

Physics of Ultra-Relativistic Heavy-Ion Collisions with the Parton Cascade Model

Steffen A. Bass, Berndt Mueller, Dinesh K. Srivastava

Duke University
RIKEN BNL Research Center
VECC Calcutta

- Motivation
- The PCM: Fundamentals & Implementation
- Tests: comparison to pQCD minijet calculations
- Application: Reaction Dynamics @ RHIC
- Outlook & Plans for the Future

Bass, Mueller, Srivastava

Aims of the Parton Cascade Model

provide a microscopic space-time description of relativistic heavy-ion collisions based on perturbative QCD

- discover novel phenomena associated with the collective behaviour of highly compressed and/or heated QCD matter
- map the route to kinetic and chemical equilibration from a partonic initial state to a Quark-Gluon-Plasma
- identify probes of the partonic phase
- prepare the ground for a study of hadronization and comparison to hadronic observables
- provide initial conditions for other model calculations, e.g. hydrodynamics or hadronic cascades

Bass, Mueller, Srivastava

RHIC Physics with the Parton Cascade Model #3

Basic Principles of the PCM

- degrees of freedom: quarks and gluons
- classical trajectories in phase space (with relativistic kinematics)
- initial state constructed from experimentally measured nucleon structure functions and elastic form factors
- an interaction takes place if at the time of closest approach d_{min} of two partons

 $d_{\min} \leq \sqrt{\frac{\sigma_{tot}}{\pi}} \quad \text{with} \quad \sigma_{tot} = \sum_{p_2, p_4} \int \frac{d\sigma(\sqrt{\hat{s}}; p_1, p_2, p_3, p_4)}{d\hat{t}} d\hat{t}$

- system evolves through a sequence of binary $(2\rightarrow 2)$ elastic and inelastic scatterings of partons and initial and final state radiations within a leading-logarithmic approximation $(2\rightarrow N)$
- binary cross sections are calculated in leading order pQCD with either a momentum cut-off or Debye screening to regularize IR behaviour
- guiding scales: initialization scale Q_0 , p_T cut-off p_0 / Debye-mass μ_{D_r} intrinsic k_T / saturation momentum Q_{S_r} virtuality > μ_0

Bass, Mueller, Srivastava

Initial State in the PCM

the initial phase-space distribution can be constructed either from known data on hadrons and nuclei or taken from a model of the initial state of heavy-ion collisions (e.g. a Color-Glass-Condensate)

• for partons of flavour a in a nucleus the distribution is given by:

$$F_a(\vec{r}, \vec{k}) = \sum_{i=1}^{N_h} P_a^{N_i}(\vec{k}, \vec{P}, Q_0^2) \times R_a^{N_i}(\vec{r}, \vec{R})$$

> with the initial momentum distribution:

$$P_a^{N_i}(\vec{k}, \vec{P}, Q_0^2) \propto F_a^{N_i}(x, Q_0^2) \times \rho_a^A \times g(\vec{k}_\perp) \times \delta(P_z - P) \times \delta^2(\vec{P}_\perp)$$

 $(Q_0$: initial resolution scale, ρ^A optional shadowing, g: opt. primordial k_T)

> and the initial spatial distribution:

$$R_a^{N_i}(\vec{r}, \vec{R}) = \delta(\vec{R}_{AB}^{\perp} - \vec{b}) \times \left[h_a^{N_i}(\vec{r}) \times H_{N_i}(\vec{R}) \right]_{\text{boosted}}$$

- H_N: distribution of nucleons in nucleus (e.g. Fermi-Distribution)
- h_a: distribution of partons in hadron (based on elastic form factor)

Bass, Mueller, Srivastava

Binary Processes in the PCM

• the total cross section for a binary collision is given by:

$$\hat{\boldsymbol{\sigma}}_{ab}\left(\hat{\boldsymbol{s}}\right) = \sum_{c,d} \hat{\boldsymbol{\sigma}}_{ab \to cd}\left(\hat{\boldsymbol{s}}\right)$$

with partial cross sections:
$$\hat{\sigma}_{ab\to cd} \left(\hat{s} \right) = \int_{\hat{t}_{min}}^{\hat{t}_{max}} \left(\frac{d\hat{\sigma}(\hat{s}, \hat{t}', \hat{u}')}{d\hat{t}'} \right)_{ab\to cd} d\hat{t}'$$

• now the probability of a particular channel is:

$$P_{ab\to cd}\left(\hat{s}\right) = \frac{\hat{\sigma}_{ab\to cd}\left(\hat{s}\right)}{\hat{\sigma}_{ab}\left(\hat{s}\right)}$$

• finally, the momentum transfer & scattering angle are sampled via

$$\Xi(\hat{t}) = \frac{1}{\hat{\sigma}_{ab \to cd}(\hat{s})} \int_{\hat{t}_{min}}^{\hat{t}} \left(\frac{d\hat{\sigma}(\hat{s}, \hat{t}', \hat{u}')}{d\hat{t}'} \right)_{ab \to cd} d\hat{t}'$$

