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Background on the (TNN) Grassmannian

The Grassmannian Grk,n = Grk,n(R) := {V | V ⊂ Rn, dimV = k}
Represent an element of Grk,n(R) by a full-rank k × n matrix A.(

1 0 −1 −2
0 1 3 2

)

Can think of Grk,n(R) as Matk,n/ ∼.

Given I ∈
([n]
k

)
, the Plücker coordinate pI (A) is the minor of the k × k

submatrix of A in column set I .

The TNN (totally nonnegative) Grassmannian (Grk,n)≥0 is the subset
of Grk,n(R) where pI (A) ≥ 0.
Def due to Postnikov from early 2000’s. Earlier Lusztig defined (G/P)≥0. Not obvious that Lusztig’s definition – in the case of

Grk,n – agrees with Postnikov’s – but this is true (Rietsch 2007).
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Background on the (TNN) Grassmannian

(Grk,n)≥0 is the subset of Grk,n where pI ≥ 0 for all I .

One can partition (Grk,n)≥0 into pieces based on which Plücker
coordinates are positive and which are 0.

Let M⊆
([n]
k

)
. Let S tnn

M := {A ∈ (Grk,n)≥0 | pI (A) > 0 iff I ∈M}.

(Postnikov) If S tnn
M is non-empty it is a (positroid) cell, i.e. homeomorphic

to an open ball. Positroid cells Sπ of (Grk,n)≥0 are in bijection with:

Decorated permutations π on [n] with k antiexcedances.

other combinatorial objects such as on-shell (plabic) diagrams.
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coordinates are positive and which are 0.

Let M⊆
([n]
k

)
. Let S tnn

M := {A ∈ (Grk,n)≥0 | pI (A) > 0 iff I ∈M}.

(Postnikov) If S tnn
M is non-empty it is a (positroid) cell, i.e. homeomorphic

to an open ball. Positroid cells Sπ of (Grk,n)≥0 are in bijection with:

Decorated permutations π on [n] with k antiexcedances.

other combinatorial objects such as on-shell (plabic) diagrams.

Lauren K. Williams (Harvard) ∆k+1,n and An,k,2 2020 5 / 29



Background on the (TNN) Grassmannian

(Grk,n)≥0 is the subset of Grk,n where pI ≥ 0 for all I .

One can partition (Grk,n)≥0 into pieces based on which Plücker
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Background and Motivation for the amplituhedron

The amplituhedron An,k,m was introduced by Arkani-Hamed and
Trnka in 2013.

An,k,m is the image of the TNN Grassmannian under a simple map.

The amplituhedron An,k,m

Fix n, k,m with k + m ≤ n.
Let Z be a n × (k + m) matrix with maximal minors positive.
Let Z̃ be map (Grk,n)≥0 → Grk,k+m sending a k × n matrix A to AZ .

Set An,k,m(Z ) := Z̃ ((Grk,n)≥0) ⊂ Grk,k+m.

An,k,m has full dimension km inside Grk,k+m.

When m = 4, its “volume” computes scattering amplitudes in N = 4
super Yang Mills theory.
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Background and Motivation for the amplituhedron

The amplituhedron An,k,m

Fix n, k,m with k + m ≤ n, let Z ∈ Mat+
n,k+m (max minors > 0).

Let Z̃ be map (Grk,n)≥0 → Grk,k+m sending a k × n matrix A to AZ .

Set An,k,m(Z ) := Z̃ ((Grk,n)≥0) ⊂ Grk,k+m.

Special cases

The m = 4 amplituhedron An,k,4:

encodes the geometry of (tree-level) scattering amplitudes in planar
N = 4 SYM.

The m = 2 amplituhedron An,k,2 (subject of today’s talk):

considered a toy-model for m = 4 case.
governs geometry of scattering amplitudes in N = 4 SYM at
subleading order in perturbation theory for the ‘MHV’ sector of the
theory (cf def of loop amplituhedron).
is relevant to the ‘next to MHV’ sector, enhancing connection with
geometries of loop amplitudes (Kojima–Langer).
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Fix n, k,m with k + m ≤ n. Let Z ∈ Mat+
n,k+m.

