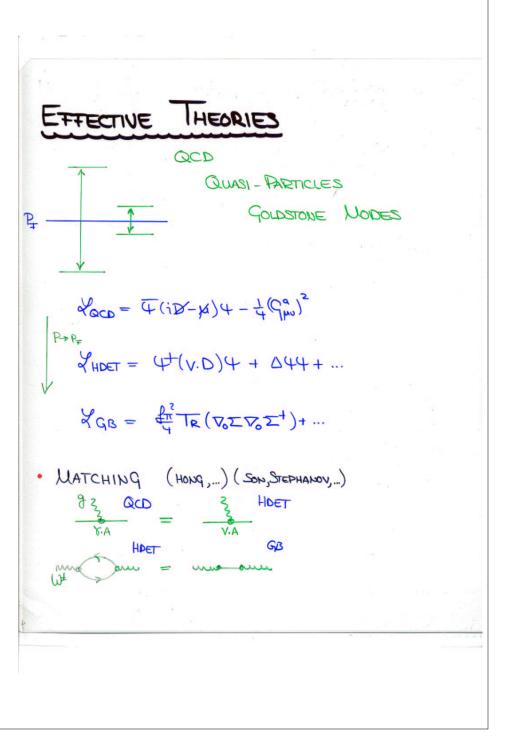
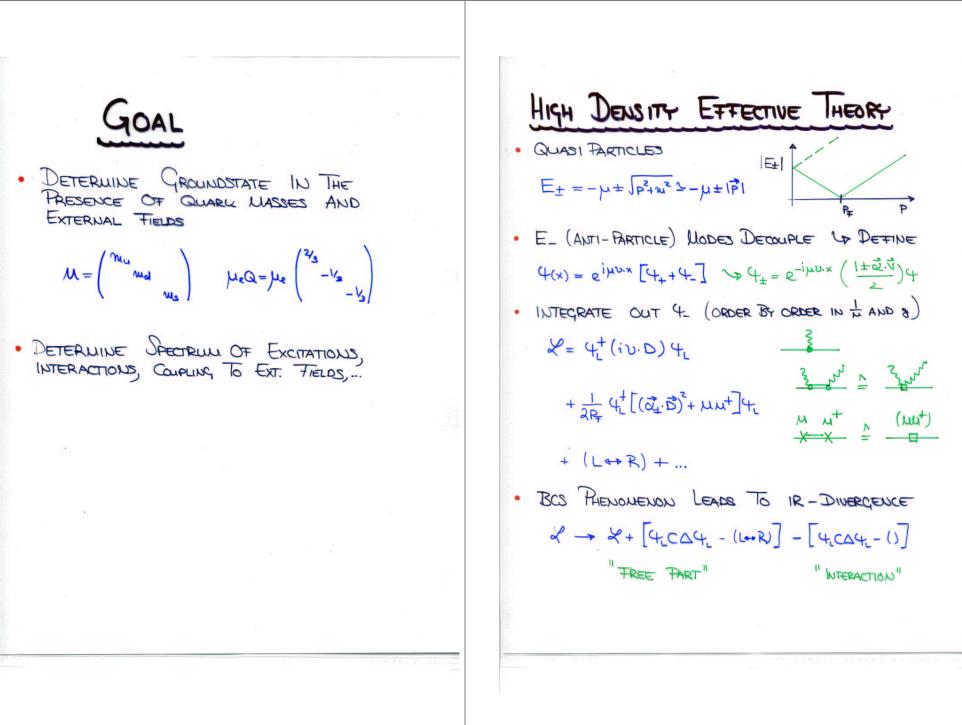

