
ANK


```
8
                                   9
                                        ENTER HYDRO:
  CAVEAT:
Computed rate in t-ti -200 lim
(several contribe vanish!) BUT
INPUT IN HYDRO and evolved
                                           Fluid cell in LTE
during 10 - 20 fm/c !!
                                       The eq. result is valid in each cell
                                       in LTE with local T(T).
"Proposal: DO NOT TAKE t-ti-seo!
                                       INVARIANT RATE from each cell
 KEEP EVERYTHING! (in P.T. in ds ... )
                                       "boosted" to C.M.
k \frac{dN}{d^3 k d^4 \chi} = \alpha_{em} \int g(w) \frac{\sin(w-k)(t-t;)}{(w-k)} dw
                                       Total yield: Integrate inv. rate
                                       thru Space-time history from
                                        Ti~ Ifule to Thad ~ 10-20 fm
g(\omega) \propto Im \} \bigcirc + \bigcirc + \bigcirc + \cdots \}
                      Aurenche - Gelis-
                                         and Mmin 2 7 < Mmax
              New
                      Zaraket- Kobes
                                                  T(Trad)~ 150 MeV
ti= Ifm/c (depends on t-ti)
```

Revisiting Thermal Produc:
At an initial time t: the

$$Q. G. P in Eq. and no-photons;$$

 $\widehat{G}(t;) = \overline{Z} \in \stackrel{\text{feil}}{li} \stackrel{\text{initian}}{lio} \stackrel{\text$

Dan Boyanovsky, Univ of Pittsburgh (ITP QCD-RHIC Conference 4-11-02) Photons from a QGP of Finite Lifetime

Page 5

23 OCTOBER 2000

VOLUME 85, NUMBER 17

PHYSICAL REVIEW LETTERS

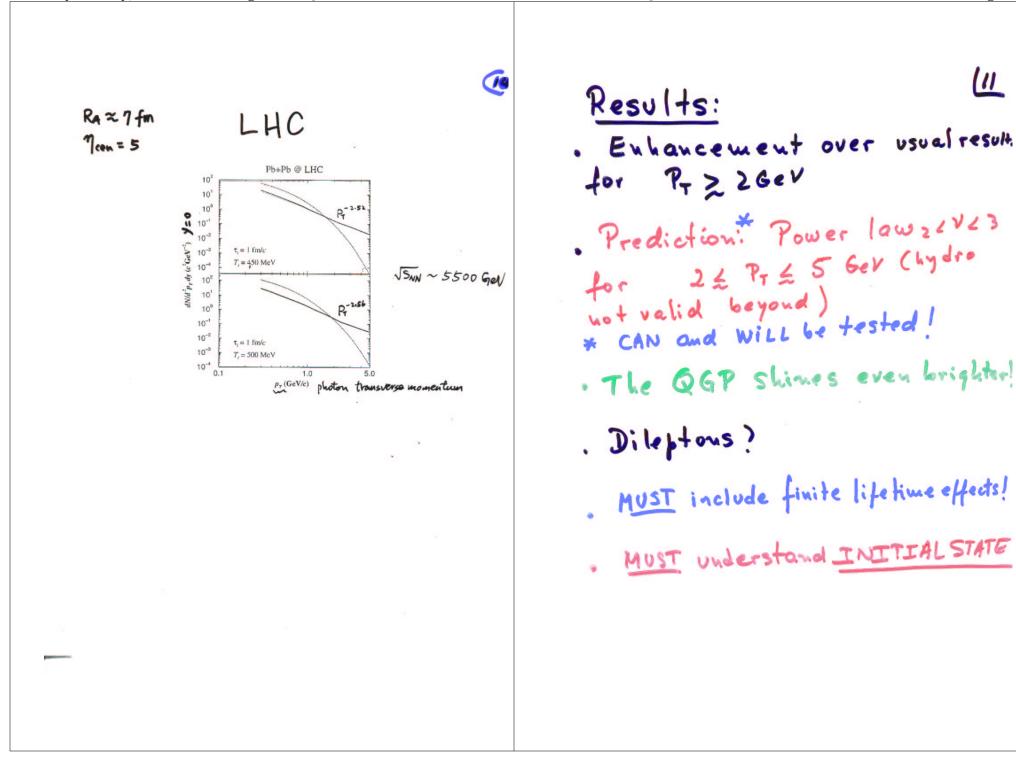
Observation of Direct Photons in Central 158A GeV 208 Pb + 208 Pb Collisions @ CERN SPS

