Real time confinement following a quench to a non-integrable model

Márton Kormos

"Momentum" Statistical Field Theory Group, Hungarian Academy of Sciences Budapest University of Technology and Economics

in collaboration with Mario Collura, Gábor Takács, Pasquale Calabrese

> Non-equilibrium dynamics of stochastic and quantum integrable systems KITP Santa Barbara 02/19/2016

Quantum quenches

- prepare the system in some initial state in many cases the ground state of a (local) Hamiltonian
- let it evolve unitarily with some other (local) Hamiltonian the system is isolated!
- questions about relaxation, thermalization
- role of integrability GGE, prethermalization etc.

In this talk: small perturbations can have dramatic effects

Entanglement entropy

Consider a system in a quantum state $|\Psi
angle$

$$\mathcal{H} = \mathcal{H}_{\mathsf{A}} \otimes \mathcal{H}_{\mathsf{B}}$$

Schmidt decomposition

$$|\Psi\rangle = \sum_{n} c_n |\psi_n\rangle_A |\psi_n\rangle_B \qquad c_n \ge 0, \quad \sum_{n} c_n^2 = 1$$

• If $c_1 = 1 \Rightarrow |\Psi\rangle$ is unentagled • If all c_i are equal $\Rightarrow |\Psi\rangle$ is maximally entangled

A natural measure is the entanglement entropy $(\rho_A = \text{Tr}_B \rho)$

$$S_{\mathbf{A}} \equiv -\operatorname{Tr}\rho_{\mathbf{A}} \ln \rho_{\mathbf{A}} = S_{\mathbf{B}}$$
$$= -\sum_{n} c_{n}^{2} \ln c_{n}^{2}$$

Light cone spreading of entanglement

P. Calabrese, J. Cardy 2005

- ullet After a global quench, the initial state $|\psi_0
 angle$ has an extensive excess of energy
- It acts as a source of quasi-particles at t=0. A particle of momentum p has energy E_p and velocity $v_p = dE_p/dp$
- For t > 0 the particles move semiclassically with velocity v_p
- Particles emitted from regions of size of the initial correlation length are entangled, particles from points far away are incoherent
- The point $x \in A$ is entangled with a point $x' \in B$ if a left (right) moving particle arriving at x is entangled with a right (left) moving particle arriving at x'. This can happen only if $x \pm v_p t \sim x' \mp v_p t$

Light cone spreading of entanglement

P. Calabrese, J. Cardy 2005

- The entanglement entropy of an interval A of length ℓ is proportional to the total number of pairs of particles emitted from arbitrary points such that at time $t, x \in A$ and $x' \in B$
- Denoting with f(p) the rate of production of pairs of momenta $\pm p$ and their contribution to the entanglement entropy, this implies

$$S_A(t) \approx \int_{x' \in A} dx' \int_{x'' \in B} dx'' \int_{-\infty}^{\infty} dx \int f(p) dp \delta (x' - x - v_p t) \delta (x'' - x + v_p t)$$

$$\propto t \int_0^{\infty} dp f(p) 2v_p \theta (\ell - 2v_p t) + \ell \int_0^{\infty} dp f(p) \theta (2v_p t - \ell)$$

• When v_p is bounded (e.g. Lieb-Robinson bounds) $|v_p| < v_{\max}$, the second term is vanishing for $2v_{\max} < \ell$ and the entanglement entropy grows linearly with time up to a value linear in ℓ

Example: Transverse Field Ising chain

P. Calabrese, J. Cardy 2005

Analytically for $t, l \gg 1$ with t/l constant

M. Fagotti, P. Calabrese, 2008

$$S(t) = t \int_{2|\epsilon'|t<\ell} \frac{d\varphi}{2\pi} 2|\epsilon'|H(\cos\Delta_{\varphi}) + \ell \int_{2|\epsilon'|t>\ell} \frac{d\varphi}{2\pi} H(\cos\Delta_{\varphi})$$

$$\cos \Delta_{\varphi} = \frac{1 - \cos \varphi (h + h_0) + h h_0}{\epsilon_{\varphi} \epsilon_{\varphi}^0} \qquad \qquad H(x) = -\frac{1 + x}{2} \log \frac{1 + x}{2} - \frac{1 - x}{2} \log \frac{1 - x}{2}$$

Light cone spreading of correlations

The same scenario is valid for correlations:

- Horizon: points at separation r become correlated when left- and right-moving particles originating from the same point first reach them
- If $|v_p| < v_{\max}$, connected correlations are then frozen for $t < r/2v_{\max}$

Example: Ising model within ferromagnetic phase

P. Calabrese, F. Essler, M. Fagotti 2011/12

Light cone in interacting models

Kollath-Lauechli '08: Bose-Hubbard

Carleo et al., '14: Bose-Hubbard

Manmana et al '08: interacting fermions

Bonnes, Essler, Lauchli '14: XXZ spin chain

Light cone in experiments

M. Cheneau et al., Nature 481, 484 (2012)

FIG. 1. Spreading of correlations in a quenched atomic Mott insulator. **a**, A 1D ultracold gas of bosonic atoms (black balls) in an optical lattice is initially prepared deep in the Mott-insulating phase with unity filling. The lattice depth is then abruptly lowered, bringing the system out of equilibrium. **b**, Following the quench, entangled quasiparticle pairs emerge at all sites. Each of these pairs consists of a doublon (red ball) and a holon (blue ball) on top of the unityfilling background, which propagate ballistically in opposite directions. It follows that a correlation in the parity of the site occupancy builds up at time t between any pair of sites separated by a distance d = vt, where v is the relative velocity of the doublons and holons.

