

Overheard at APS ~1992:

- During a plenary RHI talk at APS, I wound up seated among "real" plasma physicists who made numerous comments about us:
 - "These guys are stupid..."
 - Always a possibility.
 - "...why don't they just shoot a laser through it and then they'd know if its plasma for sure!"
 - Visible light laser...bad idea.
 - Calibrated probe through QGP...good idea...
 - ...but not new. (Wang, Gyulassy, Satz ...)

PHENIX

Thomas K Hemmick

The "Calibrated" Plasma Probe

- Hard scattering processes and products:
 - Occur at short time scales.
 - Are "calculable" (even by experimentalists) in simple models (e.g. Pythia) with appropriate fudging:
 - Intrinsic k_T
 - K scaling factor.
 - Find themselves enveloped by the medium
 - Are "visible" at high p_T despite the medium
 - Promise to be our laser shining (or not) through the dense medium created at RHIC.

PHENIX

Thomas K Hemmick

QCD and the Heat Bath

I will make the following artificial divisions:

- QCD
 - ullet Charged Hadron + Neutral pion spectra at high p_T .
 - Heavy quark production measured via electrons at high p_T.
 - J/Ψ , γ_{direct} , $\mu^{+}\mu^{-}$ coming in the future...
- Heat Bath
 - Multiplicity, E_{T,...}
 - Identified hadrons
 - Singles, pairs
 - Flow, Hadro-chemistry
 - Caveat:
 - Short mean free path means that the view of the heat bath is heavily influenced by the latest stage prior to breakup.
 - Yet, initial state information (azimuthal anisotropy) is apparent.
- Controlling parameter
 - Nature's variation of the "centrality" controls the heat bath.
 - Size/Energy variation is better, but not yet available.

PHENIX

Thomas K Hemmick

Summary-1

- The RHIC medium is certainly intriguing and exciting:
 - \bullet Particle production scales faster than N_{part} possibly signaling a hard N_{binary} component.
 - Kaon and Nucleon contributions grow in percentage with centrality.
 - Low net baryon density but high total baryon density.
 - Strong radial flow implied by relative slope constants of hadrons.
 - Nucleons begin to be dominant contributors to p_T spectra above 2 GeV/c.
 - HBT R_{out}~R_{side}???
- Probes of the medium yield exciting results
 - R_{AA} below 1. Especially dramatic for identified π^0 which have no proton background.
 - Charm = Pythia within huge errors. Why?

PHENIX

Thomas K Hemmick

Summary-2

- PHENIX has produced a wealth of data and has much more in analysis.
- The RHIC era opens the Hard Scattering or QCD toolbox (Pandora box?) in RHI physics.
 - My wife usually criticises my use of new tools:

LMH: "Don't you ever read the manual?"

TKH: "Honey, these tools don't come with manuals!"

Maybe during this week these months we'll write the manual for QCD in the RHIC era.

PHENIX

Thomas K Hemmick