Have Z̃ : (Grk,n)≥0 → Grk,k+m sending a k × n matrix A to AZ .

Set An,k,m = An,k,m(Z ) := Z̃ ((Grk,n)≥0) ⊂ Grk,k+m.

To understand its volume, find “triangulations” of the amplituhedron

Have dimAn,k,m = km ≤ dim(Grk,n)≥0, so Z̃ generally not injective.

Recall we have cell decomposition of (Grk,n)≥0 into positroid cells.

Problem: Find collection of km-dimensional cells of (Grk,n)≥0 where

Z̃ is injective, such that their images are disjoint and cover (dense
subset of) An,k,m.

Following the physicists, call this a triangulation.

The BCFW recurrence can (conjecturally) be formulated as giving
triangulations of An,k,4.
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Triangulating the amplituhedron

Have Z̃ : (Grk,n)≥0 → An,k,m ⊂ Grk,k+m; recall dimAn,k,m = km.
A triangulation of An,k,m is a collection of km-dim’l cells of (Grk,n)≥0

where Z̃ is injective, such that their images are disjoint and cover An,k,m.

Wild conjecture (Steven Karp – Yan Zhang – W)

For m even, # of cells in a triangulation of An,k,m is M(k , n − k −m, m2 ),
where

M(a, b, c) :=
a∏

i=1

b∏
j=1

c∏
k=1

i + j + k − 1

i + j + k − 2
.

Remark: Consistent with results/conjectures for m = 2,m = 4, k = 1.
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Triangulating the amplituhedron

Conjecture (Karp-Zhang-W.): For m even, # of cells in a triangulation of
An,k,m is M(k , n − k −m, m2 ), where

M(a, b, c) :=
∏a

i=1

∏b
j=1

∏c
k=1

i+j+k−1
i+j+k−2 .

M(a, b, c) is a famous number in combinatorics, which counts:

the number of plane partitions contained in a× b × c box.

collections of c noncrossing lattice paths inside a× b rectangle

rhombic tilings, perfect matchings, Kekule structures, . . .For m = 2, conj says there are
(n−2

k

)
cells in triangulation of An,k,2.
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The hypersimplex ∆k ,n

e

e

e

e

e

e

12

23

34

14

13

24

Let {e1, . . . , en} be standard basis of Rn, and let eI :=
∑

i∈I ei .

The hypersimplex ∆k,n is the convex hull Conv{eI : |I | = k}.
Equiv: it’s the intersection of unit cube with hyperplane

∑
i xi = k .

Polytope of dim n − 1.

Our example is ∆2,4 ⊂ R4.

Lauren K. Williams (Harvard) ∆k+1,n and An,k,2 2020 11 / 29



The hypersimplex ∆k ,n

e

e

e

e

e

e

12

23

34

14

13

24

Let {e1, . . . , en} be standard basis of Rn, and let eI :=
∑

i∈I ei .

The hypersimplex ∆k,n is the convex hull Conv{eI : |I | = k}.
Equiv: it’s the intersection of unit cube with hyperplane

∑
i xi = k .

Polytope of dim n − 1.

Our example is ∆2,4 ⊂ R4.

Lauren K. Williams (Harvard) ∆k+1,n and An,k,2 2020 11 / 29



The hypersimplex ∆k ,n

e

e

e

e

e

e

12

23

34

14

13

24

Let {e1, . . . , en} be standard basis of Rn, and let eI :=
∑

i∈I ei .

The hypersimplex ∆k,n is the convex hull Conv{eI : |I | = k}.
Equiv: it’s the intersection of unit cube with hyperplane

∑
i xi = k .

Polytope of dim n − 1.

Our example is ∆2,4 ⊂ R4.