Some no light cone spreadings

MBL, logarithmic growth of entanglement:

Bardarson, Pollmann, Moore '14

Long-range interaction:

Jurcevic et al., Nature 511, 202 (2014)

When the range of interaction is long enough there is no light cone

see also: Hauke & Tagliacozzo, '13 Schachenmayer et al. '13 Richerme et al. '14

Suppression of the light cone

Starting from the ferromagnetic state (all spins up) and evolving with

$$H = -J\sum_{j=1}^{L} \left[\sigma_j^x \sigma_{j+1}^x + h_z \sigma_j^z + h_x \sigma_j^x\right]$$

with $h_z = 0.25$. Connected longitudinal correlation $\langle \sigma_1^x \sigma_{m+1}^x \rangle_c$

Confinement in the Ising model

$$H = -J\sum_{j=1}^{L} \left[\sigma_j^x \sigma_{j+1}^x + h_z \sigma_j^z + h_x \sigma_j^x\right]$$
 McCoy & Wu '78

- For $h_x = 0$ free fermions with dispersion $\varepsilon(k) = 2J\sqrt{1 2h^z \cos k + h^{z^2}}$
- $h_z = 1$ separates two massive phases
- For $h_z < 1$ (ferro phase), the massive fermions can be seen as domain walls separating domains of magnetization $\sigma = (1-h_z)^{1/8}$
- h_x induces an attractive interaction between DW that for small enough h_x can be approximated as a linear potential $V(x) = 2Jh_x\sigma |x|$
- DW do not propagate freely but get confined into mesons

Free DW

Bound state = meson

Consider two fermions in 1D with Hamiltonian

$$\mathcal{H} = \varepsilon(\theta_1) + \varepsilon(\theta_2) + \chi |x_2 - x_1| = \omega(\theta; \Theta) + \chi |x|$$

 $\omega(\theta;\Theta) = \varepsilon(\theta + \Theta/2) + \varepsilon(\theta - \Theta/2)$

This can be quantized semiclassically a la Bohr-Sommerfeld • The number and the energies of mesons depend on h_{x, h_z} , $\Theta_{h_x=0.1, h_z=0.25, \Theta=0}$

igodot When ω has a single minimum one obtains

$$2E_n(\Theta)\theta_a - \int_{-\theta_a}^{\theta_a} \mathrm{d}\theta\,\omega(\theta;\Theta) = 2\pi\chi(n-1/4)\,,\qquad n=1,2,.$$

where θ_a is the solution of $\omega(\theta_a(n;\Theta);\Theta) = E_n(\Theta)$

For two minima

$$E_n(\Theta)(\theta_a - \theta_b) - \int_{-\theta_b}^{\theta_a} \mathrm{d}\theta \,\omega(\theta; \Theta) = \pi \chi(n - 1/2), \qquad n = 1, 2, \dots$$

Approximation for the meson spectrum

 $h_x = 0.1, h_z = 0.25, \Theta = 0$

The four masses are m_1 =3.662 m_2 =4.127 m_3 =4.48 m_4 =4.77

 $E_n(\Theta)$ is the dispersion relation of the mesons

 $v_n(\Theta) = \frac{dE_n(\Theta)}{d\Theta}$ $v_{\text{max}} = 0.274, 0.166, 0.094, 0.004$ v_{max} of DW = 0.5

Comparison with exact diagonalization:

Back to quenches

What happens if there are mesons in the spectrum of the postquench Hamiltonian in the quasi-particle picture?

- $igodoldsymbol{||} |\psi_0
 angle$ acts as a source of quasi-particles at t=0
- $igodoldsymbol{\circ}$ pairs of particles move in opposite directions with velocity v_p
- moving away the quasi-particles feel the attractive interaction
- The interaction will eventually turn the particles back

1-point function $\langle \sigma_x \rangle$

Quenches from ferro to ferro

Half-chain entanglement entropy

Ferro to Ferro

The entanglement entropy does not grow indefinitely but seems to oscillate around a finite value

Para to Ferro

The entanglement entropy grows but slower compared to the integrable case

(almost) NO Light-cone!

Zooming in: escaping correlations

Quench in the paramagnetic phase

 $h_z^0 = 2, h_x^0 = 0, h_z = 1.75$

Change for small hx is perturbative. For large hx new fast excitations appear. No confinement.

Conclusions

In the Ising chain, confinement changes the light cone spreading of correlations and entanglement

Questions:

- Is it a general property of other cond-mat models featuring confinement? Presumably yes, possible to check numerically
- Is it true in higher dimensions? e.g. in QCD? maybe holography can offer some hints