{S_{\hat{\pi}}\}$ of cells of $Gr_{k,n}^+$ gives a triangulation of $\mathcal{A}_{n,k,2}$.

Lauren K. Williams (Harvard)

Given loopless decorated permutation $\pi = (a_1, \ldots, a_n)$ on [n], define $\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1})$, where any fixed points declared to be loops.

Lemma (Lukowski–Parisi–W.)

The T-duality map gives a bijection

loopless cells of $(Gr_{k+1,n})_{\geq 0} \leftrightarrow$ coloopless cells of $(Gr_{k,n})_{\geq 0}$.

Moreover, $\dim(S_{\hat{\pi}}) = \dim(S_{\pi}) + 2k - (n-1)$. So it maps cells of dim n - 1 to cells of dimension 2k.

Conjecture (Lukowski–Parisi–W.)

A collection $\{S_{\pi}\}$ of cells of $Gr_{k+1,n}^+$ gives a triangulation of $\Delta_{k+1,n}$ if and only if the collection $\{S_{\hat{\pi}}\}$ of cells of $Gr_{k,n}^+$ gives a triangulation of $\mathcal{A}_{n,k,2}$.

Lauren K. Williams (Harvard)

Given loopless decorated permutation $\pi = (a_1, \ldots, a_n)$ on [n], define $\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1})$, where any fixed points declared to be loops.

Lemma (Lukowski–Parisi–W.)

The T-duality map gives a bijection

loopless cells of $(Gr_{k+1,n})_{\geq 0} \leftrightarrow$ coloopless cells of $(Gr_{k,n})_{\geq 0}$.

Moreover, $\dim(S_{\hat{\pi}}) = \dim(S_{\pi}) + 2k - (n-1)$. So it maps cells of dim n - 1 to cells of dimension 2k.

Conjecture (Lukowski–Parisi–W.)

A collection $\{S_{\pi}\}$ of cells of $Gr_{k+1,n}^+$ gives a triangulation of $\Delta_{k+1,n}$ if and only if the collection $\{S_{\hat{\pi}}\}$ of cells of $Gr_{k,n}^+$ gives a triangulation of $\mathcal{A}_{n,k,2}$.

《日》《四》《日》《日》 (四)

- Say that S_{π} is a generalized triangle for $\Delta_{k+1,n}$ if dim $S_{\pi} = n-1$ and the moment map is injective on it.
- Say that $S_{\hat{\pi}}$ is a generalized triangle for $\mathcal{A}_{n,k,2}$ if dim $S_{\hat{\pi}} = 2k$ and the amplituhedron map is injective on it.
- Gen. triangles for $\Delta_{k+1,n}$ correspond to plabic graphs which are *trees*.
- Gen. triangles for $A_{n,k,2}$ correspond to *collections of non-intersecting polygons in an n-gon* (Lukowski-Parisi-Spradlin-Volovich).

Theorem (Lukowski-Parisi-W.)

- Say that S_{π} is a generalized triangle for $\Delta_{k+1,n}$ if dim $S_{\pi} = n-1$ and the moment map is injective on it.
- Say that S_π is a generalized triangle for A_{n,k,2} if dim S_π = 2k and the amplituhedron map is injective on it.
- Gen. triangles for $\Delta_{k+1,n}$ correspond to plabic graphs which are *trees*.
- Gen. triangles for $A_{n,k,2}$ correspond to *collections of non-intersecting polygons in an n-gon* (Lukowski-Parisi-Spradlin-Volovich).

Theorem (Lukowski-Parisi-W.)

- Say that S_π is a generalized triangle for Δ_{k+1,n} if dim S_π = n − 1 and the moment map is injective on it.
- Say that $S_{\hat{\pi}}$ is a generalized triangle for $\mathcal{A}_{n,k,2}$ if dim $S_{\hat{\pi}} = 2k$ and the amplituhedron map is injective on it.
- Gen. triangles for $\Delta_{k+1,n}$ correspond to plabic graphs which are *trees*.
- Gen. triangles for $A_{n,k,2}$ correspond to *collections of non-intersecting polygons in an n-gon* (Lukowski-Parisi-Spradlin-Volovich).

Theorem (Lukowski-Parisi-W.)

- Say that S_π is a generalized triangle for Δ_{k+1,n} if dim S_π = n − 1 and the moment map is injective on it.
- Say that S_π is a generalized triangle for A_{n,k,2} if dim S_π = 2k and the amplituhedron map is injective on it.
- Gen. triangles for $\Delta_{k+1,n}$ correspond to plabic graphs which are *trees*.
- Gen. triangles for $A_{n,k,2}$ correspond to *collections of non-intersecting polygons in an n-gon* (Lukowski-Parisi-Spradlin-Volovich).

Theorem (Lukowski-Parisi-W.)

T-duality – which sends $\pi = (a_1, ..., a_n)$ to $\hat{\pi} := (a_n, a_1, a_2, ..., a_{n-1})$ – maps generalized triangles to generalized triangles. Combinatorially, it relates non-intersecting polygons to dual trees.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 三国目 ののの

- Say that S_π is a generalized triangle for Δ_{k+1,n} if dim S_π = n − 1 and the moment map is injective on it.
- Say that $S_{\hat{\pi}}$ is a generalized triangle for $\mathcal{A}_{n,k,2}$ if dim $S_{\hat{\pi}} = 2k$ and the amplituhedron map is injective on it.
- Gen. triangles for $\Delta_{k+1,n}$ correspond to plabic graphs which are *trees*.
- Gen. triangles for $A_{n,k,2}$ correspond to *collections of non-intersecting polygons in an n-gon* (Lukowski-Parisi-Spradlin-Volovich).

Theorem (Lukowski-Parisi-W.)

T-duality – which sends $\pi = (a_1, \ldots, a_n)$ to $\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1})$ – maps generalized triangles to generalized triangles. Combinatorially, it relates non-intersecting polygons to dual trees.

- Say that S_π is a generalized triangle for Δ_{k+1,n} if dim S_π = n − 1 and the moment map is injective on it.
- Say that S_π is a generalized triangle for A_{n,k,2} if dim S_π = 2k and the amplituhedron map is injective on it.
- Gen. triangles for $\Delta_{k+1,n}$ correspond to plabic graphs which are *trees*.
- Gen. triangles for $A_{n,k,2}$ correspond to *collections of non-intersecting polygons in an n-gon* (Lukowski-Parisi-Spradlin-Volovich).

Theorem (Lukowski-Parisi-W.)

T-duality – which sends $\pi = (a_1, \ldots, a_n)$ to $\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1})$ – maps generalized triangles to generalized triangles. Combinatorially, it relates non-intersecting polygons to dual trees.

▲ 표 ▶ ▲ 표 ▶ ▲ 표 ▶ ● 9 0

- Say that S_π is a generalized triangle for Δ_{k+1,n} if dim S_π = n − 1 and the moment map is injective on it.
- Say that S_π is a generalized triangle for A_{n,k,2} if dim S_π = 2k and the amplituhedron map is injective on it.
- Gen. triangles for $\Delta_{k+1,n}$ correspond to plabic graphs which are *trees*.
- Gen. triangles for $A_{n,k,2}$ correspond to *collections of non-intersecting polygons in an n-gon* (Lukowski-Parisi-Spradlin-Volovich).

Theorem (Lukowski-Parisi-W.)

T-duality – which sends $\pi = (a_1, \ldots, a_n)$ to $\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1})$ – maps generalized triangles to generalized triangles. Combinatorially, it relates non-intersecting polygons to dual trees.

- Say that S_π is a generalized triangle for Δ_{k+1,n} if dim S_π = n − 1 and the moment map is injective on it.
- Say that S_π is a generalized triangle for A_{n,k,2} if dim S_π = 2k and the amplituhedron map is injective on it.
- Gen. triangles for $\Delta_{k+1,n}$ correspond to plabic graphs which are *trees*.
- Gen. triangles for $A_{n,k,2}$ correspond to *collections of non-intersecting polygons in an n-gon* (Lukowski-Parisi-Spradlin-Volovich).

Theorem (Lukowski-Parisi-W.)

T-duality – which sends $\pi = (a_1, \ldots, a_n)$ to $\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1})$ – maps generalized triangles to generalized triangles.

Combinatorially, it relates non-intersecting polygons to dual trees.

★ 문 ▶ ★ 문 ▶ 문 범 = ♡ < @</p>

- Say that S_π is a generalized triangle for Δ_{k+1,n} if dim S_π = n − 1 and the moment map is injective on it.
- Say that S_π is a generalized triangle for A_{n,k,2} if dim S_π = 2k and the amplituhedron map is injective on it.
- Gen. triangles for $\Delta_{k+1,n}$ correspond to plabic graphs which are *trees*.
- Gen. triangles for $A_{n,k,2}$ correspond to *collections of non-intersecting polygons in an n-gon* (Lukowski-Parisi-Spradlin-Volovich).

Theorem (Lukowski-Parisi-W.)

T-duality – which sends $\pi = (a_1, \ldots, a_n)$ to $\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1})$ – maps generalized triangles to generalized triangles.

Combinatorially, it relates non-intersecting polygons to dual trees.

- Say that S_π is a generalized triangle for Δ_{k+1,n} if dim S_π = n − 1 and the moment map is injective on it.
- Say that $S_{\hat{\pi}}$ is a generalized triangle for $\mathcal{A}_{n,k,2}$ if dim $S_{\hat{\pi}} = 2k$ and the amplituhedron map is injective on it.
- Gen. triangles for $\Delta_{k+1,n}$ correspond to plabic graphs which are *trees*.
- Gen. triangles for $A_{n,k,2}$ correspond to *collections of non-intersecting polygons in an n-gon* (Lukowski-Parisi-Spradlin-Volovich).

Theorem (Lukowski-Parisi-W.)

T-duality – which sends $\pi = (a_1, \ldots, a_n)$ to $\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1})$ – maps generalized triangles to generalized triangles. Combinatorially, it relates non-intersecting polygons to dual trees.

- Say that S_{π} is a generalized triangle for $\Delta_{k+1,n}$ if dim $S_{\pi} = n-1$ and the moment map is injective on it.
- Say that S_π is a generalized triangle for A_{n,k,2} if dim S_π = 2k and the amplituhedron map is injective on it.
- Gen. triangles for $\Delta_{k+1,n}$ correspond to plabic graphs which are *trees*.
- Gen. triangles for $A_{n,k,2}$ correspond to *collections of non-intersecting polygons in an n-gon* (Lukowski-Parisi-Spradlin-Volovich).

Theorem (Lukowski-Parisi-W.)

T-duality – which sends $\pi = (a_1, \ldots, a_n)$ to $\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1})$ – maps generalized triangles to generalized triangles. Combinatorially, it relates non-intersecting polygons to dual trees.

