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Quantum quenches

• prepare the system in some initial state  
in many cases the ground state of a (local) Hamiltonian


• let it evolve unitarily with some other (local) Hamiltonian  
the system is isolated!


• questions about relaxation, thermalization

• role of integrability — GGE, prethermalization etc.

In this talk: small perturbations can have dramatic effects



Consider a system in a quantum state  

Entanglement: what is it?

Quantum system in a pure state |��
The density matrix is � = |��⌥�|
(Tr�n = 1)

H = HA ⇥HB

Alice can measure only in A, while Bob in the remainder B
Alice measures are entangled with Bob’s ones: Schmidt deco

|�� =
�

n

cn|�n�A|�n�B cn ⌅ 0,
�

n

c2
n = 1

If c1 = 1 ⇧ |�� unentangled
If ci all equal ⇧ |�� maximally entangled

A natural measure is the entanglement entropy (�A = TrB�)

SA ⇤ �Tr�A log �A = �
�

n

c2
n log c2

n = SB

Pasquale Calabrese Entanglement and CFT

B
A

Entanglement entropy 

Schmidt decomposition

| i =
X

n

cn| niA| niB cn � 0,
X

n

c2n = 1

● If                is unentagled 
● If all    are equal         is maximally entangled
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ci ) | i
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(⇢A = TrB⇢)A natural measure is the entanglement entropy                    
SA ⌘ �Tr⇢A ln ⇢A = SB

= �
X

n

c2n ln c
2
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FIG. 7. Space-time picture illustrating how the entanglement between an interval A and the
rest of the system, due to oppositely moving coherent quasiparticles, grows linearly and then
saturates. The case where the particles move only along the light cones is shown here for clarity.

momentum p produced at x is therefore at x + v(p)t at time t, ignoring scattering effects.
Now consider these quasiparticles as they reach either A or B at time t. The field at

some point x′ ∈ A will be entangled with that at a point x′′ ∈ B if a pair of entangled
particles emitted from a point x arrive simultaneously at x′ and x′′ (see Fig. 7).

The entanglement entropy between x′ and x′′ is proportional to the length of the interval
in x for which this can be satisfied. Thus the total entanglement entropy is

SA(t) ≈
∫

x′∈A

dx′

∫

x′′∈B

dx′′

∫ ∞

−∞

dx

∫

f(p′, p′′)dp′dp′′δ
(

x′ − x − v(p′)t
)

δ
(

x′′ − x − v(p′′)t
)

.

(4.1)
Now specialize to the case where A is an interval of length ℓ. The total entanglement

is twice that between A and the real axis to the right of A, which corresponds to taking
p′ < 0, p′′ > 0 in the above. The integrations over the coordinates then give max

(

(v(−p′) +
v(p′′))t, ℓ

)

, so that

SA(t) ≈ 2t

∫ 0

−∞

dp′
∫ ∞

0

dp′′f(p′, p′′)(v(−p′) + v(p′′)) H(ℓ − (v(−p′) + v(p′′))t) +

+ 2ℓ

∫ 0

−∞

dp′
∫ ∞

0

dp′′f(p′, p′′) H((v(−p′) + v(p′′))t − ℓ) , (4.2)
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• After a global quench, the initial state      has an extensive excess of energy


• It acts as a source of quasi-particles at       . A particle of momentum p has 
energy      and velocity                         


• For        the particles move semiclassically with velocity       


• Particles emitted from regions of size of the initial correlation length are 
entangled, particles from points far away are incoherent 


• The point        is entangled with a point         if a left (right) moving 
particle arriving at    is entangled with a right (left) moving particle arriving 
at   . This can happen only if 


Light cone spreading of entanglement 

| 0i

t = 0
vp = dEp/dpEp

t > 0 vp

x

x

0

x 2 A

x

0 2 B
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0 ⌥ vpt



• The entanglement entropy of an interval    of length   is proportional to the 
total number of pairs of particles emitted from arbitrary points such that at 
time           and  


• Denoting with      the rate of production of pairs of momenta       and their 
contribution to the entanglement entropy, this implies 
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FIG. 7: Space-time picture illustrating how the entanglement between an interval A and the rest

of the system, due to oppositely moving coherent quasiparticles, grows linearly and then saturates.

