官 PRINCETON UNIVERSITY

Beta ensembles and the stochastic Airy semigroup

Mykhaylo Shkolnikov
Princeton University
February 18, 2016

Outline

(1) GUE eigenvalues and beta ensembles
(2) The $\beta=2$ point of view
(3) Tridiagonal models and stochastic Airy operators point of view
(4) Our results
(5) Some ideas from proofs

A problem for experts

- Consider a standard Brownian excursion $e(t), t \in[0,1]$.
- Let $\ell_{a}, a \geq 0$ be its local time on level a.
- Show that

$$
\int_{0}^{1} e(t) \mathrm{d} t-\frac{1}{2} \int_{0}^{\infty} \ell_{a}^{2} \mathrm{~d} a
$$

is Gaussian with mean 0 and variance $\frac{1}{12}$.

Gaussian unitary ensemble

- Consider the $N \times N$ Hermitian matrix with normal entries (GUE):

$$
\left(\begin{array}{cccc}
A_{1,1} & \frac{A_{1,2}+i B_{1,2}}{\sqrt{2}} & \frac{A_{1,3}+i B_{1,3}}{\sqrt{2}} & \cdots \\
\frac{A_{1,2}-i B_{1,2}}{\sqrt{2}} & A_{2,2} & \frac{A_{2,3}+i B_{2,3}}{\sqrt{2}} & \cdots \\
\frac{A_{1,3}-i B_{1,3}}{\sqrt{2}} & \frac{A_{2,3}-i B_{2,3}}{\sqrt{2}} & A_{3,3} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

- Interested in behavior of eigenvalues $\lambda_{1}(N) \geq \lambda_{2}(N) \geq \cdots \geq \lambda_{N}(N)$ as $N \rightarrow \infty$.
- Specifically, will look at $\lambda_{1}(N) \geq \cdots \geq \lambda_{k}(N)$ for fixed k as $N \rightarrow \infty$.

Eigenvalue distribution and beta ensembles

- Joint eigenvalue distribution given by density

$$
\frac{1}{Z_{2}(N)} \prod_{1 \leq i<j \leq N}\left(x_{j}-x_{i}\right)^{2} \prod_{i=1}^{N} e^{-x_{i}^{2} / 2}
$$

- From the point process point of view: no reason for the 2
\Longrightarrow will replace it by a general parameter $\beta>0$:

$$
\frac{1}{Z_{\beta}(N)} \prod_{1 \leq i<j \leq N}\left(x_{j}-x_{i}\right)^{\beta} \prod_{i=1}^{N} e^{-x_{i}^{2} / 2}
$$

Some results for $\beta=2$

Theorem (Tracy, Widom '94) For $\beta=2$, the rescaled process of largest eigenvalues

$$
\left(N^{2 / 3}\left(\frac{\lambda_{1}(N)}{\sqrt{N}}-2\right), N^{2 / 3}\left(\frac{\lambda_{2}(N)}{\sqrt{N}}-2\right), \ldots\right)
$$

converges to a determinantal point process with kernel

$$
\frac{\operatorname{Ai}(x) \operatorname{Ai}^{\prime}(y)-\operatorname{Ai}^{\prime}(x) \operatorname{Ai}(y)}{x-y}
$$

where $\operatorname{Ai}^{\prime \prime}(x)=x \operatorname{Ai}(x)$ is the Airy function.
\Longrightarrow In principle, have a full understanding of the limiting process.
Tracktable explicit formulas?

Laplace transforms and a result of Okounkov

- An attempt to understand the Airy process is to consider Laplace transforms $\sum_{k=1}^{\infty} e^{T \mu_{k}}, T>0$ where $\mu_{1} \geq \mu_{2} \geq \cdots$ are points of the Airy process.
- To understand the distribution of $\sum_{k=1}^{\infty} e^{T \mu_{k}}$ can consider moments

$$
\mathbb{E}\left[\left(\sum_{k=1}^{\infty} e^{T \mu_{k}}\right)^{\ell}\right], \quad \mathbb{E}\left[\left(\sum_{k=1}^{\infty} e^{T_{1} \mu_{k}}\right)^{\ell_{1}}\left(\sum_{k=1}^{\infty} e^{T_{2} \mu_{k}}\right)^{\ell_{2}}\right], \quad \ldots
$$