·▲토▶▲토▶ 토|= ∽QQQ

- Say that S_{π} is a generalized triangle for $\Delta_{k+1,n}$ if dim $S_{\pi} = n-1$ and the moment map is injective on it.
- Say that S_π is a generalized triangle for A_{n,k,2} if dim S_π = 2k and the amplituhedron map is injective on it.
- Gen. triangles for $\Delta_{k+1,n}$ correspond to plabic graphs which are *trees*.
- Gen. triangles for $A_{n,k,2}$ correspond to *collections of non-intersecting polygons in an n-gon* (Lukowski-Parisi-Spradlin-Volovich).

Theorem (Lukowski-Parisi-W.)

- Say that S_{π} is a generalized triangle for $\Delta_{k+1,n}$ if dim $S_{\pi} = n-1$ and the moment map is injective on it.
- Say that S_π is a generalized triangle for A_{n,k,2} if dim S_π = 2k and the amplituhedron map is injective on it.
- Gen. triangles for $\Delta_{k+1,n}$ correspond to plabic graphs which are *trees*.
- Gen. triangles for $A_{n,k,2}$ correspond to *collections of non-intersecting polygons in an n-gon* (Lukowski-Parisi-Spradlin-Volovich).

Theorem (Lukowski-Parisi-W.)

- Say that S_{π} is a generalized triangle for $\Delta_{k+1,n}$ if dim $S_{\pi} = n-1$ and the moment map is injective on it.
- Say that S_π is a generalized triangle for A_{n,k,2} if dim S_π = 2k and the amplituhedron map is injective on it.
- Gen. triangles for $\Delta_{k+1,n}$ correspond to plabic graphs which are *trees*.
- Gen. triangles for $A_{n,k,2}$ correspond to *collections of non-intersecting polygons in an n-gon* (Lukowski-Parisi-Spradlin-Volovich).

Theorem (Lukowski-Parisi-W.)

Main conjecture (Lukowski-Parisi-W.)

A collection $\{S_{\pi}\}$ of cells of $Gr_{k+1,n}^+$ gives a triangulation of $\Delta_{k+1,n}$ if and only if the collection $\{S_{\hat{\pi}}\}$ of cells of $Gr_{k,n}^+$ gives a triangulation of $\mathcal{A}_{n,k,2}$.

Theorem (Lukowski–Parisi–W.)

- There is recursion giving many triangulations of $\Delta_{k+1,n}$ (LPW)
- and a recursion giving many triangulations of $A_{n,k,2}$ (Bao-He).
- The recurrences are in bijection via T-duality.

Main conjecture (Lukowski–Parisi–W.)

A collection $\{S_{\pi}\}$ of cells of $Gr_{k+1,n}^+$ gives a triangulation of $\Delta_{k+1,n}$ if and only if the collection $\{S_{\hat{\pi}}\}$ of cells of $Gr_{k,n}^+$ gives a triangulation of $\mathcal{A}_{n,k,2}$.

Theorem (Lukowski–Parisi–W.)

- There is recursion giving many triangulations of $\Delta_{k+1,n}$ (LPW)
- and a recursion giving many triangulations of $A_{n,k,2}$ (Bao-He).
- The recurrences are in bijection via T-duality.

Main conjecture (Lukowski-Parisi-W.)

A collection $\{S_{\pi}\}$ of cells of $Gr_{k+1,n}^+$ gives a triangulation of $\Delta_{k+1,n}$ if and only if the collection $\{S_{\hat{\pi}}\}$ of cells of $Gr_{k,n}^+$ gives a triangulation of $\mathcal{A}_{n,k,2}$.

Theorem (Lukowski–Parisi–W.)

- There is recursion giving many triangulations of $\Delta_{k+1,n}$ (LPW)
- and a recursion giving many triangulations of $A_{n,k,2}$ (Bao-He).
- The recurrences are in bijection via T-duality.

Lauren K. Williams (Harvard)

Main conjecture (Lukowski-Parisi-W.)

A collection $\{S_{\pi}\}$ of cells of $Gr_{k+1,n}^+$ gives a triangulation of $\Delta_{k+1,n}$ if and only if the collection $\{S_{\hat{\pi}}\}$ of cells of $Gr_{k,n}^+$ gives a triangulation of $\mathcal{A}_{n,k,2}$.

Theorem (Lukowski–Parisi–W.)

- There is recursion giving many triangulations of $\Delta_{k+1,n}$ (LPW)
- and a recursion giving many triangulations of $A_{n,k,2}$ (Bao-He).
- The recurrences are in bijection via T-duality.

Lauren K. Williams (Harvard)
- We studied *good triangulations* of the amplituhedron, those where boundaries of generalized triangles intersect nicely.
- The numerology of good triangulations of A_{n,k,2} recovered some numerology of the *positive tropical Grassmannian* Trop⁺ Gr_{k+1,n} (Speyer–W 2005).
- We related Trop⁺ Gr_{k+1,n} to triangulations by showing it controls (regular, positroidal) triangulations of Δ_{k+1,n}.
- So we guessed that triangulations of A_{n,k,2} must be related to triangulations of Δ_{k+1,n}.

- We studied *good triangulations* of the amplituhedron, those where boundaries of generalized triangles intersect nicely.
- The numerology of good triangulations of A_{n,k,2} recovered some numerology of the positive tropical Grassmannian Trop⁺ Gr_{k+1,n} (Speyer–W 2005).
- We related Trop⁺ Gr_{k+1,n} to triangulations by showing it controls (regular, positroidal) triangulations of Δ_{k+1,n}.
- So we guessed that triangulations of $\mathcal{A}_{n,k,2}$ must be related to triangulations of $\Delta_{k+1,n}$.

- We studied *good triangulations* of the amplituhedron, those where boundaries of generalized triangles intersect nicely.
- The numerology of good triangulations of A_{n,k,2} recovered some numerology of the positive tropical Grassmannian Trop⁺ Gr_{k+1,n} (Speyer–W 2005).
- We related Trop⁺ Gr_{k+1,n} to triangulations by showing it controls (regular, positroidal) triangulations of Δ_{k+1,n}.
- So we guessed that triangulations of $A_{n,k,2}$ must be related to triangulations of $\Delta_{k+1,n}$.

- We studied *good triangulations* of the amplituhedron, those where boundaries of generalized triangles intersect nicely.
- The numerology of good triangulations of A_{n,k,2} recovered some numerology of the positive tropical Grassmannian Trop⁺ Gr_{k+1,n} (Speyer–W 2005).
- We related Trop⁺ Gr_{k+1,n} to triangulations by showing it controls (regular, positroidal) triangulations of Δ_{k+1,n}.
- So we guessed that triangulations of $\mathcal{A}_{n,k,2}$ must be related to triangulations of $\Delta_{k+1,n}$.

- We studied *good triangulations* of the amplituhedron, those where boundaries of generalized triangles intersect nicely.
- The numerology of good triangulations of A_{n,k,2} recovered some numerology of the positive tropical Grassmannian Trop⁺ Gr_{k+1,n} (Speyer–W 2005).
- We related Trop⁺ $Gr_{k+1,n}$ to triangulations by showing it controls (regular, positroidal) triangulations of $\Delta_{k+1,n}$.
- So we guessed that triangulations of $\mathcal{A}_{n,k,2}$ must be related to triangulations of $\Delta_{k+1,n}$.

- We studied *good triangulations* of the amplituhedron, those where boundaries of generalized triangles intersect nicely.
- The numerology of good triangulations of A_{n,k,2} recovered some numerology of the *positive tropical Grassmannian* Trop⁺ Gr_{k+1,n} (Speyer–W 2005).
- We related Trop⁺ $Gr_{k+1,n}$ to triangulations by showing it controls (regular, positroidal) triangulations of $\Delta_{k+1,n}$.
- So we guessed that triangulations of $\mathcal{A}_{n,k,2}$ must be related to triangulations of $\Delta_{k+1,n}$.

Remark: many of the known triangulations of the amplituhedron are "bad" in the sense that boundaries of images of cells overlap badly.

Definition (Lukowski–Parisi–W.)

Say that a triangulation is **good** if whenever $Z_{\pi^{(l)}} \cap Z_{\pi^{(l)}}$ has codimension 1, it equals Z_{π} , the image of a cell S_{π} in the closure of both $S_{\pi^{(l)}}$ and $S_{\pi^{(l)}}$.

Data

of good triangulations of $\mathcal{A}_{n,1,2}$ is $C_{n-2} = \frac{1}{n-1} \binom{2n-2}{n-2}$. # of good triangulations of $\mathcal{A}_{n,2,2}$ is 1, 5, 48, 693 for n = 4, 5, 6, 7.

Remark: many of the known triangulations of the amplituhedron are "bad" in the sense that boundaries of images of cells overlap badly.

Definition (Lukowski–Parisi–W.)

Say that a triangulation is **good** if whenever $Z_{\pi^{(t)}} \cap Z_{\pi^{(t)}}$ has codimension 1, it equals Z_{π} , the image of a cell S_{π} in the closure of both $S_{\pi^{(t)}}$ and $S_{\pi^{(t)}}$.

Data

of good triangulations of $A_{n,1,2}$ is $C_{n-2} = \frac{1}{n-1} {2n-2 \choose n-2}$. # of good triangulations of $A_{n,2,2}$ is 1,5,48,693 for n = 4,5,6,7.

Remark: many of the known triangulations of the amplituhedron are "bad" in the sense that boundaries of images of cells overlap badly.

Definition (Lukowski–Parisi–W.)

Say that a triangulation is **good** if whenever $Z_{\pi^{(j)}} \cap Z_{\pi^{(j)}}$ has codimension 1, it equals Z_{π} , the image of a cell S_{π} in the closure of both $S_{\pi^{(j)}}$ and $S_{\pi^{(j)}}$.

Data

of good triangulations of $A_{n,1,2}$ is $C_{n-2} = \frac{1}{n-1} {2n-2 \choose n-2}$. # of good triangulations of $A_{n,2,2}$ is 1, 5, 48, 693 for n = 4, 5, 6, 7.

Remark: many of the known triangulations of the amplituhedron are "bad" in the sense that boundaries of images of cells overlap badly.

Definition (Lukowski–Parisi–W.)

Say that a triangulation is **good** if whenever $Z_{\pi^{(i)}} \cap Z_{\pi^{(j)}}$ has codimension 1, it equals Z_{π} , the image of a cell S_{π} in the closure of both $S_{\pi^{(i)}}$ and $S_{\pi^{(j)}}$.

Data

of good triangulations of $\mathcal{A}_{n,1,2}$ is $C_{n-2} = \frac{1}{n-1} \binom{2n-2}{n-2}$. # of good triangulations of $\mathcal{A}_{n,2,2}$ is 1, 5, 48, 693 for n = 4, 5, 6, 7.

Remark: many of the known triangulations of the amplituhedron are "bad" in the sense that boundaries of images of cells overlap badly.