Lauren K. Williams (Harvard) ∆k+1,n and An,k,2 2020 11 / 29



The hypersimplex ∆k ,n

e

e

e

e

e

e

12

23

34

14

13

24

Let {e1, . . . , en} be standard basis of Rn, and let eI :=
∑

i∈I ei .

The hypersimplex ∆k,n is the convex hull Conv{eI : |I | = k}.
Equiv: it’s the intersection of unit cube with hyperplane

∑
i xi = k .

Polytope of dim n − 1.

Our example is ∆2,4 ⊂ R4.

Lauren K. Williams (Harvard) ∆k+1,n and An,k,2 2020 11 / 29



The hypersimplex ∆k ,n

e

e

e

e

e

e

12

23

34

14

13

24

Let {e1, . . . , en} be standard basis of Rn, and let eI :=
∑

i∈I ei .

The hypersimplex ∆k,n is the convex hull Conv{eI : |I | = k}.
Equiv: it’s the intersection of unit cube with hyperplane

∑
i xi = k .

Polytope of dim n − 1.

Our example is ∆2,4 ⊂ R4.

Lauren K. Williams (Harvard) ∆k+1,n and An,k,2 2020 11 / 29



The hypersimplex ∆k ,n

e

e

e

e

e

e

12

23

34

14

13

24

Let {e1, . . . , en} be standard basis of Rn, and let eI :=
∑

i∈I ei .

The hypersimplex ∆k,n is the convex hull Conv{eI : |I | = k}.
Equiv: it’s the intersection of unit cube with hyperplane

∑
i xi = k .

Polytope of dim n − 1.

Our example is ∆2,4 ⊂ R4.

Lauren K. Williams (Harvard) ∆k+1,n and An,k,2 2020 11 / 29



The moment map and triangulations of the hypersimplex

Recall {e1, . . . , en} is basis of Rn, and eI :=
∑

i∈I ei .
The hypersimplex ∆k,n := Conv{eI : |I | = k}. Has dim n − 1.

The moment map µ : Grk,n → Rn is defined by

µ(A) =

∑
I∈([n]

k ) |pI (A)|2eI∑
I∈([n]

k ) |pI (A)|2
⊂ Rn.

The images µ(Grk,n) = µ((Grk,n)≥0) are exactly ∆k,n.
Images of positroid cells Sπ called positroid polytopes Γπ ⊂ ∆k,n.

Define a (positroid) triangulation of ∆k,n to be a collection
{Sπ(1) , . . . ,Sπ(`)} of (n − 1)-dim’l cells of (Grk,n)≥0 where µ is injective,
such that their images {Γπ(1) , . . . , Γπ(`)} are disjoint and cover ∆k,n.
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Weird claim:

Triangulations of ∆k+1,n and An,k,2 are closely related!

Claim is weird because:

dim ∆k+1,n = n − 1 while dimAn,k,2 = 2k .

∆k+1,n is a polytope but An,k,2 is not.

∆k+1,n is related to Grk+1,n while An,k,2 is related to Grk,n.

The moment map (taking linear combination of vectors based on
norms of Plücker coordinates) does not look at all like the
amplituhedron map (matrix multiplication).
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norms of Plücker coordinates) does not look at all like the
amplituhedron map (matrix multiplication).

Lauren K. Williams (Harvard) ∆k+1,n and An,k,2 2020 13 / 29



Weird claim:

Triangulations of ∆k+1,n and An,k,2 are closely related!

Claim is weird because:

dim ∆k+1,n = n − 1 while dimAn,k,2 = 2k .

∆k+1,n is a polytope but An,k,2 is not.

∆k+1,n is related to Grk+1,n while An,k,2 is related to Grk,n.

The moment map (taking linear combination of vectors based on
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Recap: two notions of positroid triangulation

Have amplituhedron map Z̃ : (Grk,n)≥0 → An,k,2, associated to
matrix Z ∈ Mat+

n,k+2, sending matrix A 7→ AZ .

Have moment map µ : (Grk+1,n)≥0 → ∆k+1,n, defined by

µ(A) =

∑
I∈( [n]

k+1)
|pI (A)|2eI∑

I∈( [n]
k+1)
|pI (A)|2

, with eI :=
∑
i∈I

ei .