- Okounkov '02 obtained beautiful formulas for such, starting with

$$
\mathbb{E}\left[\sum_{k=1}^{\infty} e^{T \mu_{k}}\right]=\sqrt{\frac{2}{\pi}} T^{-3 / 2} e^{T^{3} / 96}
$$

Some questions

- Which of these results extend to all β ?
- Is there a relation between β-ensembles and the Airy function for general β ?
- Are there versions of Okounkov's formulas for general β and do they have a probabilistic meaning?
- What is the meaning of Laplace transforms in Okounkov's result? Why are these canonical observables to look at?
- What makes $\beta=2$ special?

Tridiagonal models

Theorem (Dumitriu, Edelman '02) For $\beta>0$, the tridiagonal random matrix

$$
M(N):=\left(\begin{array}{cccc}
N(0,2 / \beta) & \chi_{\beta} / \sqrt{\beta} & 0 & \cdots \\
\chi_{\beta} / \sqrt{\beta} & N(0,2 / \beta) & \chi_{2 \beta} / \sqrt{\beta} & \ddots \\
0 & \chi_{2 \beta} / \sqrt{\beta} & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots
\end{array}\right)
$$

has a joint eigenvalue distribution given by

$$
\frac{1}{Z_{\beta}(N)} \prod_{1 \leq i<j \leq N}\left(x_{j}-x_{i}\right)^{\beta} \prod_{i=1}^{N} e^{-\beta x_{i}^{2} / 4}
$$

Towards the stochastic Airy operator I

- Key feature of the tridiagonal model: the unequal sizes of off-diagonal entries: from order 1 to order \sqrt{N}.
- Order \sqrt{N} of largest entries suggests that the fluctuations of $M(N) / \sqrt{N}$ might converge to an operator $-S A O_{\beta}$ on a suitable infinite-dimensional space.
\Longrightarrow fluctuations of largest eigenvalues of $M(N) / \sqrt{N}$ should then converge to the eigenvalues of $-S A O_{\beta}$ (Edelman, Sutton '07).
- To make this precise, let

$$
\chi_{m \beta} / \sqrt{\beta}=: \sqrt{m}+\xi_{\beta}(m) .
$$

Towards the stochastic Airy operator II

- Consider the diagonal noise $M_{N N}(N), M_{(N-1)(N-1)}(N), \ldots$ and the off-diagonal noise $\xi_{\beta}(N), \xi_{\beta}(N-1), \ldots$
- In the limit, one expects these to converge to two independent instances of white noise.
- More precisely:

$$
\begin{aligned}
& N^{-1 / 6} \sum_{m=N-\left\lfloor a N^{1 / 3}\right\rfloor}^{N} M_{m m}(N) \rightarrow s_{D, \beta} W_{D}(a), \\
& N^{-1 / 6} \sum_{m=N-\left\lfloor a N^{1 / 3}\right\rfloor}^{N} \xi(m) \rightarrow s_{O D, \beta} W_{O D}(a)
\end{aligned}
$$

with two independent Brownian motions $W_{D}, W_{O D}$.

Towards the stochastic Airy operator III

- Define the combined Brownian motion

$$
W_{\beta}(a):=s_{D, \beta} W_{D}(a)+s_{O D, \beta} W_{O D}, a \geq 0
$$

- Equipped with W define formally the stochastic Airy operator

$$
S A O_{\beta}=-\frac{\mathrm{d}^{2}}{\mathrm{da}}+a+W_{\beta}^{\prime}(a)
$$

on $L^{2}([0, \infty))$ with Dirichlet boundary condition at 0 .