M. M. Aggarwal,¹ A. Agnihotri,² Z. Ahammed,³ A.L.S. Angelis,⁴ V. Antonenko,⁵ V. Arefiev,⁶ V. Astakhov,⁶ V. Avdeitchikov,⁶ T. C. Awes,⁷ P. V. K. S. Baba,⁸ S. K. Badyal,⁸ C. Barlag,⁹ S. Bathe,⁹ B. Batiounia,⁶ T. Bernier,¹⁰ K. B. Bhalla,² V. S. Bhatia,¹ C. Blume,⁹ R. Bock,¹¹ E.-M. Bohne,⁹ Z. Böröcz,⁹ D. Bucher,⁹ A. Buijs,¹² H. Büsching,⁹ L. Carlen, 13 V. Chalyshev, 6 S. Chattopadhyay, 3 R. Cherbatchev, 5 T. Chujo, 14 A. Claussen, 9 A. C. Das, 3 M. P. Decowski,¹⁸ H. Delagrange,¹⁰ V. Djordjadze,⁶ P. Donni,⁴ I. Doubovik,⁵ S. Dutt,⁸ M. R. Dutta Majumdar,³ K. El Chenawi,¹³ S. Eliseev,¹⁵ K. Enosawa,¹⁴ P. Foka,⁴ S. Fokin,⁵ M. S. Ganti,³ S. Garpman,¹³ O. Gavrishchuk,⁶ F. J. M. Geurts, 12 T. K. Ghosh, 16 R. Glasow, 9 S. K. Gupta, 2 B. Guskov, 6 H. Å. Gustafsson, 13 H. H. Gutbred, 10 R. Higuchi,¹⁴ I. Hrivnacova,¹⁵ M. Ippolitov,⁵ H. Kalecholsky,⁴ R. Kamermans,¹² K.-H. Kampert,⁹ K. Karadjev,⁵ K. Karpio,¹⁷ S. Kato,¹⁴ S. Kees,⁹ C. Klein-Bösing,⁹ S. Knoche,⁹ B. W. Kolb,¹¹ I. Kosarev,⁶ I. Koutcheryaev,⁵ T. Krümpel,⁹ A. Kugler,¹⁵ P. Kulinich,¹⁸ M. Kurata,¹⁴ K. Kurita,¹⁴ N. Kuzmin,⁶ I. Langbein,¹¹ A. Lebedev,⁵ Y. Y. Lee, ¹¹ H. Löhner, ¹⁶ L. Luquin, ¹⁰ D. P. Mahapatra, ¹⁹ V. Manko, ⁵ M. Martin, ⁴ G. Martínez, ¹⁰ A. Maximov, ⁶ G. Mgebrichvili,⁵ Y. Miake,¹⁴ Md. F. Mir,⁸ G. C. Mishra,¹⁹ Y. Miyamoto,¹⁴ B. Mohanty,¹⁹ M.-J. Mora,¹⁰ D. Morrison,²⁰ D.S. Mukhopadhyay,³ H. Naef,⁴ B.K. Nandi,¹⁹ S.K. Nayak,¹⁰ T.K. Nayak,³ S. Neumaier,¹¹ A. Nianine,⁵ V. Nikitine,⁶ S. Nikolaev,⁵ P. Nilsson,¹³ S. Nishimura,¹⁴ P. Nomokonov,⁶ J. Nystrand,¹³ F. E. Obenshain,²⁰ A. Oskarsson,¹³ I. Otterlund, 13 M. Pachr, 15 S. Pavliouk, 6 T. Peitzmann, 9 V. Petracek, 15 W. Pinganaud, 10 F. Plasil, 7 U. v. Poblotzki, 9 M. L. Purschke,¹¹ J. Rak,¹⁵ R. Raniwala,² S. Raniwala,² V. S. Ramamurthy,¹⁹ N. K. Rao,⁸ F. Retiere,¹⁰ K. Reygers,⁹ G. Roland, ¹⁸ L. Rosselet,⁴ I. Roufanov,⁶ C. Roy,¹⁰ J. M. Rubio,⁴ H. Sako,¹⁴ S. S. Sambyal,⁸ R. Santo,⁹ S. Sato,¹⁴ H. Schlagheck,9 H.-R. Schmidt,11 Y. Schutz,10 G. Shabratova,6 T. H. Shah,8 I. Sibiriak,5 T. Siemiarczuk,17 D. Silvermyr,¹³ B. C. Sinha,³ N. Slavine,⁶ K. Söderström,¹³ N. Solomey,⁴ G. Sood,¹ S. P. Sørensen,^{7,20} P. Stankus,⁷ G. Stefanek,¹⁷ P. Steinberg,¹⁸ E. Stenlund,¹³ D. Stüken,⁹ M. Sumbera,¹⁵ T. Svensson,¹³ M. D. Trivedi,³ A. Tsvetkov,⁵ L. Tykarski,¹⁷ J. Urbahn,¹¹ E. C. v. d. Piill,¹² N. v. Eiindhoven,¹² G. J. v. Nieuwenhuizen,¹⁸ A. Vinograd: 15 Y. P. Vivogi,³ A. Vodopianov,⁶ S. Vörös,⁴ B. Wysłouch,¹⁸ K. Yagi,¹⁴ Y. Yokota,¹⁴ and G. R. Young⁷