(Positroid) triangulations for An,k,2 and ∆k+1,n

A collection of 2k-dim’l positroid cells of (Grk,n)≥0 where Z̃ is
injective, such that images are disjoint and cover An,k,2.

A collection of (n − 1)-dim’l positroid cells of (Grk+1,n)≥0 where µ is
injective, such that images are disjoint and cover ∆k+1,n.
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n,k+2, sending matrix A 7→ AZ .
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Numerology for two types of positroid triangulations

How could triangulations of An,k,2 and ∆k+1,n be related?

Triangulations of An,k,2 consist of 2k-dimensional cells of (Grk,n)≥0,
while triangs of ∆k+1,n consist of (n− 1)-dimensional cells of (Grk+1,n)≥0!

Nevertheless, compare # of cells comprising the triangulations . . .

Karp–W.–Zhang conj: there are
(n−2

k

)
cells in any triangulation of An,k,2.

Theorem (Speyer–W. 2020)

Every (regular) positroidal triangulation of ∆k+1,n uses precisely
(n−2

k

)
cells.

How can we connect the two kinds of triangulations?
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T-duality map on positroid cells

A decorated permutation is a permutation in which each fixed point is
designated either loop or coloop (Postnikov).
Cells Sπ of (Grk,n)≥0 ↔ dec perms π on [n] with k antiexcedances,
where antiexcedance is position i where π(i) < i or π(i) = i is coloop.

Triangulations of An,k,2 consist of 2k-dimensional cells of (Grk,n)≥0,
while triangs of ∆k+1,n consist of (n − 1)-dim’l cells of (Grk+1,n)≥0.
So we need to map (n − 1)-dimensional cells of (Grk+1,n)≥0 to
2k-dimensional cells of (Grk,n)≥0.

Given loopless decorated permutation π = (a1, . . . , an) on [n], define

π̂ := (an, a1, a2, . . . , an−1),

where any fixed points declared to be loops. Call it T-duality map.
(The generalization of this map to m = 4 is what physicists have already observed as a duality between the formulations of

scattering amplitudes for N = 4 SYM in momentum space and in momentum twistor space.)
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Main conjecture on T-duality

Given loopless decorated permutation π = (a1, . . . , an) on [n], define
π̂ := (an, a1, a2, . . . , an−1), where any fixed points declared to be loops.

Lemma (Lukowski–Parisi–W.)

The T-duality map gives a bijection

loopless cells of (Grk+1,n)≥0 ↔ coloopless cells of (Grk,n)≥0.

Moreover, dim(Sπ̂) = dim(Sπ) + 2k − (n − 1).
So it maps cells of dim n − 1 to cells of dimension 2k .

Conjecture (Lukowski–Parisi–W.)

A collection {Sπ} of cells of Gr+
k+1,n gives a triangulation of ∆k+1,n if and

only if the collection {Sπ̂} of cells of Gr+
k,n gives a triangulation of An,k,2.
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Moreover, dim(Sπ̂) = dim(Sπ) + 2k − (n − 1).
So it maps cells of dim n − 1 to cells of dimension 2k .

Conjecture (Lukowski–Parisi–W.)

A collection {Sπ} of cells of Gr+
k+1,n gives a triangulation of ∆k+1,n if and
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Generalized triangles

Say that Sπ is a generalized triangle for ∆k+1,n if dim Sπ = n − 1 and
the moment map is injective on it.

Say that Sπ̂ is a generalized triangle for An,k,2 if dimSπ̂ = 2k and the
amplituhedron map is injective on it.

Gen. triangles for ∆k+1,n correspond to plabic graphs which are trees.

Gen. triangles for An,k,2 correspond to collections of non-intersecting
polygons in an n-gon (Lukowski-Parisi-Spradlin-Volovich).

Theorem (Lukowski-Parisi-W.)

