Baryon Production and Multi-Gluon Dynamics

Huan Zhong Huang Department of Physics and Astronomy University of California, Los Angeles

QCD in the RHIC Era, 4/8-12, ITP, Santa Barbara

Gluonic Dynamics Dominant at Mid-Rapidity at RHIC

- 1) Conceptually appealing: the gluon structure function much larger than quarks at the x relevant for mid-rapidity at RHIC; gluon-parton interaction cross sections are larger than quark-quark....
- 2) The measured ratio of anti-particle/particle close to unity: small net baryon density at mid-rapidity at RHIC; Valence quarks less important.
- 3) Multiplicity ←→ Gluon saturation model; e.g., Kharzeev and Levin, Physi. Lett. 523, 79 (2001). HIJING; minijet particle production presumably induced mostly by gluons.
- 4) Elliptic flow, v_2 , larger at RHIC: effective in transferring initial geometrical anisotropy to momentum anisotropy! Strongly interacting gluonic system may be able to provide the driving force for both v_1 and v_2 .

Baryon Yield Comparison

LEP (OPAL) STAR Preliminary

 $p/h^{-} = (8.8 +- 1.1) \%$ $\Lambda/p = (38 +- 5) \%$ $\Xi^{-}/p = (2.6 +- 0.4) \%$ $\Omega/p = (0.55 +- 0.15) \%$ $\overline{p}/h^{-} = 7.1 \%$ $\overline{\Lambda}/\overline{p} = (59 +- 3) \%$ $\overline{\Xi}^{+}/\overline{p} \sim 14.6 \%$

A+A vs e+e Collisions

- Production rate for the total number of baryons (inclusive protons and anti-protons) relative to that of mesons is similar between A+A and e+e collisions.
- The production of high mass hyperons is strongly enhanced in nucleus-nucleus collisions at RHIC.
- What determines the mass dependence for baryon production and how does the dynamical picture change from e+e to A+A collisions?

----- Multi-Gluon Dynamics ----- (Gluon Junctions)

What determines the mass penalty factor?

For p, Λ , Ξ and their anti-particle production

Statistical Model ~
$$m^{3/2}e^{-m/T}$$

String Fragmentation ~
$$e^{-\pi m^2/\kappa}$$

Some proposed models with different mass dependence:

Baryons through topological defect formation e.g., J. Ellis et al., Phys. Lett B233, 223 (1989)

OR

ALCOR – quark coalescence picture

J. Zimanyi et al., hep-ph/0103156

Where Does the Mass of Baryons Come From and How Is the Baryon Flavor Determined?

Entities in Production Processes are:

Diquark-Masses

Constituent Quark Masses → Baryon Mass and Flavor Strong Mass Suppression if they have to be produced from dynamical QM tunneling!

High Energy Density Gluonic Fireball:

Baryon Mass: → Mostly from gluon junction!

(preexist in high density gluon field)

No large mass penalty is needed!

Baryon Flavor: → string break for q-qbar production! (the quark mass involved is not the constituent mass)

A Novel Mechanism?!

Basic Assumptions:

- 1) Nuclear Matter at Mid-rapidity Gluon Dominant! (Low Net Baryon Density) and Gluons Strongly Interacting (Effective DOF unlike that of Naive QGP)
- 2) Gluon Junction Can be a Seed for Baryon Formation and Dynamically Create a Baryon Number

Anti-Baryon

4) Baryon Production is Determined by the Probability of Gluon Junction Having Three Quarks or Anti-quarks in Hadronization and Probability of gluon junction topological configuration in a hot gluon fireball?

Vance/Gyulassy previously proposed Baryon-AntiBaryon production from dynamical gluon junction pair production from string fragmentation!

A Consistent Picture for anti-Baryon Production

Key Prediction of the Model:

$$\overline{\Lambda}{}^0=\overline{\Sigma}{}^0=\overline{\Sigma}{}^+=\overline{\Sigma}{}^-$$

$$\frac{\overline{\Lambda^0}}{\overline{p}} = \frac{\overline{\Xi}}{\overline{\Lambda^0}} = \alpha \ge \frac{\overline{\Omega}}{\overline{\Xi}}$$

The important constraint will be from Ξ and Ω measurement: Topological Model Predicts:

 Ξ -bar = 3

 Ω -bar < 1-2

 Σ^0 and Λ^0 Measurement:

Ratio: ~ 1.0 – Novel Mechanism

- $\sim 0.35 String Fragmentation$
- ~ 0.67-0.75 Thermal Mass Suppresion

Scenarios for Baryon Number Transport to Hyperons

Direct Transport Through Gluon Junctions ...

Indirect Transport Through Pair Production Modified by Baryon Chemical Potential ...

 $\Omega \overline{\Omega}$ and $\Omega \overline{\Xi} K$

 $\Xi \ \overline{\Xi} \ and \ \Xi \ (\overline{\Lambda} \ / \ \overline{\Sigma}) \ K$

 $\Lambda \overline{\Lambda}$ and $\Lambda (\overline{p}/\overline{n}) K$

Net Baryon Density Increases the Associated Production and Transfers net baryon number to multiply-strange baryons!

Event-by-Event STAR Hyperon Correlations Doable with STAR TOF and SVT Upgrade!

Summary

- Gluon Dynamics play an important role in particle production at mid-rapidity at RHIC.
- Multi-gluon dynamics, probably gluon junctions, may contribute to increased Λ , Ξ and Ω yields.
- The dynamics of string fragmentation model cannot reproduce the baryon and hyperon yields. The mass dependence in di-quark tunneling is problematic.
- Baryon production from gluon junction hadronization may be topological: the rate depends on topological configuration probability, not strongly on the mass of the hyperons.
- Future measurement on event-by-event hyperon correlations can shed light on mechanisms of baryon number transport to hyperons