- Ramirez, Rider, Virag '11 made rigorous sense of $S A O_{\beta}$ and its eigenvalues $-\mu_{1} \leq-\mu_{2} \leq \cdots$ and proved the following:

General β convergence theorem

Theorem (Ramirez, Rider, Virag '11) The fluctuations of the largest eigenvalues of $M(N)$

$$
\left(N^{2 / 3}\left(\frac{\lambda_{1}(N)}{\sqrt{N}}-2\right), N^{2 / 3}\left(\frac{\lambda_{2}(N)}{\sqrt{N}}-2\right), \ldots\right)
$$

converge to $\mu_{1} \geq \mu_{2} \geq \cdots$, with $-\mu_{1} \leq-\mu_{2} \leq \cdots$ being the eigenvalues of $S A O_{\beta}$ on $L^{2}([0, \infty))$. Moreover, $\mu_{k} \rightarrow-\infty$ and $\sum_{k=1}^{\infty} e^{T \mu_{k}}<0$ for all $T>0$ with probability 1.
\Longrightarrow In principle, a full understanding of the limiting process for all values of $\beta>0$.

Some questions

- Starting from $S A O_{\beta}$, how do we arrive at the Airy process for $\beta=2$?
- Where are Okounkov's formulas hidden in $S A O_{\beta}$ for $\beta=2$?
- In general, how can we see the special role of SAO_{2} ?
- Once the $\beta=2$ results are found in $S A O_{2}$, can hope to find the appropriate analogues for general β.
\Longrightarrow the goal of our work was to put the two approaches into one framework, to find the special role of $\beta=2$, as well as the analogues of the $\beta=2$ formulas.

Our results I

Unifying object: the random integral kernels $K_{\beta}(x, y ; T), T>0$:

$$
\begin{array}{r}
\mathbb{E}_{B^{x, y}}\left[\exp \left(-\frac{(x-y)^{2}}{2 T}-\frac{1}{2} \int_{0}^{T} B^{x, y}(t) \mathrm{d} t+\int_{0}^{\infty} L_{a}\left(B^{x, y}\right) \mathrm{d} W_{\beta}(a)\right)\right. \\
\left.\mathbf{1}_{\left\{B^{x, y}>0\right\}}\right]
\end{array}
$$

acting on $L^{2}([0, \infty))$, where

- $B^{x, y}$ is a standard Brownian bridge connecting x to y in time T,
- W is a standard Brownian motion independent of the bridge,
- $L_{a}\left(B^{x, y}\right), a \geq 0$ are local times of $B^{x, y}$.

Our results II: connection to stochastic Airy operator

Theorem (Gorin, S. '16) The (random) integral operators $U_{\beta}(T), T>0$ on $L^{2}([0, \infty))$ with kernels $\frac{1}{\sqrt{2 \pi T}} K_{\beta}(x, y ; T), T>0$ form a semigroup with probability 1 , given by $e^{-T S A O_{\beta}}, T>0$. In particular,

$$
\begin{array}{r}
\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi T}} K_{\beta}(x, x ; T) \mathrm{d} x=\operatorname{Trace}\left(U_{\beta}(T)\right)=\operatorname{Trace}\left(e^{-T S A O_{\beta}}\right) \\
=\sum_{k=1}^{\infty} e^{T \mu_{k}}
\end{array}
$$

where $\mu_{1} \geq \mu_{2} \geq \cdots$ are the eigenvalues of $S A O_{\beta}$.

Our results III: connection to tridiagonal models

- To connect to tridiagonal models/beta ensembles, will view $M(N)$ as a quadratic form on $L^{2}([0, \infty))$.
- More precisely, for $f \in L^{2}([0, \infty))$ define its projection on \mathbb{R}^{N} by

$$
p_{N} f=\left(N^{1 / 6} \int_{N^{-1 / 3}(N-i)}^{N^{-1 / 3}(N-i+1)} f(a) \mathrm{d} a: i=1,2, \ldots, N\right) .
$$

- Then, can identify every symmetric $N \times N$ matrix $A(N)$ with the quadratic form on $L^{2}([0, \infty))$:

$$
(f, g) \mapsto\left(p_{N} f\right)^{\prime} A(N)\left(p_{N} g\right)
$$

Our results IV: connection to trigiagonal models cont.