T-duality – which sends π = (a1, . . . , an) to π̂ := (an, a1, a2, . . . , an−1) –
maps generalized triangles to generalized triangles.
Combinatorially, it relates non-intersecting polygons to dual trees.
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Main conjecture (Lukowski–Parisi–W.)

A collection {Sπ} of cells of Gr+
k+1,n gives a triangulation of ∆k+1,n if and

only if the collection {Sπ̂} of cells of Gr+
k,n gives a triangulation of An,k,2.

Theorem (Lukowski–Parisi–W.)

There is recursion giving many triangulations of ∆k+1,n (LPW)

and a recursion giving many triangulations of An,k,2 (Bao-He).

The recurrences are in bijection via T-duality.
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How we discovered the link between An,k ,2 and ∆k+1,n

Overview

We studied good triangulations of the amplituhedron, those where
boundaries of generalized triangles intersect nicely.

The numerology of good triangulations of An,k,2 recovered some
numerology of the positive tropical Grassmannian Trop+ Grk+1,n

(Speyer–W 2005).

We related Trop+ Grk+1,n to triangulations by showing it controls
(regular, positroidal) triangulations of ∆k+1,n.

So we guessed that triangulations of An,k,2 must be related to
triangulations of ∆k+1,n.
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Good triangulations of the amplituhedron

Recall: a triangulation of An,k,m is a collection {Sπ(1) , . . . ,Sπ(`)} of

km-dim’l cells of (Grk,n)≥0 where Z̃ is injective, such that their images
{Zπ(1) , . . . ,Zπ(`)} are disjoint and cover An,k,m.

Remark: many of the known triangulations of the amplituhedron are
“bad” in the sense that boundaries of images of cells overlap badly.

Definition (Lukowski–Parisi–W.)

Say that a triangulation is good if whenever Zπ(i) ∩ Zπ(j) has codimension
1, it equals Zπ, the image of a cell Sπ in the closure of both Sπ(i) and Sπ(j) .

Data

# of good triangulations of An,1,2 is Cn−2 = 1
n−1

(2n−2
n−2

)
.

# of good triangulations of An,2,2 is 1, 5, 48, 693 for n = 4, 5, 6, 7.
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Theorem (Speyer – W. 2005)

The positive tropical Grassmannian Trop+ Grk,n is a polyhedral fan,
such that
# of maximal cones in Trop+ Gr2,n is Cn−2.
# of maximal cones in Trop+ Gr3,n is 1, 5, 48, 693 for n = 4, 5, 6, 7.

Same numbers! To explain this coincidence of numerology, we need to
define Trop+ Grk,n and explain how it is connected to (some kind of)
triangulations.
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Trop+ Grk ,n and physics

Before defining Trop+ Grk,n, we note its recent appearances in physics, in
the context of singularities of loop amplitudes in N = 4 SYM and
computing scattering amplitudes in (generalized) biadjoint scalar theories:

Cachazo–Early–Guevara–Mizera, arXiv: 1903.08904

Cachazo–Rojas, arXiv: 1906.05979

Drummond–Foster–Gurdogan–Kalousios, arXiv:1907.01053

Drummond–Foster–Gurdogan–Kalousios, arXiv:1912.08217

Arkani-Hamed–Lam–Spradlin: arXiv:1912.08222

Henke–Papathanasiou, arXiv:1912.08254

Arkani-Hamed–He–Lam–Thomas: arXiv:1912.11764

Early: arXiv:1912.13513

More ...
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Definition of Trop+ Grk ,n (see appendix of slides for details)

Speyer–W, 2005: introduced and gave several descriptions of Trop+ Grk,n:

image under valuation map of Gr+
k,n over Puisseux series;

the common refinement of fans associated to Plücker coordinates

dual fan to Minkowski sum of Newton polytopes of Plücker coords.

Simpler way to describe it (subset of R([n]
k ) with fan structure):

A vector P = {PI}I ∈ R([n]
k ) is a positive tropical Plücker vector if for

any 1 < a < b < c < d ≤ n and S ∈
( [n]
k−2

)
disjoint from {a, b, c , d},

PSac + PSbd = PSab + PScd ≤ PSad + PSbc or

PSac + PSbd = PSad + PSbc ≤ PSab + PScd .