Superdense Matter

Thomas Schaefer SUNY Stony Brook and Riken BNL Research Center

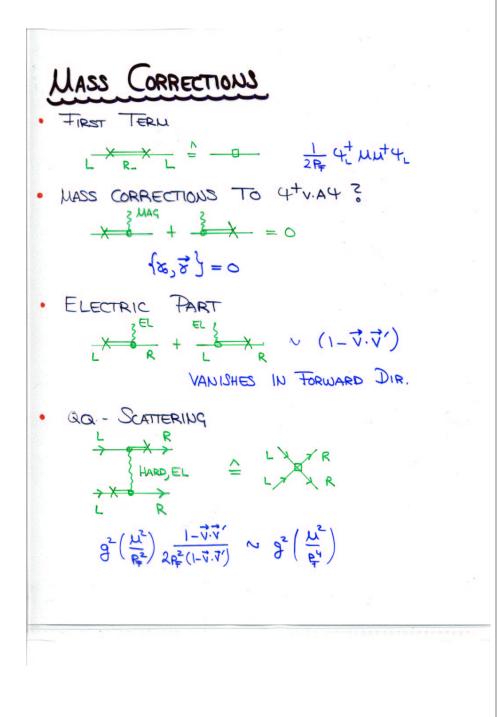
WHY HIGH BARGON DENSITY ?

- . IT'S PART OF THE PHASE DIAGRAM, STUPID ?
- · RELEVANT TO THE PHYSICS OF COMPACT OBJECTS.
- · NON- PERTURBATIVE PHYSICS IN A PERTURBATIVE SETTING (MASS GARS, & STU. BREAKING, HADR. BOUND STATES)

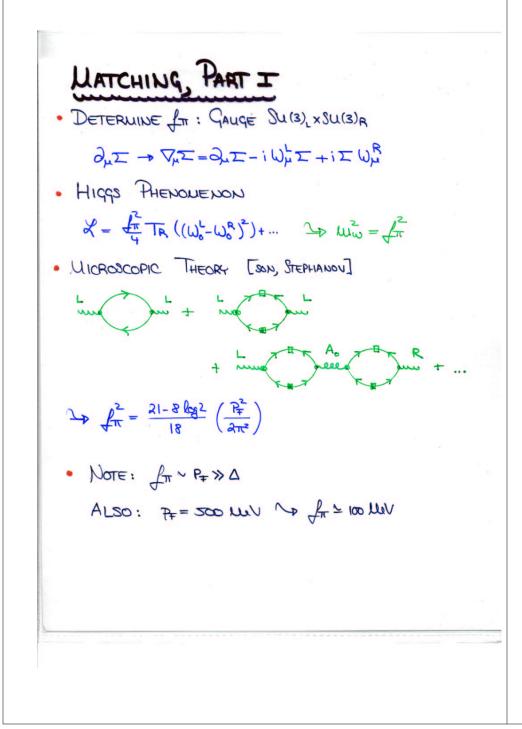



GRAND POTENTIAL IN WEAK COUPLING · THERMODYNAMIC POTENTIAL: [FREEDWAN, HCLEREAN] $S^{-1} = S_0^{-1} + \Sigma \qquad \Sigma = \begin{pmatrix} \circ & A \\ A & \circ \end{pmatrix} \qquad GAP$. GLUON PROPAGATOR D = mon = mm + mm ann + ... $D_{E} = \frac{1}{9^{2}+2m^{2}} \qquad m^{2} = \frac{N_{\mp}}{4\pi^{2}}g_{\mu}^{2} \quad DEBTE \quad SCREENING$ $D_{\mu} = \frac{1}{\vec{q}_{+}^{2} \cdot \vec{r}_{-}} \omega^{2} \omega^$ · VARIATION OF & SAP EQUATION $\frac{\partial \Omega}{\partial \Phi} = 0$ $\frac{1}{2}$ = $\frac{\partial \Omega}{\partial \Phi}$

