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• Accessibility percolation

“Nonequilibrium dynamics of stochastic and quantum integrable systems”
KITP Santa Barbara, February 18, 2016



Eden growth

Eden 1961



Genetic segregation in growing bacterial colonies

Hallatschek et al., PNAS 2007



Sector boundaries display superdiffusive KPZ fluctuations

Hallatschek et al., PNAS 2007



Fitness of a population in a linear habitat

J. Otwinowski, S. Boettcher, PRE 84:011925 (2011)
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Universal fitness distributions

J. Otwinowski, JK, Phys. Biol. 11:056003 (2014)
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• Three universal distributions for flat, droplet and stationary initial conditions



SHE and PAM

• Under the Cole-Hopf transformation ψ(x, t) = exp
[ λ

2ν h(x, t)
]

the KPZ
equation tranforms into the stochastic heat equation (SHE)

∂ψ
∂ t

= ν∇2ψ +
λ
2ν

η(x, t)ψ

• Via the Feynman-Kac formula this establishes the relation to directed
polymers in random media (DPRM) and first passage percolation (FPP)

• When the noise is independent of time (“columnar DPRM”) the problem
is known as the parabolic Anderson model (PAM) with a natural biological
intepretation: Ebeling, Engel, Esser, Feistel JSP 1984

x → phenotype, ψ(x, t) → population density, η(x) → fitness

• However in that context the dynamics should properly be defined on the
space of genetic sequences rather than on R

d or Z
d



Sequence spaces

• Genetic information is encoded in DNA-sequences consisting of four
different nucleotide bases

..ACTATCCATCTACTACTCCCAGGAATCTCGATCCTACCTAC...

• The sequence space consists of all 4L sequences of length L

• Typical genome lengths:
L ∼ 103 (viruses), L ∼ 106 (bacteria), L ∼ 109 (higher organisms)

• Proteins are sequences of 20 amino acids with L ∼ 102

• Coarse-grained representation of classical genetics: L genes that are
present as different alleles; often it is sufficient to distinguish between wild
type (0) and mutant (1) ⇒ binary sequences

• Hamming distance: Two sequences are nearest neighbors if they differ in
a single letter (mutation)



Hamming spaces/hypercubes for L = 1−6



Fitness landscapes

• A fitness landscape assigns a fitness value f (σ) to each genotype
sequence σ = (σ1σ2..σL) with σi ∈ {0,1}

• Evolution is a hill-climbing process in the fitness landscape

• Example: L = 2
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Fitness landscapes

• A fitness landscape assigns a fitness value f (σ) to each genotype
sequence σ = (σ1σ2..σL) with σi ∈ {0,1}

• Evolution is a hill-climbing process in the fitness landscape

• Example: L = 3
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• 3! = 6 directed (0 → 1) and 18 undirected mutational pathways from
σ (0) = (000) to σ (1) = (111)



Random fitness landscapes

• The fitness f (σ) of genotype σ is the expected number of offspring of an
individual carrying σ

• The mapping σ → f (σ) is very complicated:

+
genotype phenotype 

environment 
fitness 

Simple choice: Assign fitnesses at random to genotypes

• Fitnesses as i.i.d. random variables ⇒ Kingman’s house-of-cards model
Kingman 1978, Kauffman & Levin 1987

• Equivalent to Derrida’s Random Energy Model of spin glasses Derrida 1981

• Correlated landscapes can be generated along similar lines (e.g., the spin-
glass-like NK-models)



PAM on the random hypercube: Adaptive flights

K. Jain, JK, JSTAT 2005; K. Jain, PRE 2007

• Under PAM dynamics the population concentrates on sites with
exceptionally high fitness

• An adaptive trajectory consists of a sequence of long-ranged “tunneling”
events between such sites that terminates at the global maximum

• The number of jumps is O(
√

L) for Gumbel-class fitness distributions and
O(1) for power-law distributions

• The distribution of the time Tk of the k’th last jump has a universal power
law tail

Prob[Tk > t] ∼ t−k, k = 1,2,3, ...

which implies that the expected time to the maximum is infinite

• This scenario is however biologically meaningless because it relies on
exponentially small population densities



Evolutionary accessibility

J. Franke et al., PLoS Comp. Biol. 7 (2011) e1002134

• In moderately large populations, adaptive trajectories are constrained
to move uphill in single mutational steps ⇒ a pathway connecting two
genotypes is accessible if fitness increases monotonically in each step

• Example: Mutational pathways from (1111) to (0000) in two 4-locus
subgraphs of an 8-dimensional empirical fitness landscape for the
filamentous fungus Aspergillus niger

no directed pathway accessible 6 out of 24 pathways accessible



Pathways to antibiotic resistance

D.M. Weinreich et al., Science 312, 111 (2006)

• 5 mutations increase resistance to a new drug by ∼ 105

• 18 out of 5! = 120 directed mutational pathways are accessible, and only
few of them have appreciable weight



Pathways to antibiotic resistance
De Pristo et al., Mol. Biol. Evol. 24:1608 (2007)

• 27 out of 18651552840 undirected pathways are accessible



Pathways to drug resistance in malaria
E.R. Lozovsky et al., Proc. Natl. Acad. Sci. USA 106, 12025 (2009)

• 4! = 24 pathways, 10 (red) are monotonic in resistance

• Dominating pathways are realized in natural populations



Accessibility percolation

S. Nowak, JK, EPL 101, 66004 (2013)

• Directed or undirected graph G with nodes x ∈ G and distance d(·, ·)

• Assign a nondegenerate real random variable f (x) to each node

• A path is a string of nodes x0 → x1 → x2 → ... → xN such that
d(xi,xi+1) = 1 for all i

• A path is called accessible if f increases monotonically along the path, i.e.
f (x0) < f (x1) < ... < f (xN)

• Accessibility percolation is concerned with the existence of global paths
that connect the global maximum xmax of f (x) to the node at maximal
distance D ≡ maxx∈G d(xmax,x)

• In the standard setting G is the hypercube and the f (x) are i.i.d. random
variables



Directed random hypercube

• Assign maximal fitness f = 1 to σ (1) ≡ (1,1, ...,1) and i.i.d. U(0,1) RV’s to
all other sites

• What is the expected number of directed accessible pathways from a site
at distance d to σ (1)?