The case where the particles move only along the light cones is shown here for clarity.

in x for which this can be satisfied. Thus the total entanglement entropy is

SA(t) ⇡
Z

x02A
dx0

Z

x002B
dx00

Z 1

�1
dx

Z
f(p0, p00)dp0dp00�

�
x0 � x� v(p0)t

�
�
�
x00 � x� v(p00)t

�
.

(4.1)

SA(t) ⇡
Z

x02A
dx0

Z

x002B
dx00

Z 1

�1
dx

Z
f(p)dp�

�
x0 � x� vpt

�
�
�
x00 � x+ vpt

�

/ t

Z 1

0

dpf(p)2vp✓(`� 2vpt) + `

Z 1

0

dpf(p)✓(2vpt� `) (4.2)

Now specialize to the case where A is an interval of length `. The total entanglement

is twice that between A and the real axis to the right of A, which corresponds to taking

p0 < 0, p00 > 0 in the above. The integrations over the coordinates then give max
�
(v(�p0)+

v(p00))t, `
�
, so that

SA(t) ⇡ 2t

Z
0

�1
dp0

Z 1

0

dp00f(p0, p00)(v(�p0) + v(p00))H(`� (v(�p0) + v(p00))t) +

+ 2`

Z
0

�1
dp0

Z 1

0

dp00f(p0, p00)H((v(�p0) + v(p00))t� `) , (4.3)

where H(x) = 1 if x > 0 and zero otherwise. Now since |v(p)|  1, the second term cannot

contribute if t < t⇤ = `/2, so that SA(t) is strictly proportional to t. On the other hand as

t ! 1, the first term is negligible (this assumes that v(p) does not vanish except at isolated

points), and SA is asymptotically proportional to `, as found earlier.

However, unless |v| = 1 everywhere (as is the case for the conformal field theory cal-

culation), SA is not strictly proportional to ` for t > t⇤. In fact, it is easy to see that

the asymptotic limit is always approached from below, as found for the Ising spin chain in

Sec. III. The rate of approach depends on the behavior of f(p0, p00) in the regions where

v(�p0) + v(p00) ! 0. This generally happens at the zone boundary, and, for a non-critical

quench, also at p0 = p00 = 0. If we assume that f is non-zero in those regions, we find a

correction term ⇠ �`3/t2 in the limit where t � t⇤.
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Light cone spreading of entanglement 
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t, x 2 A

x

0 2 B

f(p) ±p

• When     is bounded (e.g. Lieb-Robinson bounds)              , the second 
term is vanishing for              and the entanglement entropy grows 
linearly with time up to a value linear in  

vp |vp| < v
max

2v
max

< `
`
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Example: Transverse Field Ising chain

Evolution of entanglement entropy following a quantum quench:

Analytic results for the XY chain in a tranverse magnetic field

Maurizio Fagotti and Pasquale Calabrese
Dipartimento di Fisica dell’Università di Pisa and INFN, Pisa, Italy

(Dated: November 28, 2010)

The non-equilibrium evolution of the block entanglement entropy is investigated in the XY chain
in a transverse magnetic field after the Hamiltonian parameters are suddenly changed from and to
arbitrary values. Using Toeplitz matrix representation and multidimensional phase methods, we
provide analytic results for large blocks and for all times, showing explicitly the linear growth in
time followed by saturation. The consequences of these analytic results are discussed and the e↵ects
of a finite block length is taken into account numerically.

PACS numbers: 03.67.Mn, 02.30.Ik, 64.60.Ht

The non-equilibrium evolution of extended quantum
systems is one of the most challenging problems of con-
temporary research in theoretical physics. The subject
is in a renaissance era after the experimental realization
[1] of cold atomic systems that can evolve out of equilib-
rium in the absence of any dissipation and with high de-
gree of tunability of Hamiltonian parameters. A strongly
limiting factor for a better understanding of these phe-
nomena is the absence of e↵ective numerical methods to
simulate the dynamics of quantum systems. For meth-
ods like time dependent density matrix renormalization
group (tDMRG) [2] this has been traced back [3] to a too
fast increasing of the entanglement entropy between parts
of the whole system and the impossibility for a classical
computer to store and manipulate such large amount of
quantum information.