Definition (Lukowski–Parisi–W.)

Say that a triangulation is **good** if whenever $Z_{\pi(i)} \cap Z_{\pi(j)}$ has codimension 1, it equals Z_{π} , the image of a cell S_{π} in the closure of both $S_{\pi(i)}$ and $S_{\pi(j)}$.

Data

of good triangulations of $\mathcal{A}_{n,1,2}$ is $C_{n-2} = \frac{1}{n-1} \binom{2n-2}{n-2}$. # of good triangulations of $\mathcal{A}_{n,2,2}$ is 1, 5, 48, 693 for n = 4, 5, 6, 7.

Remark: many of the known triangulations of the amplituhedron are "bad" in the sense that boundaries of images of cells overlap badly.

Definition (Lukowski–Parisi–W.)

Say that a triangulation is **good** if whenever $Z_{\pi^{(i)}} \cap Z_{\pi^{(j)}}$ has codimension 1, it equals Z_{π} , the image of a cell S_{π} in the closure of both $S_{\pi^{(i)}}$ and $S_{\pi^{(j)}}$.

Data

of good triangulations of $\mathcal{A}_{n,1,2}$ is $C_{n-2} = \frac{1}{n-1} \binom{2n-2}{n-2}$. # of good triangulations of $\mathcal{A}_{n,2,2}$ is 1, 5, 48, 693 for n = 4, 5, 6, 7.

Remark: many of the known triangulations of the amplituhedron are "bad" in the sense that boundaries of images of cells overlap badly.

Definition (Lukowski–Parisi–W.)

Say that a triangulation is **good** if whenever $Z_{\pi^{(i)}} \cap Z_{\pi^{(j)}}$ has codimension 1, it equals Z_{π} , the image of a cell S_{π} in the closure of both $S_{\pi^{(i)}}$ and $S_{\pi^{(j)}}$.

Data

of good triangulations of $A_{n,1,2}$ is $C_{n-2} = \frac{1}{n-1} {\binom{2n-2}{n-2}}$. # of good triangulations of $A_{n,2,2}$ is 1,5,48,693 for n = 4, 5, 6, 7

Remark: many of the known triangulations of the amplituhedron are "bad" in the sense that boundaries of images of cells overlap badly.

Definition (Lukowski–Parisi–W.)

Say that a triangulation is **good** if whenever $Z_{\pi^{(i)}} \cap Z_{\pi^{(j)}}$ has codimension 1, it equals Z_{π} , the image of a cell S_{π} in the closure of both $S_{\pi^{(i)}}$ and $S_{\pi^{(j)}}$.

Data

of good triangulations of $A_{n,1,2}$ is $C_{n-2} = \frac{1}{n-1} {\binom{2n-2}{n-2}}$. # of good triangulations of $A_{n,2,2}$ is 1,5,48,693 for n = 4,5,6,7

Remark: many of the known triangulations of the amplituhedron are "bad" in the sense that boundaries of images of cells overlap badly.

Definition (Lukowski–Parisi–W.)

Say that a triangulation is **good** if whenever $Z_{\pi^{(i)}} \cap Z_{\pi^{(j)}}$ has codimension 1, it equals Z_{π} , the image of a cell S_{π} in the closure of both $S_{\pi^{(i)}}$ and $S_{\pi^{(j)}}$.

Data

of good triangulations of $A_{n,1,2}$ is $C_{n-2} = \frac{1}{n-1} {2n-2 \choose n-2}$. # of good triangulations of $A_{n,2,2}$ is 1, 5, 48, 693 for n = 4, 5, 6, 7.

Theorem (Speyer – W. 2005)

The **positive tropical Grassmannian** $\operatorname{Trop}^+ Gr_{k,n}$ is a polyhedral fan, such that

of maximal cones in Trop⁺ $Gr_{2,n}$ is C_{n-2} . # of maximal cones in Trop⁺ $Gr_{3,n}$ is 1, 5, 48, 693 for n = 4, 5, 6, 7.

Same numbers! To explain this coincidence of numerology, we need to define Trop⁺ $Gr_{k,n}$ and explain how it is connected to (some kind of) triangulations.

Theorem (Speyer – W. 2005)

The **positive tropical Grassmannian** Trop⁺ $Gr_{k,n}$ is a polyhedral fan, such that # of maximal cones in Trop⁺ $Gr_{2,n}$ is C_{n-2} . # of maximal cones in Trop⁺ $Gr_{3,n}$ is 1, 5, 48, 693 for n = 4, 5, 6, 7.

Same numbers! To explain this coincidence of numerology, we need to define Trop⁺ $Gr_{k,n}$ and explain how it is connected to (some kind of) triangulations.

Theorem (Speyer – W. 2005)

The **positive tropical Grassmannian** $\text{Trop}^+ Gr_{k,n}$ is a polyhedral fan, such that

of maximal cones in Trop⁺ $Gr_{2,n}$ is C_{n-2} . # of maximal cones in Trop⁺ $Gr_{3,n}$ is 1, 5, 48, 693 for n = 4, 5, 6, 7.

Same numbers! To explain this coincidence of numerology, we need to define Trop⁺ $Gr_{k,n}$ and explain how it is connected to (some kind of) triangulations.

Theorem (Speyer – W. 2005)

The **positive tropical Grassmannian** Trop⁺ $Gr_{k,n}$ is a polyhedral fan, such that

of maximal cones in Trop⁺ $Gr_{2,n}$ is C_{n-2} .

of maximal cones in Trop⁺ $Gr_{3,n}$ is 1, 5, 48, 693 for n = 4, 5, 6, 7.

Same numbers! To explain this coincidence of numerology, we need to define Trop⁺ $Gr_{k,n}$ and explain how it is connected to (some kind of) triangulations.

★ 표 ▶ ★ 표 ▶ ★ 표 ■ ● 9 9 6

Theorem (Speyer – W. 2005)

The **positive tropical Grassmannian** $\operatorname{Trop}^+ Gr_{k,n}$ is a polyhedral fan, such that

of maximal cones in Trop⁺ $Gr_{2,n}$ is C_{n-2} . # of maximal cones in Trop⁺ $Gr_{3,n}$ is 1,5,48,693 for n = 4,5,6,7.

Same numbers! To explain this coincidence of numerology, we need to define Trop⁺ $Gr_{k,n}$ and explain how it is connected to (some kind of) triangulations.

★ ■ ▶ ★ ■ ▶ ■ ■ ● 9 € 6

Theorem (Speyer – W. 2005)

The **positive tropical Grassmannian** $\operatorname{Trop}^+ Gr_{k,n}$ is a polyhedral fan, such that

of maximal cones in Trop⁺ $Gr_{2,n}$ is C_{n-2} . # of maximal cones in Trop⁺ $Gr_{3,n}$ is 1,5,48,693 for n = 4,5,6,7.

Same numbers! To explain this coincidence of numerology, we need to define Trop⁺ $Gr_{k,n}$ and explain how it is connected to (some kind of) triangulations.

★ ■ ▶ ★ ■ ▶ ■ ■ ● 9 € 6

Theorem (Speyer – W. 2005)

The **positive tropical Grassmannian** Trop⁺ $Gr_{k,n}$ is a polyhedral fan, such that

of maximal cones in Trop⁺ $Gr_{2,n}$ is C_{n-2} . # of maximal cones in Trop⁺ $Gr_{3,n}$ is 1,5,48,693 for n = 4,5,6,7.

Same numbers! To explain this coincidence of numerology, we need to define $\text{Trop}^+ Gr_{k,n}$ and explain how it is connected to (some kind of) triangulations.

Trop⁺ $Gr_{k,n}$ and physics

Before defining Trop⁺ $Gr_{k,n}$, we note its recent appearances in physics, in the context of singularities of loop amplitudes in $\mathcal{N} = 4$ SYM and computing scattering amplitudes in (generalized) biadjoint scalar theories:

- Cachazo-Early-Guevara-Mizera, arXiv: 1903.08904
- Cachazo-Rojas, arXiv: 1906.05979
- Drummond–Foster–Gurdogan–Kalousios, arXiv:1907.01053
- Drummond–Foster–Gurdogan–Kalousios, arXiv:1912.08217
- Arkani-Hamed–Lam–Spradlin: arXiv:1912.08222
- Henke–Papathanasiou, arXiv:1912.08254
- Arkani-Hamed–He–Lam–Thomas: arXiv:1912.11764
- Early: arXiv:1912.13513
- More ...

Trop⁺ $Gr_{k,n}$ and physics

Before defining Trop⁺ $Gr_{k,n}$, we note its recent appearances in physics, in the context of singularities of loop amplitudes in $\mathcal{N} = 4$ SYM and computing scattering amplitudes in (generalized) biadjoint scalar theories:

- Cachazo–Early–Guevara–Mizera, arXiv: 1903.08904
- Cachazo-Rojas, arXiv: 1906.05979
- Drummond–Foster–Gurdogan–Kalousios, arXiv:1907.01053
- Drummond–Foster–Gurdogan–Kalousios, arXiv:1912.08217
- Arkani-Hamed–Lam–Spradlin: arXiv:1912.08222
- Henke–Papathanasiou, arXiv:1912.08254
- Arkani-Hamed–He–Lam–Thomas: arXiv:1912.11764
- Early: arXiv:1912.13513
- More ...

Trop⁺ $Gr_{k,n}$ and physics

Before defining Trop⁺ $Gr_{k,n}$, we note its recent appearances in physics, in the context of singularities of loop amplitudes in $\mathcal{N} = 4$ SYM and computing scattering amplitudes in (generalized) biadjoint scalar theories:

- Cachazo-Early-Guevara-Mizera, arXiv: 1903.08904
- Cachazo-Rojas, arXiv: 1906.05979
- Drummond–Foster–Gurdogan–Kalousios, arXiv:1907.01053
- Drummond–Foster–Gurdogan–Kalousios, arXiv:1912.08217
- Arkani-Hamed–Lam–Spradlin: arXiv:1912.08222
- Henke–Papathanasiou, arXiv:1912.08254
- Arkani-Hamed-He-Lam-Thomas: arXiv:1912.11764
- Early: arXiv:1912.13513
- More ...

Definition of $\operatorname{Trop}^+ Gr_{k,n}$ (see appendix of slides for details)

Speyer–W, 2005: introduced and gave several descriptions of Trop⁺ $Gr_{k,n}$:

- image under valuation map of $Gr_{k,n}^+$ over Puisseux series;
- the common refinement of fans associated to Plücker coordinates
- dual fan to Minkowski sum of Newton polytopes of Plücker coords.

Simpler way to describe it (subset of $\mathbb{R}^{\binom{[n]}{k}}$ with fan structure):

A vector $P = \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$ is a **positive tropical Plücker vector** if for any $1 < a < b < c < d \le n$ and $S \in \binom{[n]}{k-2}$ disjoint from $\{a, b, c, d\}$,

- P_{Sac} + P_{Sbd} = P_{Sab} + P_{Scd} ≤ P_{Sad} + P_{Sbc}
- Psoc + Psod = Psod + Psoc ≤ Psob + Psod.