Theorem (Gorin, S. '16) The quadratic form associated with

$$
A(N, T):=\frac{1}{2}\left(\left(\frac{M(N)}{2 \sqrt{N}}\right)^{\left\lfloor T N^{2 / 3}\right\rfloor}+\left(\frac{M(N)}{2 \sqrt{N}}\right)^{\left\lfloor T N^{2 / 3}\right\rfloor-1}\right)
$$

converges to the quadratic form $(f, g) \mapsto\left(f, U_{\beta}(T) g\right)$ in the following sense:

- For any finite family of T ' s, f ' s, g 's, the random vector of $\left(p_{N} f\right)^{\prime} A(N, T)\left(p_{N} g\right)^{\prime}$'s converges to the random vector of $\left(f, U_{\beta}(T) g\right)$'s in distribution and in the sense of moments.

Our results V: connection to tridiagonal models cont.

- The traces converge:

$$
\operatorname{Trace}(A(N, T)) \longrightarrow \operatorname{Trace}\left(U_{\beta}(T)\right)=\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi T}} K_{\beta}(x, x ; T) \mathrm{d} x
$$

in distribution and in the sense of moments, for any finitely many T 's.
In addition,
$\lim _{N \rightarrow \infty} \sum_{k=1}^{\infty} e^{T \lambda_{k}(N)}=\lim _{N \rightarrow \infty} \operatorname{Trace}(A(N, T))=\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi T}} K_{\beta}(x, x ; T) \mathrm{d} x$
in distribution and in the sense of moments, for any finitely many T 's.

Special role of $\beta=2$

- Starting point:

$$
\begin{aligned}
& \sum_{k=1}^{\infty} e^{T \mu_{k}}=\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi T}} K_{\beta}(x, x ; T) \mathrm{d} x \\
& =\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi T}} \mathbb{E}_{B^{x, x}}\left[\exp \left(-\frac{1}{2} \int_{0}^{T} B^{B^{x, x}}(t) \mathrm{d} t+\int_{0}^{\infty} L_{a}\left(B^{x, x}\right) \mathrm{d} W_{\beta}(a)\right)\right. \\
& \left.\mathbf{1}_{\left\{B^{x, x}>0\right\}}\right] \mathrm{d} x .
\end{aligned}
$$

- Take the expectation (\leftrightarrow Okounkov's first identity):

$$
\begin{array}{r}
\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi T}} \mathbb{E}_{B^{x, x}}\left[\exp \left(-\frac{1}{2} \int_{0}^{T} B^{x, x}(t) \mathrm{d} t+\frac{1}{2 \beta} \int_{0}^{\infty} L_{a}\left(B^{x, x}\right)^{2} \mathrm{~d} a\right)\right. \\
\left.\mathbf{1}_{\left\{B^{x, x}>0\right\}}\right] \mathrm{d} x .
\end{array}
$$

Simplification using Vervaat's transform

Simplification using Vervaat's transform cont.

For our functional

$$
\begin{array}{r}
\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi T}} \mathbb{E}_{B^{x, x}}\left[\exp \left(-\frac{1}{2} \int_{0}^{T} B^{x, x}(t) \mathrm{d} t+\frac{1}{2 \beta} \int_{0}^{\infty} L_{a}\left(B^{x, x}\right)^{2} \mathrm{~d} a\right)\right. \\
\left.\mathbf{1}_{\left\{B^{x, x}>0\right\}}\right] \mathrm{d} x
\end{array}
$$

- write $B^{x, x}=x+B^{0,0}$,
- note $\int_{0}^{\infty} L_{a}\left(B^{x, x}\right)^{2} \mathrm{~d} a=\int_{-\infty}^{\infty} L_{a}\left(B^{0,0}\right)^{2} \mathrm{~d} a$,
- write the indicator as $\mathbf{1}_{\left\{x+\min \left(B^{0,0}\right)>0\right\}}$ and integrate x out,
- use Vervaat's transform.