· GET GRAND POTENTIAL DE-P $\mathcal{D} = -\sum_{i} \int_{i}^{\infty} \left(\frac{\mu^{2}}{4\pi^{2}} \right) \Delta_{i}^{2} \log \left(\frac{\Delta_{i}}{4\pi} \right)$ COURSI - PARTICLES I di = 2N/NC $\Delta_i = C_i b_i \left(S 12 \pi^4 \right) \left(\frac{2}{\mu_i} \right)^{\frac{1}{2}} \mu_i g^{-s} \exp\left(-\frac{3\pi^2}{\sqrt{\epsilon_i}} \right)$ GROUP THEORY N=2 RESULT FACTOR · NULBERS: (N==33) AS 100 Lev To 50 MeV EL - 30 NEV/ ful

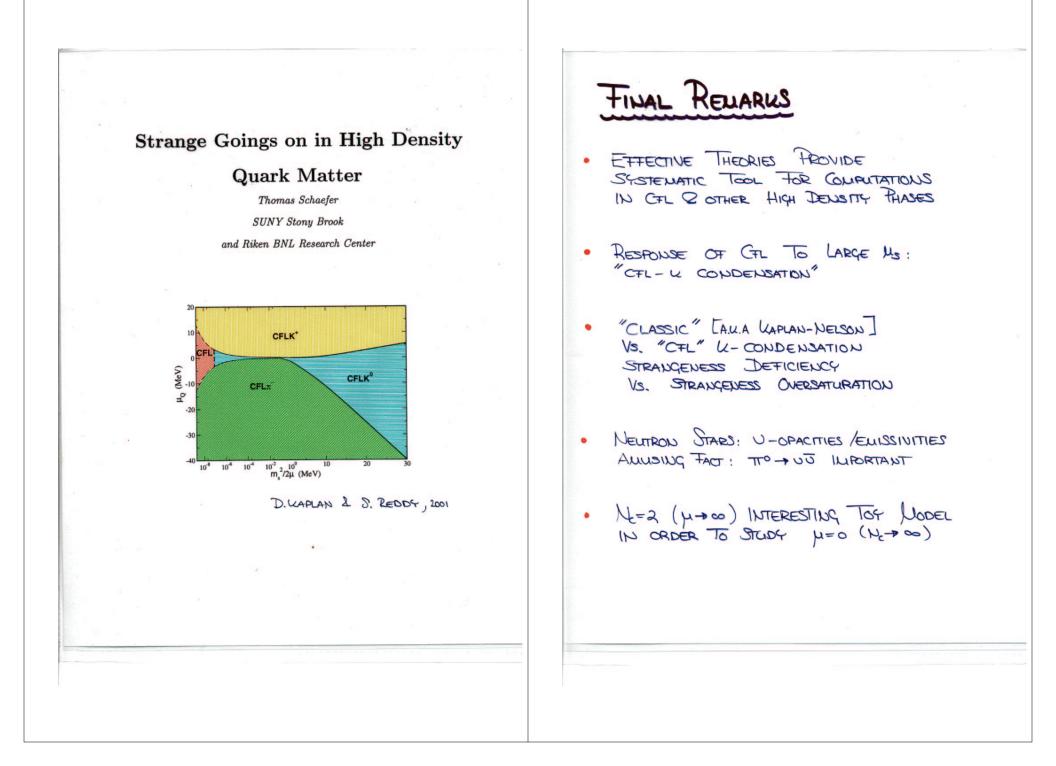

SU(3) SU(3) SU(3) SU(3) R Locue Locue

· ALL QUARUS & GLUONS HAVE A GAP



Thomas Schaefer, Duke (ITP QCD-RHIC Conference 4-10-02) Phases of QCD at High Baryon Density