Theorem (Speyer–W. 2020, Arkani-Hamed–Lam–Spradlin 2020)

The positive tropical Grassmannian Trop⁺ $Gr_{k,n} \subset \mathbb{R}^{\binom{[n]}{k}}$ equals the set of **positive tropical Plücker vectors** (also called *positive Dressian*).

Definition of $\operatorname{Trop}^+ Gr_{k,n}$ (see appendix of slides for details)

Speyer–W, 2005: introduced and gave several descriptions of Trop⁺ $Gr_{k,n}$:

- image under valuation map of $Gr_{k,n}^+$ over Puisseux series;
- the common refinement of fans associated to Plücker coordinates
- dual fan to Minkowski sum of Newton polytopes of Plücker coords.

Simpler way to describe it (subset of $\mathbb{R}^{\binom{[n]}{k}}$ with fan structure):

A vector $P = \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$ is a **positive tropical Plücker vector** if for any $1 < a < b < c < d \le n$ and $S \in \binom{[n]}{k-2}$ disjoint from $\{a, b, c, d\}$,

- PSac + PSbd = PSab + PScd ≤ PSad + PSbc
- Psoc + Psod = Psod + Psoc ≤ Psob + Psod.

Theorem (Speyer–W. 2020, Arkani-Hamed–Lam–Spradlin 2020)

The positive tropical Grassmannian Trop⁺ $Gr_{k,n} \subset \mathbb{R}^{\binom{[n]}{k}}$ equals the set of **positive tropical Plücker vectors** (also called *positive Dressian*).

Definition of Trop⁺ $Gr_{k,n}$ (see appendix of slides for details),

Speyer–W, 2005: introduced and gave several descriptions of Trop⁺ $Gr_{k,n}$:

- image under valuation map of $Gr_{k,n}^+$ over Puisseux series;
- the common refinement of fans associated to Plücker coordinates
- dual fan to Minkowski sum of Newton polytopes of Plücker coords.

Simpler way to describe it (subset of $\mathbb{R}^{\binom{[n]}{k}}$ with fan structure):

A vector $P = \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$ is a **positive tropical Plücker vector** if for any $1 < a < b < c < d \le n$ and $S \in \binom{[n]}{k-2}$ disjoint from $\{a, b, c, d\}$,

- $P_{Sac} + P_{Sbd} = P_{Sab} + P_{Scd} \leq P_{Sad} + P_{Sbc}$
- Psoc + Psod = Psod + Psoc ≤ Psob + Psod.

Theorem (Speyer–W. 2020, Arkani-Hamed–Lam–Spradlin 2020)

The positive tropical Grassmannian Trop⁺ $Gr_{k,n} \subset \mathbb{R}^{\binom{[n]}{k}}$ equals the set of **positive tropical Plücker vectors** (also called *positive Dressian*).

Definition of Trop⁺ $Gr_{k,n}$ (see appendix of slides for details),

Speyer–W, 2005: introduced and gave several descriptions of Trop⁺ $Gr_{k,n}$:

- image under valuation map of $Gr_{k,n}^+$ over Puisseux series;
- the common refinement of fans associated to Plücker coordinates
- dual fan to Minkowski sum of Newton polytopes of Plücker coords.

Simpler way to describe it (subset of $\mathbb{R}^{\binom{[n]}{k}}$ with fan structure):

A vector $P = \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$ is a **positive tropical Plücker vector** if for any $1 < a < b < c < d \le n$ and $S \in \binom{[n]}{k-2}$ disjoint from $\{a, b, c, d\}$,

P_{Sac} + P_{Sbd} = P_{Sad} + P_{Sbc} ≤ P_{Sab} + P_{Scd}.

Theorem (Speyer–W. 2020, Arkani-Hamed–Lam–Spradlin 2020)

The positive tropical Grassmannian Trop⁺ $Gr_{k,n} \subset \mathbb{R}^{\binom{[n]}{k}}$ equals the set of **positive tropical Plücker vectors** (also called *positive Dressian*).

Definition of Trop⁺ $Gr_{k,n}$ (see appendix of slides for details)

Speyer–W, 2005: introduced and gave several descriptions of Trop⁺ $Gr_{k,n}$:

- image under valuation map of $Gr_{k,n}^+$ over Puisseux series;
- the common refinement of fans associated to Plücker coordinates
- dual fan to Minkowski sum of Newton polytopes of Plücker coords.

Simpler way to describe it (subset of $\mathbb{R}^{\binom{[n]}{k}}$ with fan structure):

A vector $P = \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$ is a **positive tropical Plücker vector** if for any $1 < a < b < c < d \le n$ and $S \in \binom{[n]}{k-2}$ disjoint from $\{a, b, c, d\}$,

- $P_{Sac} + P_{Sbd} = P_{Sab} + P_{Scd} \le P_{Sad} + P_{Sbc}$ or
- $P_{Sac} + P_{Sbd} = P_{Sad} + P_{Sbc} \le P_{Sab} + P_{Scd}$.

Theorem (Speyer–W. 2020, Arkani-Hamed–Lam–Spradlin 2020)

The positive tropical Grassmannian Trop⁺ $Gr_{k,n} \subset \mathbb{R}^{\binom{[n]}{k}}$ equals the set of **positive tropical Plücker vectors** (also called *positive Dressian*).

Definition of Trop⁺ $Gr_{k,n}$ (see appendix of slides for details),

Speyer–W, 2005: introduced and gave several descriptions of Trop⁺ $Gr_{k,n}$:

- image under valuation map of $Gr_{k,n}^+$ over Puisseux series;
- the common refinement of fans associated to Plücker coordinates
- dual fan to Minkowski sum of Newton polytopes of Plücker coords.

Simpler way to describe it (subset of $\mathbb{R}^{\binom{[n]}{k}}$ with fan structure):

A vector $P = \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$ is a **positive tropical Plücker vector** if for any $1 < a < b < c < d \le n$ and $S \in \binom{[n]}{k-2}$ disjoint from $\{a, b, c, d\}$,

- $P_{Sac} + P_{Sbd} = P_{Sab} + P_{Scd} \le P_{Sad} + P_{Sbc}$ or
- $P_{Sac} + P_{Sbd} = P_{Sad} + P_{Sbc} \le P_{Sab} + P_{Scd}$.

Theorem (Speyer–W. 2020, Arkani-Hamed–Lam–Spradlin 2020)

The positive tropical Grassmannian Trop⁺ $Gr_{k,n} \subset \mathbb{R}^{\binom{[n]}{k}}$ equals the set of **positive tropical Plücker vectors** (also called *positive Dressian*).

Definition of $\operatorname{Trop}^+ Gr_{k,n}$ (see appendix of slides for details)

Speyer–W, 2005: introduced and gave several descriptions of Trop⁺ $Gr_{k,n}$:

- image under valuation map of $Gr_{k,n}^+$ over Puisseux series;
- the common refinement of fans associated to Plücker coordinates
- dual fan to Minkowski sum of Newton polytopes of Plücker coords.

Simpler way to describe it (subset of $\mathbb{R}^{\binom{[n]}{k}}$ with fan structure):

A vector $P = \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$ is a **positive tropical Plücker vector** if for any $1 < a < b < c < d \le n$ and $S \in \binom{[n]}{k-2}$ disjoint from $\{a, b, c, d\}$,

- $P_{Sac} + P_{Sbd} = P_{Sab} + P_{Scd} \le P_{Sad} + P_{Sbc}$ or
- $P_{Sac} + P_{Sbd} = P_{Sad} + P_{Sbc} \le P_{Sab} + P_{Scd}$.

Theorem (Speyer–W. 2020, Arkani-Hamed–Lam–Spradlin 2020)

The positive tropical Grassmannian Trop⁺ $Gr_{k,n} \subset \mathbb{R}^{\binom{[n]}{k}}$ equals the set of **positive tropical Plücker vectors** (also called *positive Dressian*).

Definition of $\operatorname{Trop}^+ Gr_{k,n}$ (see appendix of slides for details),

Speyer–W, 2005: introduced and gave several descriptions of Trop⁺ $Gr_{k,n}$:

- image under valuation map of $Gr_{k,n}^+$ over Puisseux series;
- the common refinement of fans associated to Plücker coordinates
- dual fan to Minkowski sum of Newton polytopes of Plücker coords.

Simpler way to describe it (subset of $\mathbb{R}^{\binom{[n]}{k}}$ with fan structure):

A vector $P = \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$ is a **positive tropical Plücker vector** if for any $1 < a < b < c < d \le n$ and $S \in \binom{[n]}{k-2}$ disjoint from $\{a, b, c, d\}$, • $P_{Sac} + P_{Sbd} = P_{Sab} + P_{Scd} \le P_{Sad} + P_{Sbc}$ or • $P_{Sac} + P_{Sbd} = P_{Sad} + P_{Sbc} \le P_{Sab} + P_{Scd}$.

Theorem (Speyer–W. 2020, Arkani-Hamed–Lam–Spradlin 2020)

The positive tropical Grassmannian Trop⁺ $Gr_{k,n} \subset \mathbb{R}^{\binom{[n]}{k}}$ equals the set of **positive tropical Plücker vectors** (also called *positive Dressian*).

Definition of $\operatorname{Trop}^+ Gr_{k,n}$ (see appendix of slides for details)

Speyer–W, 2005: introduced and gave several descriptions of Trop⁺ $Gr_{k,n}$:

- image under valuation map of $Gr_{k,n}^+$ over Puisseux series;
- the common refinement of fans associated to Plücker coordinates
- dual fan to Minkowski sum of Newton polytopes of Plücker coords.

Simpler way to describe it (subset of $\mathbb{R}^{\binom{[n]}{k}}$ with fan structure):

A vector $P = \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$ is a **positive tropical Plücker vector** if for any $1 < a < b < c < d \le n$ and $S \in \binom{[n]}{k-2}$ disjoint from $\{a, b, c, d\}$, • $P_{Sac} + P_{Sbd} = P_{Sab} + P_{Scd} \le P_{Sad} + P_{Sbc}$ or

• $P_{Sac} + P_{Sbd} = P_{Sad} + P_{Sbc} \le P_{Sab} + P_{Scd}$.

Theorem (Speyer–W. 2020, Arkani-Hamed–Lam–Spradlin 2020)

The positive tropical Grassmannian $\operatorname{Trop}^+ Gr_{k,n} \subset \mathbb{R}^{\binom{[n]}{k}}$ equals the set of **positive tropical Plücker vectors** (also called *positive Dressian*).