Brownian excursion representation and Okounkov

Corollary (Gorin, S. '16) The eigenvalues $\mu_{1} \geq \mu_{2} \geq \cdots$ of $S A O_{\beta}$ satisfy
$\mathbb{E}\left[\sum_{k=1}^{\infty} e^{T \mu_{k}}\right]=\sqrt{\frac{2}{\pi}} T^{-3 / 2} \mathbb{E}\left[\exp \left(-\frac{T^{3 / 2}}{2} \int_{0}^{1} e(t) \mathrm{d} t+\frac{T^{3 / 2}}{2 \beta} \int_{0}^{\infty}\left(l_{a}\right)^{2} \mathrm{~d} y\right)\right]$.
In particular, Okounkov's first identity reads

$$
\mathbb{E}\left[\exp \left(-\frac{T^{3 / 2}}{2} \int_{0}^{1} e(t) \mathrm{d} t+\frac{T^{3 / 2}}{4} \int_{0}^{\infty}\left(I_{a}\right)^{2} \mathrm{~d} y\right)\right]=e^{T^{3} / 96}
$$

i.e.: $\int_{0}^{1} e(t) \mathrm{d} t-\frac{1}{2} \int_{0}^{\infty}\left(I_{a}\right)^{2} \mathrm{~d} a$ Gaussian with mean 0 and variance 12.

No direct proof!!!

A partial result via Jeulin's Theorem

A partial result toward open problem:
Theorem (Csörgö, Shi, Yor '99) The random variables $\int_{0}^{1} e(t) \mathrm{d} t$ and $\frac{1}{2} \int_{0}^{\infty}\left(I_{a}\right)^{2}$ da have the same distribution. In particular, their difference has mean 0 .

Proof based on:
Theorem (Jeulin '85) Define $J(a)=\int_{0}^{a} I_{b} \mathrm{~d} b$ and let J^{-1} be the inverse function. Then, $\tilde{e}(t):=\frac{1}{2} I_{J^{-1}(t)}, t \in[0,1]$ is a Brownian excursion.

Jeulin's Theorem $\Longrightarrow \frac{1}{2} \int_{0}^{\infty}\left(l_{a}\right)^{2}$ da is the area under \tilde{e}.

Another corollary: $\beta \rightarrow \infty$

Corollary Let $-\mu_{1} \leq-\mu_{2} \leq \cdots$ be the eigenvalues of the deterministic Airy operator $-\frac{\mathrm{d}^{2}}{\mathrm{da}^{2}}+a$. Then,

$$
\sum_{k=1}^{\infty} e^{T \mu_{k}}=\sqrt{\frac{2}{\pi}} T^{-3 / 2} \mathbb{E}\left[\exp \left(-\frac{T^{3 / 2}}{2} \int_{0}^{1} e(t) \mathrm{d} t\right)\right]
$$

In other words, the eigenvalues of the Airy operator describe the Laplace transform of the Brownian excursion area.

Several references for this result can be found in Janson '07 including Darling '83, Louchard '86.
\Longrightarrow can view our result as expansion about $\beta=\infty: \beta=2$ special.

Some ideas from proofs: traces of high powers

- Consider entries of high powers $K:=\left\lfloor T N^{2 / 3}\right\rfloor$ of $M(N)$:

$$
\sum_{i_{1}, i_{2}, \ldots, i_{K-1}} M_{i, i_{1}}(N) M_{i_{1}, i_{2}}(N) \cdots M_{i_{K}, j}(N)
$$

- Sum over paths $\left|i_{2}-i_{1}\right| \leq 1,\left|i_{3}-i_{2}\right| \leq 1, \ldots$, i.e. paths of random walk bridges connecting i to j in K steps.
- Interested in $i=\left\lfloor N-N^{1 / 3} x\right\rfloor, j=\left\lfloor N-N^{1 / 3} y\right\rfloor$, so pick up only large off-diagonal entries and small diagonal entries.
- Only paths with finitely many diagonal entries will contribute.

Some ideas from proofs: typical behavior

- Typical path of a random walk bridge will visit $O\left(N^{1 / 3}\right)$ sites, each $O\left(N^{1 / 3}\right)$ times, i.e. pick up $O\left(N^{1 / 3}\right)$ different off-diagonal entries, each to power of order $O\left(N^{1 / 3}\right)$.
- In the limit, the random walk bridge converges to a Brownian bridge, the occupation times of sites to Brownian bridge local times.
- Main tool: strong invariance principle in the spirit of Csörgö, Révész '81, Borodin '86, Khoshnevisan '92.

Some ideas from proofs: large deviations

Main tool: quantile transform of Assaf, Forman, Pitman '15:

THANK YOU FOR YOUR ATTENTION!