Theorem (Speyer–W. 2020, Arkani-Hamed–Lam–Spradlin 2020)

The positive tropical Grassmannian Trop+ Grk,n ⊂ R([n]
k ) equals the set of

positive tropical Plücker vectors (also called positive Dressian).
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Connecting Trop+ Grk ,n to triangulations

Recall that Trop+ Grk,n is the subset of R([n]
k ) consisting of positive

tropical Plücker vectors.

Want to connect it to some kind of triangulations.

Inspiration: Speyer ’05 (see also Kapranov ’93) related tropical
Plücker vectors to nice (matroid) subdivisions of hypersimplex ∆k,n.

And ∆k,n is the moment map image of the Grassmannian.

We’ll find positive analogue of this.
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Connecting Trop+ Grk ,n to triangulations

To construct regular subdivision of ∆k,n, choose some P := {PI}I ∈ R([n]
k ),

thought of as height function on the vertices eI of ∆k,n. Projecting
“lower faces” of Conv{(eI ,PI )} to ∆k,n gives regular subdivision DP .

Theorem (Lukowski–Parisi–W, also Arkani-Hamed–Lam–Spradlin)

Let P = {PI}I ∈ R([n]
k ). The following are equivalent.

P ∈ Trop+ Grk,n, i.e. P is a positive tropical Plücker vector.

Every face of DP is a positroid polytope.

Rk: Theorem is pos. analogue of result of Speyer ’05 (see also Kapranov ’93).
Theorem was anticipated/known by others including Speyer, Early, Rincon, Olarte.

Corollary

Regular (positroid) triangulations of ∆k,n ↔ the maximal cones of Trop+ Grk,n.
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Every face of DP is a positroid polytope.

Rk: Theorem is pos. analogue of result of Speyer ’05 (see also Kapranov ’93).
Theorem was anticipated/known by others including Speyer, Early, Rincon, Olarte.

Corollary

Regular (positroid) triangulations of ∆k,n ↔ the maximal cones of Trop+ Grk,n.

Lauren K. Williams (Harvard) ∆k+1,n and An,k,2 2020 26 / 29



Connecting Trop+ Grk ,n to triangulations

To construct regular subdivision of ∆k,n, choose some P := {PI}I ∈ R([n]
k ),

thought of as height function on the vertices eI of ∆k,n. Projecting
“lower faces” of Conv{(eI ,PI )} to ∆k,n gives regular subdivision DP .

Theorem (Lukowski–Parisi–W, also Arkani-Hamed–Lam–Spradlin)

Let P = {PI}I ∈ R([n]
k ). The following are equivalent.

P ∈ Trop+ Grk,n, i.e. P is a positive tropical Plücker vector.
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Other results

Regular triangulations of An,k,2 (Lukowski–Parisi–W.)

We define a triangulation of An,k,2 to be regular if it comes from
Trop+ Grk+1,n – i.e. it is the T-duality image of a regular positroid
triangulation of ∆k+1,n.

The regular triangulations of An,k,2 behave well at the boundary, i.e.
they are good.

Momentum amplituhedron

We introduce a momentum amplituhedronMn,k,m
a which should

give analogous story to what I’ve explained today, but for any even m.
(see appendix of slides for definition)

aa generalization of Mn,k,4 defined by Damgaard-Ferro-Lukowski-Parisi
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Summary and questions

Why is the moment map related to the amplituhedron map?

How can we use the relation to better understand the amplituhedron?

In Speyer–W 2005 we found connection of Trop+ Grk,n and cluster
algebras. Direct connection of cluster algebras to An,k,2??
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Thank you for listening!

I. Amplituhedron ’13 II. Hypersimplex and moment map ’87

III. Positive tropical Grassmannian ’05

“The positive tropical Grassmannian, the hypersimplex, and the
m = 2 amplituhedron,” with Lukowski and Parisi, arXiv:2002.06164

“The positive Dressian equals the positive tropical Grassmannian,”
with Speyer, arXiv:2003.10231.