Definition of $\operatorname{Trop}^+ Gr_{k,n}$ (see appendix of slides for details)

Speyer–W, 2005: introduced and gave several descriptions of Trop⁺ $Gr_{k,n}$:

- image under valuation map of $Gr_{k,n}^+$ over Puisseux series;
- the common refinement of fans associated to Plücker coordinates
- dual fan to Minkowski sum of Newton polytopes of Plücker coords.

Simpler way to describe it (subset of $\mathbb{R}^{\binom{[n]}{k}}$ with fan structure):

A vector $P = \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$ is a **positive tropical Plücker vector** if for any $1 < a < b < c < d \le n$ and $S \in \binom{[n]}{k-2}$ disjoint from $\{a, b, c, d\}$, • $P_{Sac} + P_{Sbd} = P_{Sab} + P_{Scd} \le P_{Sad} + P_{Sbc}$ or

• $P_{Sac} + P_{Sbd} = P_{Sad} + P_{Sbc} \le P_{Sab} + P_{Scd}$.

Theorem (Speyer–W. 2020, Arkani-Hamed–Lam–Spradlin 2020)

The positive tropical Grassmannian $\operatorname{Trop}^+ Gr_{k,n} \subset \mathbb{R}^{\binom{[n]}{k}}$ equals the set of **positive tropical Plücker vectors** (also called *positive Dressian*).

- Recall that Trop⁺ $Gr_{k,n}$ is the subset of $\mathbb{R}^{\binom{[n]}{k}}$ consisting of positive tropical Plücker vectors.
- Want to connect it to some kind of triangulations.
- Inspiration: Speyer '05 (see also Kapranov '93) related tropical Plücker vectors to nice (matroid) subdivisions of hypersimplex Δ_{k,n}.
- And $\Delta_{k,n}$ is the moment map image of the Grassmannian.
- We'll find positive analogue of this.
- Recall that Trop⁺ Gr_{k,n} is the subset of ℝ^[n]/_k consisting of positive tropical Plücker vectors.
- Want to connect it to some kind of triangulations.
- Inspiration: Speyer '05 (see also Kapranov '93) related tropical Plücker vectors to nice (matroid) subdivisions of hypersimplex Δ_{k,n}.
- And $\Delta_{k,n}$ is the moment map image of the Grassmannian.
- We'll find positive analogue of this.

- Recall that Trop⁺ Gr_{k,n} is the subset of ℝ^[n]/_k consisting of positive tropical Plücker vectors.
- Want to connect it to some kind of triangulations.
- Inspiration: Speyer '05 (see also Kapranov '93) related tropical Plücker vectors to nice (matroid) subdivisions of hypersimplex Δ_{k,n}.
- And $\Delta_{k,n}$ is the moment map image of the Grassmannian.
- We'll find positive analogue of this.

- Recall that Trop⁺ Gr_{k,n} is the subset of ℝ^[n]/_k consisting of positive tropical Plücker vectors.
- Want to connect it to some kind of triangulations.
- Inspiration: Speyer '05 (see also Kapranov '93) related tropical Plücker vectors to nice (matroid) subdivisions of hypersimplex $\Delta_{k,n}$.
- And $\Delta_{k,n}$ is the moment map image of the Grassmannian.
- We'll find positive analogue of this.

- Recall that Trop⁺ Gr_{k,n} is the subset of ℝ^[n]/_k consisting of positive tropical Plücker vectors.
- Want to connect it to some kind of triangulations.
- Inspiration: Speyer '05 (see also Kapranov '93) related tropical Plücker vectors to nice (matroid) subdivisions of hypersimplex $\Delta_{k,n}$.
- And $\Delta_{k,n}$ is the moment map image of the Grassmannian.
- We'll find positive analogue of this.

- Recall that Trop⁺ Gr_{k,n} is the subset of ℝ^[n]/_k consisting of positive tropical Plücker vectors.
- Want to connect it to some kind of triangulations.
- Inspiration: Speyer '05 (see also Kapranov '93) related tropical Plücker vectors to nice (matroid) subdivisions of hypersimplex $\Delta_{k,n}$.
- And $\Delta_{k,n}$ is the moment map image of the Grassmannian.
- We'll find positive analogue of this.

Theorem (Lukowski–Parisi–W, also Arkani-Hamed–Lam–Spradlin)

Let $P = \{P_I\}_I \in \mathbb{R}^{\binom{|P_I|}{k}}$. The following are equivalent.

- $P \in \text{Trop}^+ Gr_{k,n}$, i.e. P is a positive tropical Plücker vector.
- Every face of \mathcal{D}_P is a positroid polytope.

Rk: Theorem is pos. analogue of result of Speyer '05 (see also Kapranov '93). Theorem was anticipated/known by others including Speyer, Early, Rincon, Olarte.

Corollary

Regular (positroid) triangulations of $\Delta_{k,n} \leftrightarrow$ the maximal cones of Trop⁺ $Gr_{k,n}$

Connecting $\operatorname{Trop}^+ Gr_{k,n}$ to triangulations

To construct regular subdivision of $\Delta_{k,n}$, choose some $P := \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$, thought of as *height function* on the vertices e_I of $\Delta_{k,n}$. Projecting "lower faces" of Conv $\{(e_I, P_I)\}$ to $\Delta_{k,n}$ gives regular subdivision \mathcal{D}_P .

Theorem (Lukowski–Parisi–W, also Arkani-Hamed–Lam–Spradlin)

Let $P = \{P_I\}_I \in \mathbb{R}^{\binom{|P_I|}{k}}$. The following are equivalent.

- $P \in \text{Trop}^+$ $Gr_{k,n}$, i.e. P is a positive tropical Plücker vector.
- Every face of \mathcal{D}_P is a positroid polytope.

Rk: Theorem is pos. analogue of result of Speyer '05 (see also Kapranov '93). Theorem was anticipated/known by others including Speyer, Early, Rincon, Olarte.

Corollary

Regular (positroid) triangulations of $\Delta_{k,n} \leftrightarrow$ the maximal cones of Trop⁺ $Gr_{k,n}$

To construct regular subdivision of $\Delta_{k,n}$, choose some $P := \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$, thought of as *height function* on the vertices e_I of $\Delta_{k,n}$. Projecting "lower faces" of Conv $\{(e_I, P_I)\}$ to $\Delta_{k,n}$ gives regular subdivision \mathcal{D}_P .

Theorem (Lukowski–Parisi–W, also Arkani-Hamed–Lam–Spradlin)

Let $P = \{P_I\}_I \in \mathbb{R}^{\binom{I_I^n}{k}}$. The following are equivalent.

- $P \in \text{Trop}^+ Gr_{k,n}$, i.e. P is a positive tropical Plücker vector.
- Every face of \mathcal{D}_P is a positroid polytope.

Rk: Theorem is pos. analogue of result of Speyer '05 (see also Kapranov '93). Theorem was anticipated/known by others including Speyer, Early, Rincon, Olarte.

Corollary

Regular (positroid) triangulations of $\Delta_{k,n} \leftrightarrow$ the maximal cones of Trop⁺ $Gr_{k,n}$

To construct regular subdivision of $\Delta_{k,n}$, choose some $P := \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$, thought of as *height function* on the vertices e_I of $\Delta_{k,n}$. Projecting "lower faces" of Conv $\{(e_I, P_I)\}$ to $\Delta_{k,n}$ gives regular subdivision \mathcal{D}_P .

Theorem (Lukowski–Parisi–W, also Arkani-Hamed–Lam–Spradlin)

Let $P = \{P_l\}_l \in \mathbb{R}^{\binom{p_l}{k}}$. The following are equivalent.

- $P \in \text{Trop}^+ Gr_{k,n}$, i.e. P is a positive tropical Plücker vector.
- Every face of \mathcal{D}_P is a positroid polytope.

Rk: Theorem is pos. analogue of result of Speyer '05 (see also Kapranov '93). Theorem was anticipated/known by others including Speyer, Early, Rincon, Olarte.

Corollary

Regular (positroid) triangulations of $\Delta_{k,n} \leftrightarrow$ the maximal cones of Trop⁺ $Gr_{k,n}$

To construct regular subdivision of $\Delta_{k,n}$, choose some $P := \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$, thought of as *height function* on the vertices e_I of $\Delta_{k,n}$. Projecting "lower faces" of Conv $\{(e_I, P_I)\}$ to $\Delta_{k,n}$ gives regular subdivision \mathcal{D}_P .

Theorem (Lukowski–Parisi–W, also Arkani-Hamed–Lam–Spradlin)

Let $P = \{P_I\}_I \in \mathbb{R}^{\binom{[\nu_I]}{k}}$. The following are equivalent.

- $P \in \text{Trop}^+ Gr_{k,n}$, i.e. P is a positive tropical Plücker vector.
- Every face of \mathcal{D}_P is a positroid polytope.

Rk: Theorem is pos. analogue of result of Speyer '05 (see also Kapranov '93). Theorem was anticipated/known by others including Speyer, Early, Rincon, Olarte.

Corollary

Regular (positroid) triangulations of $\Delta_{k,n} \leftrightarrow$ the maximal cones of Trop⁺ $Gr_{k,n}$

To construct regular subdivision of $\Delta_{k,n}$, choose some $P := \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$, thought of as *height function* on the vertices e_I of $\Delta_{k,n}$. Projecting "lower faces" of Conv $\{(e_I, P_I)\}$ to $\Delta_{k,n}$ gives regular subdivision \mathcal{D}_P .

Theorem (Lukowski–Parisi–W, also Arkani-Hamed–Lam–Spradlin)

Let $P = \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$. The following are equivalent.

- $P \in \text{Trop}^+ Gr_{k,n}$, i.e. P is a positive tropical Plücker vector.
- Every face of \mathcal{D}_P is a positroid polytope.

Rk: Theorem is pos. analogue of result of Speyer '05 (see also Kapranov '93). Theorem was anticipated/known by others including Speyer, Early, Rincon, Olarte.

Corollary

Regular (positroid) triangulations of $\Delta_{k,n} \leftrightarrow$ the maximal cones of Trop⁺ $Gr_{k,n}$

To construct regular subdivision of $\Delta_{k,n}$, choose some $P := \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$, thought of as *height function* on the vertices e_I of $\Delta_{k,n}$. Projecting "lower faces" of Conv $\{(e_I, P_I)\}$ to $\Delta_{k,n}$ gives regular subdivision \mathcal{D}_P .

Theorem (Lukowski–Parisi–W, also Arkani-Hamed–Lam–Spradlin)

- Let $P = \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$. The following are equivalent.
 - $P \in \text{Trop}^+ Gr_{k,n}$, i.e. P is a positive tropical Plücker vector.
 - Every face of \mathcal{D}_P is a positroid polytope.

Rk: Theorem is pos. analogue of result of Speyer '05 (see also Kapranov '93). Theorem was anticipated/known by others including Speyer, Early, Rincon, Olarte.