Bass, Mueller, Srivastava

RHIC Physics with the Parton Cascade Model #7

Parton-Parton Scattering Cross-Sections

$g g \rightarrow g g$	$\frac{9}{2}\left(3-\frac{tu}{s^2}-\frac{su}{t^2}-\frac{st}{u^2}\right)$	$q q' \rightarrow q q'$	$\frac{4}{9} \frac{s^2 + u^2}{t^2}$
q g→ q g	$-\frac{4}{9}\left(\frac{s}{u} + \frac{u}{s}\right) + \frac{s^2 + u^2}{t^2}$	q qbar→ q' qbar'	$\frac{4}{9} \frac{t^2 + u^2}{s^2}$
g g → q qbar	$\frac{1}{6} \left(\frac{t}{u} + \frac{u}{t} \right) - \frac{3}{8} \frac{t^2 + u^2}{s^2}$	q g →q y	$-\frac{e_q^2}{3}\left(\frac{u}{s} + \frac{s}{u}\right)$
$\mathbf{q} \; \mathbf{q} \rightarrow \mathbf{q} \; \mathbf{q}$	$\frac{4}{9} \left(\frac{s^2 + u^2}{t^2} + \frac{s^2 + t^2}{u^2} \right) - \frac{8}{27} \frac{s^2}{tu}$	q qbar → g γ	$\frac{8}{9}e_q^2\left(\frac{u}{t} + \frac{t}{u}\right)$
q qbar → q qbar	$\frac{4}{9} \left(\frac{s^2 + u^2}{t^2} + \frac{u^2 + t^2}{s^2} \right) - \frac{8}{27} \frac{u^2}{st}$	q qbar → γ γ	$\frac{2}{3}e_q^4\left(\frac{u}{t} + \frac{t}{u}\right)$
q qbar → g g	$\frac{32}{27} \left(\frac{t}{u} + \frac{u}{t} \right) - \frac{8}{3} \frac{t^2 + u^2}{s^2}$		

- a common factor of πa_s²(Q²)/s² etc.
- further decomposition according to color flow

Bass, Mueller, Srivastava

Scale Evolution and Branching

- higher order corrections describing the evolution of the factorization scale and branching processes are treated in the collinear (LLA) approximation
- the differential cross section is modified by a factor of

$$rac{F_i\left(x_i,Q^2
ight)}{F_i\left(x_i,Q_0^2
ight)}$$
 for each initial state parton

Bass, Mueller, Srivastava

RHIC Physics with the Parton Cascade Model #9

Initial and final state radiation

Probability for a branching is given in terms of the Sudakov form factors:

space-like branchings:

time-like branchings:

$$T_{d}\left(x_{d}, t_{\max}, t\right) = \exp\left\{-\int_{t}^{t_{\max}} dt' \frac{\alpha_{s}\left(t'\right)}{2\pi} \sum_{a'} \int dz \, P_{d \to d'e}\left(z\right)\right\}$$

• Altarelli-Parisi splitting functions included: $P_{q \to qg}$, $P_{g \to gg}$, $P_{g \to qqbar}$ & $P_{q \to q\gamma}$

Bass, Mueller, Srivastava

Parton Fusion $(2\rightarrow 1)$ Processes

• $qg \rightarrow q^*$ • $gg \rightarrow g^*$

•see e.g. Gunion & Bertsch: Phys.Rev.D25:746,1982

Bass, Mueller, Srivastava

RHIC Physics with the Parton Cascade Model #11

Parton Saturation in VNI/BMS

Parton Saturation and Colour Glass Condensate models postulate that:

- \bullet the low p_t physics of relativistic heavy-ion collisions at central rapidities is governed by low-x partons
- the initial state p_t distribution is determined by the saturation scale Q_s

In VNI/BMS we incorporate features of saturation physics by choosing:

- saturation scale as factorization scale: Q_s=Q₀
- intrinsic parton transverse momentum $\sim exp(-k_t^2/Q_s^2)$ instead of k_t generation via initial state radiation
- a low-p, cut off governed by the space-like virtualities for initial partons
- parton-parton interactions to be screened by a Debye mass μ_D = c Q_S with c \sim 1 so that there is no need for a low-p_t cut off for secondary scatterings and no artificial division of scatterings with low and high p_t
- the renormalization scale Q² to be max(Q², Q_s²)
- > Q_s is the only scale governing the initial state & evolution of the system

Bass, Mueller, Srivastava

Novel Features in VNI/BMS

- initialization in quantitative agreement with PDFs & virtualities
- proper treatment of renormalization scale in transport cross sections
- vastly improved algorithm for sampling t from dσ/dt
- consistent treatment for propagation of space- & time-like partons
- proper treatment of p_t generation in parton showers
- introduction of a fast cascade algorithm
- introduction of factorization scale correction in cross sections
- improved algorithm for the LPM effect
- possibility to simulate eikonal approximation
- incorporation of saturation physics
- output & documentation conforming to OSCAR standards

Bass, Mueller, Srivastava

Limitations of the PCM Approach

Fundamental Limitations:

- · lack of coherence of initial state
- range of validity of the Boltzmann Equation
- parton saturation is input, not result of dynamics
- interference effects are included only schematically
- hadronization has to be modeled in an ad-hoc fashion

Limitations of present implementation (as of May 2002)

- lack of detailed balance: (no N \rightarrow 2 processes)
- no 2 → 1 processes involving space-like partons
- lack of selfconsistent medium corrections
- heavy quarks?

Bass, Mueller, Srivastava

RHIC Physics with the Parton Cascade Model #21

Future Directions ...

The VNI/BMS approach provides an ideal framework for:

- study of event by event fluctuations
- investigating the detailed dynamics of jet-quenching
- study of medium modification of QCD processes
- studying the transition of a shattered Colour Glass to a QGP
- study of propagation & recombination of heavy quarks
- · investigating models of hadronization
- dovetailing to hydrodynamics & hadronic cascades
 - suggestions and collaborative endeavours on these and related issues are most welcome!

Bass, Mueller, Srivastava