Page 7


VACUUL ENERGY, FRON Left	
$\Delta E = -B_{1} [TR(u)]^{2} - B_{2} TR(u^{2})$	$(\Sigma = 4L)$
VICROSCOPIC THEORY	
	L R L R
$\Delta E \sim \left(\frac{\vartheta^{2}}{P_{\mu}^{\mu}}\right) \left[P_{\mu}^{2} \Delta \log(\Delta)\right]^{2} \left\{ (\text{Tell})^{2} - \frac{\vartheta^{2}}{2} \left\{ (\text{Tell})^{2} - \frac{\vartheta^{2}}{2} \right\} \right\}$	
	-
$\sum B_1 = -B_2 = \frac{3\Delta^2}{4\pi^2} [Son],$	STEPHANON, 60; T.S. 61]
UESON MASSES	
$\eta \ell_{\pi^{\pm}}^{2} = \frac{3\Delta^{2}}{4 \ell_{\pi}} (m_{u} + m_{d}) m_{s}$	
$\mathcal{M}_{\mathcal{U}^{\pm}}^{2} = \frac{3\Delta^{2}}{4J_{\pi}^{2}} (\mathfrak{m}_{u} + \mathfrak{m}_{s})\mathfrak{m}_{d}$	
NOTE: MGB~ 10 MUV, MUX < MUT	

P. BEDAQUE, T. SCHAEFER, 'OI MATCHING, PARTIE CONSIDER V_{RF} EXPANSION $X' = (\psi_{L}(B-E_{P} - \frac{UUt}{2R_{P}})\psi_{L} + \frac{\Delta}{2}\psi_{L}C\psi_{L}$ $+ (Le>R, Meant) + O(V_{RF})$ Mut, Mth ENTER AS GAUGE FIELDS

.

COLLECT EVERYTHING COLLECT O(m), O(m2) AND LEADING O(14) $\mathcal{W}_{\pi} \pm = -\frac{1}{4} \frac{\mathcal{W}_{d}^{2} - \mathcal{W}_{u}^{2}}{2 \mathcal{R}} + \left[\frac{2 \mathcal{A}}{\mathcal{J}_{\pi}^{2}} (\mathcal{W}_{u} + \mathcal{W}_{d}) + \frac{\mathcal{H}_{B}}{\mathcal{J}_{\pi}^{2}} (\mathcal{W}_{u} + \mathcal{W}_{d}) \mathcal{W}_{d} \right]^{2}$ $\mathcal{M}_{\mathcal{U}_{p}^{o}\overline{\mathcal{U}_{p}}} = \frac{\mathcal{M}_{s}^{2} - \mathcal{M}_{d}^{2}}{2R_{s}} + \left[\frac{2A}{f_{\pi}^{2}}\left(\mathcal{M}_{d} + \mathcal{M}_{s}\right) + \frac{\mathcal{H}_{B}}{f_{\pi}^{2}}\left(\mathcal{M}_{d} + \mathcal{M}_{s}\right)\mathcal{M}_{u}\right]^{2}$ NEGATIVE FOR LO (S=+4) POSITIVE TOR to (3=-1)

KAON CONDENSATION · WITHOUT INSTANTONS, MUN = O FOR My > My Com ~ 3. my 23 > ONSET OF LO- CONDENSATION VALULU I = exp(ice/24) $V(\alpha) = -\int_{-\pi}^{2} \left\{ \frac{\mu_{s}^{2}}{\mu_{s}} S_{1N}^{2}(\alpha) + (\mu_{\alpha}^{0})^{2} (\alpha)(\alpha) - 1 \right\}$ · HYPERCHARGE DENSITY $\mathcal{M}_{\varphi} = \int_{\pi}^{2} \mu_{eff} \left\{ \underline{1} - \frac{(\underline{u}_{u}^{\circ})^{2}}{\underline{u}_{u}^{4}} \right\} \qquad \mu_{eff} = \frac{\underline{u}_{u}^{2}}{2\underline{e}}$ My Amun & 3 UNLOCUING TRANSITION $m_{u}^{\circ} \Delta \left(\frac{m_{s}^{2}}{12}\right)$ $\simeq \int_{\pi}^{2} \mu \Big|_{crit} \simeq \left(\frac{P_{T}^{2}}{cr^{2}}\right) \cdot \Delta$