Corollary

Regular (positroid) triangulations of $\Delta_{k,n} \leftrightarrow$ the maximal cones of Trop⁺ $Gr_{k,n}$

To construct regular subdivision of $\Delta_{k,n}$, choose some $P := \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$, thought of as *height function* on the vertices e_I of $\Delta_{k,n}$. Projecting "lower faces" of Conv $\{(e_I, P_I)\}$ to $\Delta_{k,n}$ gives regular subdivision \mathcal{D}_P .

Theorem (Lukowski–Parisi–W, also Arkani-Hamed–Lam–Spradlin)

- Let $P = \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$. The following are equivalent.
 - $P \in \text{Trop}^+ Gr_{k,n}$, i.e. P is a positive tropical Plücker vector.
 - Every face of \mathcal{D}_P is a positroid polytope.

Rk: Theorem is pos. analogue of result of Speyer '05 (see also Kapranov '93). Theorem was anticipated/known by others including Speyer, Early, Rincon, Olarte.

Corollary

Regular (positroid) triangulations of $\Delta_{k,n} \leftrightarrow$ the maximal cones of Trop⁺ $Gr_{k,n}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

Theorem (Lukowski–Parisi–W, also Arkani-Hamed–Lam–Spradlin)

Let $P = \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$. The following are equivalent.

- $P \in \text{Trop}^+ Gr_{k,n}$, i.e. P is a positive tropical Plücker vector.
- Every face of \mathcal{D}_P is a positroid polytope.

Rk: Theorem is pos. analogue of result of Speyer '05 (see also Kapranov '93). Theorem was anticipated/known by others including Speyer, Early, Rincon, Olarte.

Corollary

Regular (positroid) triangulations of $\Delta_{k,n} \leftrightarrow$ the maximal cones of Trop⁺ $Gr_{k,n}$

Theorem (Lukowski–Parisi–W, also Arkani-Hamed–Lam–Spradlin)

Let $P = \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$. The following are equivalent.

- $P \in \text{Trop}^+ Gr_{k,n}$, i.e. P is a positive tropical Plücker vector.
- Every face of \mathcal{D}_P is a positroid polytope.

Rk: Theorem is pos. analogue of result of Speyer '05 (see also Kapranov '93). Theorem was anticipated/known by others including Speyer, Early, Rincon, Olarte

Corollary

Regular (positroid) triangulations of $\Delta_{k,n} \leftrightarrow$ the maximal cones of Trop⁺ $\mathit{Gr}_{k,n}$

Theorem (Lukowski–Parisi–W, also Arkani-Hamed–Lam–Spradlin)

Let $P = \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$. The following are equivalent.

- $P \in \text{Trop}^+ Gr_{k,n}$, i.e. P is a positive tropical Plücker vector.
- Every face of \mathcal{D}_P is a positroid polytope.

Rk: Theorem is pos. analogue of result of Speyer '05 (see also Kapranov '93). Theorem was anticipated/known by others including Speyer, Early, Rincon, Olarte.

Corollary

Regular (positroid) triangulations of $\Delta_{k,n} \leftrightarrow$ the maximal cones of Trop $^+$ Gr $_{k,n}$

Theorem (Lukowski–Parisi–W, also Arkani-Hamed–Lam–Spradlin)

Let $P = \{P_I\}_I \in \mathbb{R}^{\binom{[n]}{k}}$. The following are equivalent.

- $P \in \text{Trop}^+ Gr_{k,n}$, i.e. P is a positive tropical Plücker vector.
- Every face of \mathcal{D}_P is a positroid polytope.

Rk: Theorem is pos. analogue of result of Speyer '05 (see also Kapranov '93). Theorem was anticipated/known by others including Speyer, Early, Rincon, Olarte.

CorollaryRegular (positroid) triangulations of $\Delta_{k,n} \leftrightarrow$ the maximal cones of Trop+ $Gr_{k,n}$. $\Box \mapsto \langle \Box \rangle \land \exists \Rightarrow \exists \Rightarrow \neg \land \neg$ Lauren K. Williams (Harvard) $\Delta_{k+1,n}$ and $A_{n,k,2}$ 202026/29

- We define a triangulation of $A_{n,k,2}$ to be **regular** if it comes from Trop⁺ $Gr_{k+1,n}$ i.e. it is the T-duality image of a regular positroid triangulation of $\Delta_{k+1,n}$.
- The regular triangulations of $\mathcal{A}_{n,k,2}$ behave well at the boundary, i.e. they are good.

Momentum amplituhedron

 We introduce a momentum amplituhedron M_{n,k,m}^a which should give analogous story to what I've explained today, but for any even m.

(see appendix of slides for definition)

^aa generalization of $\mathcal{M}_{n,k,4}$ defined by Damgaard-Ferro-Lukowski-Parisi

- We define a triangulation of $\mathcal{A}_{n,k,2}$ to be **regular** if it comes from Trop⁺ $Gr_{k+1,n}$ i.e. it is the T-duality image of a regular positroid triangulation of $\Delta_{k+1,n}$.
- The regular triangulations of $\mathcal{A}_{n,k,2}$ behave well at the boundary, i.e. they are good.

Momentum amplituhedron

 We introduce a momentum amplituhedron M_{n,k,m}^a which should give analogous story to what I've explained today, but for any even m.

(see appendix of slides for definition)

^aa generalization of $\mathcal{M}_{n,k,4}$ defined by Damgaard-Ferro-Lukowski-Parisi

- We define a triangulation of $\mathcal{A}_{n,k,2}$ to be **regular** if it comes from Trop⁺ $Gr_{k+1,n}$ i.e. it is the T-duality image of a regular positroid triangulation of $\Delta_{k+1,n}$.
- The regular triangulations of $\mathcal{A}_{n,k,2}$ behave well at the boundary, i.e. they are good.

Momentum amplituhedron

 We introduce a momentum amplituhedron M_{n,k,m}^a which should give analogous story to what I've explained today, but for any even m.

(see appendix of slides for definition)

^aa generalization of $\mathcal{M}_{n,k,4}$ defined by Damgaard-Ferro-Lukowski-Parisi

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

- We define a triangulation of $A_{n,k,2}$ to be **regular** if it comes from Trop⁺ $Gr_{k+1,n}$ i.e. it is the T-duality image of a regular positroid triangulation of $\Delta_{k+1,n}$.
- The regular triangulations of $\mathcal{A}_{n,k,2}$ behave well at the boundary, i.e. they are good.

Momentum amplituhedron

• We introduce a **momentum amplituhedron** $\mathcal{M}_{n,k,m}^{a}$ which should give analogous story to what I've explained today, but for any even *m*.

(see appendix of slides for definition)

^aa generalization of $\mathcal{M}_{n,k,4}$ defined by Damgaard-Ferro-Lukowski-Parisi

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

- We define a triangulation of $A_{n,k,2}$ to be **regular** if it comes from Trop⁺ $Gr_{k+1,n}$ i.e. it is the T-duality image of a regular positroid triangulation of $\Delta_{k+1,n}$.
- The regular triangulations of $\mathcal{A}_{n,k,2}$ behave well at the boundary, i.e. they are good.

Momentum amplituhedron

• We introduce a momentum amplituhedron $\mathcal{M}_{n,k,m}^{a}$ which should give analogous story to what I've explained today, but for any even m.

(see appendix of slides for definition)

^aa generalization of $\mathcal{M}_{n,k,4}$ defined by Damgaard-Ferro-Lukowski-Parisi

A = A = A = A = A = A

- We define a triangulation of $A_{n,k,2}$ to be **regular** if it comes from Trop⁺ $Gr_{k+1,n}$ i.e. it is the T-duality image of a regular positroid triangulation of $\Delta_{k+1,n}$.
- The regular triangulations of $\mathcal{A}_{n,k,2}$ behave well at the boundary, i.e. they are good.

Momentum amplituhedron

• We introduce a **momentum amplituhedron** $\mathcal{M}_{n,k,m}^{a}$ which should give analogous story to what I've explained today, but for any even *m*.

(see appendix of slides for definition)

a generalization of $\mathcal{M}_{n,k,4}$ defined by Damgaard-Ferro-Lukowski-Parisi

A = A = A = E

- Why is the moment map related to the amplituhedron map?
- How can we use the relation to better understand the amplituhedron?
- In Speyer–W 2005 we found connection of Trop⁺ $Gr_{k,n}$ and cluster algebras. Direct connection of cluster algebras to $A_{n,k,2}$??

• Why is the moment map related to the amplituhedron map?

• How can we use the relation to better understand the amplituhedron?

 In Speyer–W 2005 we found connection of Trop⁺ Gr_{k,n} and cluster algebras. Direct connection of cluster algebras to A_{n,k,2}??

• Why is the moment map related to the amplituhedron map?

• How can we use the relation to better understand the amplituhedron?

In Speyer–W 2005 we found connection of Trop⁺ Gr_{k,n} and cluster algebras. Direct connection of cluster algebras to A_{n,k,2}??

• Why is the moment map related to the amplituhedron map?

• How can we use the relation to better understand the amplituhedron?

• In Speyer–W 2005 we found connection of Trop⁺ $Gr_{k,n}$ and cluster algebras. Direct connection of cluster algebras to $A_{n,k,2}$??

• Why is the moment map related to the amplituhedron map?

• How can we use the relation to better understand the amplituhedron?

• In Speyer–W 2005 we found connection of Trop⁺ $Gr_{k,n}$ and cluster algebras. Direct connection of cluster algebras to $A_{n,k,2}$??

- Why is the moment map related to the amplituhedron map?
- How can we use the relation to better understand the amplituhedron?
- In Speyer–W 2005 we found connection of Trop⁺ $Gr_{k,n}$ and cluster algebras. Direct connection of cluster algebras to $A_{n,k,2}$??

- Why is the moment map related to the amplituhedron map?
- How can we use the relation to better understand the amplituhedron?
- In Speyer–W 2005 we found connection of Trop⁺ $Gr_{k,n}$ and cluster algebras. Direct connection of cluster algebras to $A_{n,k,2}$??

Thank you for listening!

I. Amplituhedron '13

III. Positive tropical Grassmannian '05

- "The positive tropical Grassmannian, the hypersimplex, and the m = 2 amplituhedron," with Lukowski and Parisi, arXiv:2002.06164
- "The positive Dressian equals the positive tropical Grassmannian," with Speyer, arXiv:2003.10231.
- "The tropical totally positive Grassmannian," with Speyer, arXiv:math/0312297, J. Algebraic Combinatorics, Sept 2005.

Given a $k \times n$ matrix $C = (c_1, \ldots, c_n)$ (representing a point of $(Gr_{k,n})_{\geq 0}$) written as a list of its columns, we associate a decorated permutation π as follows.