(WA98 Collaboration)

¹University of Panjab, Chandigarh 160014, India ²University of Rajasthan, Jaipur 302004, Rajasthan, India ³Variable Energy Cyclotron Centre, Calcutta 700 064, India ⁴University of Geneva, CH-1211 Geneva 4, Switzerland SRRC "Kurchatov Institute," RU-123182 Moscow, Russia ⁶Joint Institute for Nuclear Research, RU-141980 Dubna, Russia ⁹Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6372 ⁸University of Jammu, Jammu 180001, India ⁹University of Münster, D-48149 Münster, Germany ¹⁰SUBATECH, Ecole des Mines, Nantes, France ¹¹Gesellschaft für Schwerionenforschung (GSI), D-64220 Darmstadt, Germany ¹²Universiteit Utrecht/NIKHEF, NL-3508 TA Utrecht, The Netherlands 13 University of Lund, SE-221 00 Lund, Sweden 14 University of Tsukuba, Ibaraki 305, Japan ¹⁵Nuclear Physics Institute, CZ-250 68 Rez, Czech Republic ¹⁶KVI, University of Groningen, NL-9747 AA Groningen, The Netherlands ¹⁷Institute for Nuclear Studies, 00-681 Warsaw, Poland 18 MIT, Cambridge, Massachusetts 02139 19 Institute of Physics, 751-005 Bhubaneswar, India ²⁰University of Tennessee, Knoxville, Tennessee 37966 (Received 13 June 2000)

A measurement of direct photon production in $^{2m}Pb + ^{50x}Pb$ collisions at 158A GeV has been carried out in the CERN WA98 experiment. The invariant yield of direct photons in central collisions is extracted as a function of transverse momentum in the interval 0.5 < $p_r < 4$ GeV/c. A significant direct photon signal, compared to statistical and systematical errors, is seen at $p_r > 1.5$ GeV/c. The result constitutes the first observation of direct photons in ultrarelativistic heavy-ion collisions. It could be significant for diagnosis of quark-gluon-plasma formation,


PACS numbers: 25.75.-q, 12.38.Mh, 24.85.+p

3595

hotons From QGP of Finite Lifetime

S. Y. WANG D. B.

(1)