“The tropical totally positive Grassmannian,” with Speyer,
arXiv:math/0312297, J. Algebraic Combinatorics, Sept 2005.
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How positroid cells are encoded by decorated permutations

Given a k × n matrix C = (c1, . . . , cn) (representing a point of (Grk,n)≥0)
written as a list of its columns, we associate a decorated permutation π as
follows.

Given i , j ∈ [n], let r [i , j ] denote the rank of 〈ci , ci+1, . . . , cj〉, where
we list the columns in cyclic order, going from cn to c1 if i > j .

We set π(i) := j to be the label of the first column j such that
ci ∈ span{ci+1, ci+2, . . . , cj}.
If ci is the all-zero vector, we call i a loop or black fixed point, and if
ci is not in the span of the other column vectors, we call i a coloop or
white fixed point.

We define S tnn
π to be the set of all elements C ∈ (Grk,n)≥0 which give rise

to this π.

Lauren K. Williams (Harvard) ∆k+1,n and An,k,2 2020 0 / 1



What is the positive tropical Grassmannian?

Theorem (Speyer –W. 2005)

Given ideal I ⊂ C[x1, . . . , xn], there are two equivalent ways of defining the
positive tropical variety Trop+ V (I ):

compute the vanishing set over positive Puisseux series V (I ) ⊂ (C+)n

and apply a valuation map (and take closure);

take the intersection of all positive tropical hypersurfaces Trop+(f )
for f ∈ I .

So we can define Trop+ Grk,n = ∩Trop+(f ), where f ranges over all
elements in the Plücker ideal I .
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More precise defn of the positive tropical Grassmannian

Let C = ∪∞n=1C((t1/n)).
If f ∈ C∗, with lowest term atu, define val(f ) := u.
Valuation map val : (C∗)n → Qn, (x1, . . . , xn) 7→ (val(x1), . . . , val(xn)).
Let C+ := {x(t) ∈ C | coeff. of the lowest term of x(t) is positive real}.
If I ⊂ C[x1, . . . , xn] an ideal, then TropV (I ) := val(V (I ) ∩ (C∗)n).
Positive part of TropV (I ) is Trop+ V (I ) := val(V (I ) ∩ (C+)n).

Let I be the Plücker ideal.
Define TropGrk,n := TropV (I ) (Speyer–Sturmfels ’04), and
Trop+ Grk,n := Trop+ V (I ) (Speyer–W. ’05).

Theorem (Speyer–W. 2005)

Any positive tropical variety Trop+ V (I ) equals the intersection of the
positive tropical hypersurfaces Trop+(f ) where f ranges over all elements
in the ideal I .
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The momentum amplituhedron

Let Λ̃ ∈ Mat>0
k+m,n,Λ ∈ Mat>0,τ

n−k,n. The matrices (Λ̃,Λ) induce map

ΦΛ̃,Λ : Gr+
k+m

2
,n → Grk+m

2
,k+m × Grn−k−m

2
,n−k

defined by

ΦΛ̃,Λ(〈v1, ..., vk+m
2
〉) :=

(
〈Λ̃(v1), ..., Λ̃(vk+m

2
)〉, 〈Λ(v⊥1 ), ...,Λ(v⊥n−k−m

2
)〉
)

where 〈v1, ..., vk+m
2
〉 ∈ Gr+

k+m
2
,n is written as the span of basis vectors and

〈v⊥1 , ..., v⊥n−k−m
2
〉 := 〈v1, ..., vk+m

2
〉⊥ ∈ Gr+,τ

n−k−m
2
,n (also written as span).

Definition

The momentum amplituhedronMn,k,m(Λ, Λ̃) is defined as the image
ΦΛ̃,Λ(Gr+

k+m
2
,n) inside Grk+m

2
,k+m × Grn−k−m

2
,n−k .
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