- Given $i, j \in [n]$, let r[i, j] denote the rank of $\langle c_i, c_{i+1}, \ldots, c_j \rangle$, where we list the columns in cyclic order, going from c_n to c_1 if i > j.
- We set $\pi(i) := j$ to be the label of the first column j such that $c_i \in \text{span}\{c_{i+1}, c_{i+2}, \dots, c_j\}.$
- If c_i is the all-zero vector, we call *i* a loop or black fixed point, and if c_i is not in the span of the other column vectors, we call *i* a coloop or white fixed point.

We define S_{π}^{tnn} to be the set of all elements $C \in (Gr_{k,n})_{\geq 0}$ which give rise to this π .

A ∃ ► A ∃ ► ∃ | ∃

- compute the vanishing set over *positive Puisseux series* V(I) ⊂ (C⁺)ⁿ and apply a *valuation map* (and take closure);
- take the intersection of all positive tropical hypersurfaces Trop⁺(f) for f ∈ l.
- So we can define Trop⁺ Gr_{k,n} = ∩ Trop⁺(f), where f ranges over all elements in the Plücker ideal I.

- compute the vanishing set over *positive Puisseux series* V(1) ⊂ (C⁺)ⁿ and apply a *valuation map* (and take closure);
- take the intersection of all *positive tropical hypersurfaces* Trop⁺(f) for f ∈ l.
- So we can define Trop⁺ Gr_{k,n} = ∩ Trop⁺(f), where f ranges over all elements in the Plücker ideal I.

- compute the vanishing set over *positive Puisseux series* V(1) ⊂ (C⁺)ⁿ and apply a *valuation map* (and take closure);
- take the intersection of all *positive tropical hypersurfaces* Trop⁺(f) for f ∈ I.
- So we can define Trop⁺ Gr_{k,n} = ∩ Trop⁺(f), where f ranges over all elements in the Plücker ideal I.

- compute the vanishing set over *positive Puisseux series* V(I) ⊂ (C⁺)ⁿ and apply a *valuation map* (and take closure);
- take the intersection of all positive tropical hypersurfaces Trop⁺(f) for f ∈ I.
- So we can define Trop⁺ Gr_{k,n} = ∩ Trop⁺(f), where f ranges over all elements in the Plücker ideal I.
Theorem (Speyer –W. 2005)

Given ideal $I \subset C[x_1, \ldots, x_n]$, there are two equivalent ways of defining the positive tropical variety Trop⁺ V(I):

- compute the vanishing set over *positive Puisseux series* V(I) ⊂ (C⁺)ⁿ and apply a *valuation map* (and take closure);
- take the intersection of all positive tropical hypersurfaces Trop⁺(f) for f ∈ I.

So we can define Trop⁺ Gr_{k,n} = ∩ Trop⁺(f), where f ranges over all elements in the Plücker ideal I.

Theorem (Speyer –W. 2005)

Given ideal $I \subset C[x_1, \ldots, x_n]$, there are two equivalent ways of defining the positive tropical variety Trop⁺ V(I):

- compute the vanishing set over *positive Puisseux series* V(I) ⊂ (C⁺)ⁿ and apply a *valuation map* (and take closure);
- take the intersection of all positive tropical hypersurfaces Trop⁺(f) for f ∈ I.
- So we can define $\operatorname{Trop}^+ Gr_{k,n} = \cap \operatorname{Trop}^+(f)$, where f ranges over all elements in the Plücker ideal I.

Theorem (Speyer –W. 2005)

Given ideal $I \subset C[x_1, \ldots, x_n]$, there are two equivalent ways of defining the positive tropical variety Trop⁺ V(I):

- compute the vanishing set over *positive Puisseux series* V(I) ⊂ (C⁺)ⁿ and apply a *valuation map* (and take closure);
- take the intersection of all positive tropical hypersurfaces Trop⁺(f) for f ∈ I.

• So we can define $\operatorname{Trop}^+ Gr_{k,n} = \cap \operatorname{Trop}^+(f)$, where f ranges over all elements in the Plücker ideal I.

Let $\mathcal{C} = \bigcup_{n=1}^{\infty} \mathbb{C}((t^{1/n})).$

If $f \in C^*$, with lowest term at^{ν} , define val(f) := u. Valuation map val : $(C^*)^n \to \mathbb{Q}^n$, $(x_1, \ldots, x_n) \mapsto (val(x_1), \ldots, val(x_n))$. Let $C^+ := \{x(t) \in C \mid \text{ coeff. of the lowest term of } x(t) \text{ is positive real}\}$. If $I \subset C[x_1, \ldots, x_n]$ an ideal, then Trop $V(I) := \overline{val(V(I) \cap (C^*)^n)}$. Positive part of Trop V(I) is Trop⁺ $V(I) := val(V(I) \cap (C^+)^n)$.

Let *I* be the Plücker ideal. Define Trop *Gr_{k,n}* := Trop *V(I)* (Speyer–Sturmfels '04), and Trop⁺ *Gr_{k,n}* := Trop⁺ *V(I*) (Speyer–W. '05).

Theorem (Speyer–W. 2005)

Any positive tropical variety Trop⁺ V(I) equals the intersection of the positive tropical hypersurfaces Trop⁺(f) where f ranges over all elements in the ideal I.

Let
$$C = \bigcup_{n=1}^{\infty} \mathbb{C}((t^{1/n}))$$
.
If $f \in C^*$, with lowest term at^u , define $val(f) := u$.
Valuation map $val : (C^*)^n \to \mathbb{Q}^n$, $(x_1, \ldots, x_n) \mapsto (val(x_1), \ldots, val(x_n))$.
Let $C^+ := \{x(t) \in C \mid \text{ coeff. of the lowest term of } x(t) \text{ is positive real}\}$.
If $I \subset C[x_1, \ldots, x_n]$ an ideal, then Trop $V(I) := \overline{val}(V(I) \cap (C^*)^n)$.
Positive part of Trop $V(I)$ is Trop⁺ $V(I) := \overline{val}(V(I) \cap (C^+)^n)$.

Let *I* be the Plücker ideal. Define Trop $Gr_{k,n} :=$ Trop V(I) (Speyer–Sturmfels '04), and Trop⁺ $Gr_{k,n} :=$ Trop⁺ V(I) (Speyer–W. '05).

Theorem (Speyer–W. 2005)

Any positive tropical variety Trop⁺ V(I) equals the intersection of the positive tropical hypersurfaces Trop⁺(f) where f ranges over all elements in the ideal I.

Let $\mathcal{C} = \bigcup_{n=1}^{\infty} \mathbb{C}((t^{1/n})).$

If $f \in C^*$, with lowest term at^u , define val(f) := u. Valuation map $val : (C^*)^n \to \mathbb{Q}^n$, $(x_1, \ldots, x_n) \mapsto (val(x_1), \ldots, val(x_n))$. Let $C^+ := \{x(t) \in C \mid \text{ coeff. of the lowest term of } x(t) \text{ is positive real}\}$. If $I \subset C[x_1, \ldots, x_n]$ an ideal, then Trop $V(I) := \overline{val(V(I) \cap (C^*)^n)}$. Positive part of Trop V(I) is Trop⁺ $V(I) := \overline{val(V(I) \cap (C^+)^n)}$.

Let *I* be the Plücker ideal. Define Trop $Gr_{k,n} :=$ Trop V(I) (Speyer–Sturmfels '04), and Trop⁺ $Gr_{k,n} :=$ Trop⁺ V(I) (Speyer–W. '05).

Theorem (Speyer–W. 2005)

Any positive tropical variety Trop⁺ V(I) equals the intersection of the positive tropical hypersurfaces Trop⁺(f) where f ranges over all elements in the ideal I.

Let $C = \bigcup_{n=1}^{\infty} \mathbb{C}((t^{1/n}))$. If $f \in C^*$, with lowest term at^u , define val(f) := u. Valuation map $val : (C^*)^n \to \mathbb{Q}^n$, $(x_1, \ldots, x_n) \mapsto (val(x_1), \ldots, val(x_n))$. Let $C^+ := \{x(t) \in C \mid \text{ coeff. of the lowest term of } x(t) \text{ is positive rea}$ If $I \subset C[x_1, \ldots, x_n]$ an ideal, then Trop $V(I) := val(V(I) \cap (C^*)^n)$. Positive part of Trop V(I) is Trop⁺ $V(I) := val(V(I) \cap (C^+)^n)$.

Let *I* be the Plücker ideal. Define Trop $Gr_{k,n} := \text{Trop } V(I)$ (Speyer–Sturmfels '04), and Trop⁺ $Gr_{k,n} := \text{Trop}^+ V(I)$ (Speyer–W. '05).

Theorem (Speyer–W. 2005)

Any positive tropical variety Trop⁺ V(I) equals the intersection of the positive tropical hypersurfaces Trop⁺(f) where f ranges over all elements in the ideal I.

Let $C = \bigcup_{n=1}^{\infty} \mathbb{C}((t^{1/n}))$. If $f \in C^*$, with lowest term at^u , define val(f) := u. Valuation map $val : (C^*)^n \to \mathbb{Q}^n$, $(x_1, \ldots, x_n) \mapsto (val(x_1), \ldots, val(x_n))$. Let $C^+ := \{x(t) \in C \mid \text{ coeff. of the lowest term of } x(t) \text{ is positive real}\}$. If $I \subset C[x_1, \ldots, x_n]$ an ideal, then Trop $V(I) := \overline{val(V(I) \cap (C^*)^n)}$. Positive part of Trop V(I) is Trop⁺ $V(I) := \overline{val(V(I) \cap (C^+)^n)}$.

Let *I* be the Plücker ideal. Define Trop $Gr_{k,n} := \text{Trop } V(I)$ (Speyer–Sturmfels '04), and Trop⁺ $Gr_{k,n} := \text{Trop}^+ V(I)$ (Speyer–W. '05).

Theorem (Speyer–W. 2005)

Any positive tropical variety Trop⁺ V(I) equals the intersection of the positive tropical hypersurfaces Trop⁺(f) where f ranges over all elements in the ideal I.

Let $C = \bigcup_{n=1}^{\infty} \mathbb{C}((t^{1/n}))$. If $f \in C^*$, with lowest term at^u , define val(f) := u. Valuation map $val : (C^*)^n \to \mathbb{Q}^n$, $(x_1, \ldots, x_n) \mapsto (val(x_1), \ldots, val(x_n))$. Let $C^+ := \{x(t) \in C \mid \text{ coeff. of the lowest term of } x(t) \text{ is positive real}\}$. If $I \subset C[x_1, \ldots, x_n]$ an ideal, then Trop $V(I) := \overline{val(V(I) \cap (C^*)^n)}$. Positive part of Trop V(I) is Trop⁺ $V(I) := \overline{val(V(I) \cap (C^+)^n)}$.

Let *I* be the Plücker ideal. Define Trop $Gr_{k,n} :=$ Trop V(I) (Speyer–Sturmfels '04), and Trop⁺ $Gr_{k,n} :=$ Trop⁺ V(I) (Speyer–W. '05).