• The total number of paths is d!, and a given path consists of d i.i.d. fitness
values f0, ...., fd−1; it is accessible iff f0 < f1.... < fd−1

• Since all d! permutations of the d random variables are equally likely, the
probability for this event is 1/d!

⇒ E(nacc) =
1
d!

×d! = 1

• This applies in particular for d = L



Distribution of the number of accessible paths
J. Franke et al., PLoS Comp. Biol. 7 (2011) e1002134
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HoC Model
HoC constrained

• "Condensation of probability" at nacc = 0
⇒ mean is not representative of the typical behavior

• Constraining initial fitness to f0 = 0 massively increases the accessibility



Transition as a function of initial fitness

• Conditioned on initial fitness f0 ∈ [0,1) the expected number of accessible
paths is

E(nacc) =
(1− f0)

L−1

(L−1)!
×L! = L(1− f0)

L−1

which diverges/vanishes asymptotically for large L when f0 < lnL
L / f0 > lnL

L

• This implies that the existence of accessible paths becomes likely at
f0 ∼ lnL

L , in the sense that Hegarty & Martinsson, Ann. Appl. Prob. 2014

lim
L→∞

Prob[nacc > 0] =















0 for f0 >
lnL
L

1 for f0 <
lnL
L

.

• Proof uses estimate of second moment of nacc and the bounds

E(nacc) ≥ Prob[nacc > 0] ≥ E(nacc)
2

E(n2
acc)



Accessibility percolation on trees

S. Nowak, JK, EPL 101, 66004 (2013)

• Consider a regular tree with branching number b and height h equipped
with i.i.d. RV’s on the nodes

• Let nacc denote the number of accessible paths from the root to the leaves

• First and second moments are given by

E(nacc) =
bh

h!
, E(n2

acc) = E(nacc)+
b−1

b

h

∑
k=1

(

2k
k

)

bh+k

(h+ k)!

• Scaling b,h → ∞ at fixed α = b/h it follows that accessibility percolation
occurs at some αc ∈ [1/e,1],

• Refined analysis shows that αc = 1/e which corresponds exactly to the
hypercube geometry Roberts & Zhao, ECP 2013



Effect of downhill steps

É. Brunet, L. Deecke, JK, in preparation

• Two scenarios for allowing downhill steps along the path:

– unconditional: ... fi−2 < fi−1> fi < fi+1 < .... for some i
– conditional: fi−1> fi < fi+1 but fi+1 > fi−1

• Expected number of accessible paths in the two cases are

E
uc(nacc) = 2L−L, E

c(nacc) = 1+
1
2

L(L−1)

• In the unconditional case accessible paths exist almost surely for any
initial fitness when L → ∞, whereas in the conditional case the accessibility
threshold is

f0 ∼
(2p+1) lnL

L
when p downhill steps are allowed for



Accessibility percolation on the undirected hypercube

J. Berestycki, É. Brunet, Z. Shi, arXiv:1401.6894

• A general undirected path from σ (0) to σ (1) consists of L+2p steps where
p ≥ 0 is the number of backsteps (mutational reversions)

• The expected number of accessible paths conditioned on starting fitness
f0 is

E(nacc) = ∑
p≥0

aL,p
(1− f0)

L+2p−1

(L+2p−1)!

where aL,p is the number of paths with p backsteps.

• Analyzing the asymptotics of the aL,p it is shown that

lim
L→∞

[E(nacc)]
1/L = sinh(1− f0)

which suggests a finite accessibility threshold f ∗0 = 1 − sinh−1(1) ≈
0.11863...



A link to first passage percolation

A. Martinsson, arXiv:1501.02206

• Graph G with i.i.d. U(0,1) random waiting times τ(x) assigned to nodes x

• The first passage time from a distinguished node x(0) to x is

T (x) = min
π



 ∑
y∈π\{x(0),x}

τ(y)





where π is a path from x(0) to x

• Then the fitnesses f (σ) defined as the fractional part of f0 +T (x) are i.i.d.
U(0,1) RV’s, and as a consequence

Prob[nacc(x
(0) → x) > 0] = Prob[T (x) < 1− f0].

• It follows that the first passage time on the oriented (unoriented) hypercube
converges to 1 (1− f ∗0 = sinh−1(1) ≈ 0.88137...) for large L.



The role of backsteps in empirical data
M. Josupeit, JK, in preparation

• Comparison of subgraph analysis of an empirical data set with the rough
Mt. Fuji model defined by f (σ) = cd(σ ,σ (0))+ησ with U(0,1) RV’s ησ

• Accessibility is dominated by direct paths for small L



Summary

• A new type of random path problem motivated by evolutionary biology

• “Critical” role of hypercube geometry

• Provides a tool to interpret empirical fitness landscapes
J.A.G.M. de Visser, JK, Nat. Rev. Gen. 15:480 (2014)

• Focus so far on the existence of paths rather than on the distribution of path
weights
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