Theorem (Speyer–W. 2005)

Any positive tropical variety Trop⁺ V(I) equals the intersection of the positive tropical hypersurfaces Trop⁺(f) where f ranges over all elements in the ideal I.

Let
$$C = \bigcup_{n=1}^{\infty} \mathbb{C}((t^{1/n}))$$
.
If $f \in C^*$, with lowest term at^u , define $val(f) := u$.
Valuation map $val : (C^*)^n \to \mathbb{Q}^n$, $(x_1, \dots, x_n) \mapsto (val(x_1), \dots, val(x_n))$.
Let $C^+ := \{x(t) \in C \mid \text{ coeff. of the lowest term of } x(t) \text{ is positive real}\}$.
If $I \subset C[x_1, \dots, x_n]$ an ideal, then Trop $V(I) := \overline{val}(V(I) \cap (C^*)^n)$.
Positive part of Trop $V(I)$ is Trop⁺ $V(I) := val(V(I) \cap (C^+)^n)$.

Let *I* be the Plücker ideal. Define Trop $Gr_{k,n} := \text{Trop } V(I)$ (Speyer–Sturmfels '04), and Trop⁺ $Gr_{k,n} := \text{Trop}^+ V(I)$ (Speyer–W. '05).

Theorem (Speyer–W. 2005)

Any positive tropical variety Trop⁺ V(I) equals the intersection of the positive tropical hypersurfaces Trop⁺(f) where f ranges over all elements in the ideal I.

Let
$$C = \bigcup_{n=1}^{\infty} \mathbb{C}((t^{1/n}))$$
.
If $f \in C^*$, with lowest term at^u , define $val(f) := u$.
Valuation map $val : (C^*)^n \to \mathbb{Q}^n$, $(x_1, \ldots, x_n) \mapsto (val(x_1), \ldots, val(x_n))$.
Let $C^+ := \{x(t) \in C \mid \text{ coeff. of the lowest term of } x(t) \text{ is positive real}\}$.
If $I \subset C[x_1, \ldots, x_n]$ an ideal, then Trop $V(I) := \overline{val(V(I) \cap (C^*)^n)}$.
Positive part of Trop $V(I)$ is Trop⁺ $V(I) := \overline{val(V(I) \cap (C^+)^n)}$.

Let *I* be the Plücker ideal. Define Trop $Gr_{k,n} := \text{Trop } V(I)$ (Speyer–Sturmfels '04), and Trop⁺ $Gr_{k,n} := \text{Trop}^+ V(I)$ (Speyer–W. '05).

Theorem (Speyer–W. 2005)

Any positive tropical variety Trop⁺ V(I) equals the intersection of the positive tropical hypersurfaces Trop⁺(f) where f ranges over all elements in the ideal I.

Let
$$C = \bigcup_{n=1}^{\infty} \mathbb{C}((t^{1/n}))$$
.
If $f \in C^*$, with lowest term at^u , define $val(f) := u$.
Valuation map $val : (C^*)^n \to \mathbb{Q}^n$, $(x_1, \dots, x_n) \mapsto (val(x_1), \dots, val(x_n))$.
Let $C^+ := \{x(t) \in C \mid \text{ coeff. of the lowest term of } x(t) \text{ is positive real}\}$.
If $I \subset C[x_1, \dots, x_n]$ an ideal, then Trop $V(I) := \overline{val(V(I) \cap (C^*)^n)}$.
Positive part of Trop $V(I)$ is Trop⁺ $V(I) := \overline{val(V(I) \cap (C^+)^n)}$.

Let *I* be the Plücker ideal. Define Trop $Gr_{k,n} :=$ Trop V(I) (Speyer–Sturmfels '04), and Trop⁺ $Gr_{k,n} :=$ Trop⁺ V(I) (Speyer–W. '05).

Theorem (Speyer–W. 2005)

Any positive tropical variety Trop⁺ V(I) equals the intersection of the positive tropical hypersurfaces Trop⁺(f) where f ranges over all elements in the ideal I.

Let
$$C = \bigcup_{n=1}^{\infty} \mathbb{C}((t^{1/n}))$$
.
If $f \in C^*$, with lowest term at^u , define $val(f) := u$.
Valuation map $val : (C^*)^n \to \mathbb{Q}^n$, $(x_1, \dots, x_n) \mapsto (val(x_1), \dots, val(x_n))$.
Let $C^+ := \{x(t) \in C \mid \text{ coeff. of the lowest term of } x(t) \text{ is positive real}\}$.
If $I \subset C[x_1, \dots, x_n]$ an ideal, then Trop $V(I) := \overline{val(V(I) \cap (C^*)^n)}$.
Positive part of Trop $V(I)$ is Trop⁺ $V(I) := \overline{val(V(I) \cap (C^+)^n)}$.

Let I be the Plücker ideal.

Define Trop $Gr_{k,n} :=$ Trop V(I) (Speyer–Sturmfels '04), and Trop⁺ $Gr_{k,n} :=$ Trop⁺ V(I) (Speyer–W. '05).

Theorem (Speyer–W. 2005)

Any positive tropical variety Trop⁺ V(I) equals the intersection of the positive tropical hypersurfaces Trop⁺(f) where f ranges over all elements in the ideal I.

Let
$$C = \bigcup_{n=1}^{\infty} \mathbb{C}((t^{1/n}))$$
.
If $f \in C^*$, with lowest term at^u , define $val(f) := u$.
Valuation map $val : (C^*)^n \to \mathbb{Q}^n$, $(x_1, \dots, x_n) \mapsto (val(x_1), \dots, val(x_n))$.
Let $C^+ := \{x(t) \in C \mid \text{ coeff. of the lowest term of } x(t) \text{ is positive real}\}$.
If $I \subset C[x_1, \dots, x_n]$ an ideal, then Trop $V(I) := \overline{val(V(I) \cap (C^*)^n)}$.
Positive part of Trop $V(I)$ is Trop⁺ $V(I) := \overline{val(V(I) \cap (C^+)^n)}$.

Let *I* be the Plücker ideal. Define Trop $Gr_{k,n} :=$ Trop V(I) (Speyer–Sturmfels '04), and Trop⁺ $Gr_{k,n} :=$ Trop⁺ V(I) (Speyer–W. '05).

Theorem (Speyer–W. 2005)

Any positive tropical variety Trop⁺ V(I) equals the intersection of the positive tropical hypersurfaces Trop⁺(f) where f ranges over all elements in the ideal I.

Let
$$C = \bigcup_{n=1}^{\infty} \mathbb{C}((t^{1/n}))$$
.
If $f \in C^*$, with lowest term at^u , define $val(f) := u$.
Valuation map $val : (C^*)^n \to \mathbb{Q}^n$, $(x_1, \ldots, x_n) \mapsto (val(x_1), \ldots, val(x_n))$.
Let $C^+ := \{x(t) \in C \mid \text{ coeff. of the lowest term of } x(t) \text{ is positive real}\}$.
If $I \subset C[x_1, \ldots, x_n]$ an ideal, then Trop $V(I) := \overline{val(V(I) \cap (C^*)^n)}$.
Positive part of Trop $V(I)$ is Trop⁺ $V(I) := \overline{val(V(I) \cap (C^+)^n)}$.

Let *I* be the Plücker ideal. Define Trop $Gr_{k,n} :=$ Trop V(I) (Speyer–Sturmfels '04), and Trop⁺ $Gr_{k,n} :=$ Trop⁺ V(I) (Speyer–W. '05).

Theorem (Speyer–W. 2005)

Any positive tropical variety Trop⁺ V(I) equals the intersection of the positive tropical hypersurfaces Trop⁺(f) where f ranges over all elements in the ideal I.

Let
$$C = \bigcup_{n=1}^{\infty} \mathbb{C}((t^{1/n}))$$
.
If $f \in C^*$, with lowest term at^u , define $val(f) := u$.
Valuation map $val : (C^*)^n \to \mathbb{Q}^n$, $(x_1, \dots, x_n) \mapsto (val(x_1), \dots, val(x_n))$.
Let $C^+ := \{x(t) \in C \mid \text{ coeff. of the lowest term of } x(t) \text{ is positive real}\}$.
If $I \subset C[x_1, \dots, x_n]$ an ideal, then Trop $V(I) := \overline{val(V(I) \cap (C^*)^n)}$.
Positive part of Trop $V(I)$ is Trop⁺ $V(I) := \overline{val(V(I) \cap (C^+)^n)}$.

Let *I* be the Plücker ideal. Define Trop $Gr_{k,n} :=$ Trop V(I) (Speyer–Sturmfels '04), and Trop⁺ $Gr_{k,n} :=$ Trop⁺ V(I) (Speyer–W. '05).

Theorem (Speyer–W. 2005)

Any positive tropical variety $\operatorname{Trop}^+ V(I)$ equals the intersection of the positive tropical hypersurfaces $\operatorname{Trop}^+(f)$ where f ranges over all elements in the ideal I.

The momentum amplituhedron

Let
$$\tilde{\Lambda} \in \operatorname{Mat}_{k+m,n}^{>0}, \Lambda \in \operatorname{Mat}_{n-k,n}^{>0,\tau}$$
. The matrices $(\tilde{\Lambda}, \Lambda)$ induce map
 $\Phi_{\tilde{\Lambda},\Lambda} : \operatorname{Gr}_{k+\frac{m}{2},n}^+ \to \operatorname{Gr}_{k+\frac{m}{2},k+m} \times \operatorname{Gr}_{n-k-\frac{m}{2},n-k}$

defined by

$$\Phi_{\tilde{\Lambda},\Lambda}(\langle v_1,...,v_{k+\frac{m}{2}}\rangle) := \left(\langle \tilde{\Lambda}(v_1),...,\tilde{\Lambda}(v_{k+\frac{m}{2}})\rangle,\langle \Lambda(v_1^{\perp}),...,\Lambda(v_{n-k-\frac{m}{2}}^{\perp})\rangle\right)$$

where $\langle v_1, ..., v_{k+\frac{m}{2}} \rangle \in Gr_{k+\frac{m}{2},n}^+$ is written as the span of basis vectors and $\langle v_1^{\perp}, ..., v_{n-k-\frac{m}{2}}^{\perp} \rangle := \langle v_1, ..., v_{k+\frac{m}{2}} \rangle^{\perp} \in Gr_{n-k-\frac{m}{2},n}^{+,\tau}$ (also written as span).

Definition

The momentum amplituhedron $\mathcal{M}_{n,k,m}(\Lambda, \tilde{\Lambda})$ is defined as the image $\Phi_{\tilde{\Lambda},\Lambda}(Gr_{k+\frac{m}{2},n}^+)$ inside $Gr_{k+\frac{m}{2},k+m} \times Gr_{n-k-\frac{m}{2},n-k}$.