This observation partially moved the interest from the
study of local observables to the understanding of the
evolution of the entanglement entropy and in particular
to its growth with time. Based on early results from
conformal field theory [5, 6] and on exact/numerical ones
for simple solvable model [5, 7] it is widely accepted [3]
that the entanglement entropy grows linearly with time
for a so called global quench (i.e. when the initial state
di↵ers globally from the ground state and the excess of
energy is extensive), while at most logarithmically for a
local one (i.e. when the the initial state has only a local
di↵erence with the ground state and so a little excess of
energy). As a consequence a local quench is simulable by
means of tDMRG, while a global one is not.

However, despite this fundamental interest and a large
e↵ort of the community, still analytic results are lacking.
In this letter we fill this gap providing the full analytic
expression for the entanglement entropy at any time in
the limit of large block for the XY chain in a transverse
magnetic field. The model is described by the Hamilto-
nian

H(h, �) = �
NX

j=1


1 + �

4
�x

j

�x

j+1 +
1� �

4
�y

j

�y

j+1 +
h

2
�z

j

�
,

(1)

where �↵

j

are the Pauli matrices at the site j. Periodic
boundary conditions are always imposed. Despite of its
simplicity, the model shows a rich phase diagram being
critical for h = 1 and any � and for � = 0 and h  1, with
the two critical lines belonging to di↵erent universality
classes. The block entanglement entropy is defined as the
Von Neumann entropy S

`

= �Tr⇢
`

log ⇢
`

, where ⇢
`

=
Tr

n�`

⇢ is the reduced density matrix of the block formed
by ` contiguous spins. In the following we will consider
the quench with parameters suddenly changed at t = 0
from h0, �0 to h, �.

Our result is that, in the thermodynamic limit N !1
and subsequently in the limit of a large block ` � 1, the
time dependence of the entanglement entropy is

S(t) = t

Z

2|✏0|t<`

d'

2⇡
2|✏0|H(cos �

'

)+ `

Z

2|✏0|t>`

d'

2⇡
H(cos �

'

) ,

(2)
where ✏0 = d✏/d' is the derivative of the dispersion re-
lation ✏2 = (h � cos ')2 + �2 sin2 ' and represents the
momentum dependent sound velocity (that because of
locality has a maximum we indicate as v

M

⌘ max
'

|✏0|),
cos �

'

= (hh0 � cos '(h + h0) + cos2 ' + ��0 sin2 ')/✏✏0
contains all the quench information [8] and H(x) =
�((1 + x)/2 log(1 + x)/2 + (1� x)/2 log(1� x)/2).

We first prove Eq. (2) and then discuss its interpreta-
tion and physical consequences. The readers not inter-
ested to the derivation can jump directly to latter part.

The method. Writing the entanglement entropy in
terms of a block Toeplitz matrix is rather standard
[5, 9]. One first introduce Majorana operators ǎ2l�1 ⌘�Q

m<l

�z

m

�
�x

l

and ǎ2l

⌘
�Q

m<l

�z

m

�
�y

l

and the corre-
lation matrix �A

`

through the relation hǎ
m

ǎ
n

i = �
mn

+
i�A

`

mn

with 1  m, n  `, that is a block Toeplitz matrix

�
`

=

2

66664

⇧0 ⇧1 · · · ⇧
`�1

⇧�1 ⇧0

...
...

. . .
...

⇧1�`

· · · · · · ⇧0

3

77775
, ⇧

l

=

�f

l

g
l

�g�l

f
l

�
.

Analytically for           with      constant 

The determination of the time-dependent state | (t)i = e�iHI(h)t| 
0

i (and consequently

of the entanglement entropy) proceeds with the Jordan-Wigner transformation in terms of

Dirac or Majorana fermionic operators. All the details of these computations can be found

in the Appendix A.

The final result is that the time-dependent entanglement entropy for ` consecutive spins

in the chain can be obtained (analogously to the ground state case [2]) from the correlation

matrix of the Majorana operators

ǎ
2l�1

⌘
 
Y

m<l

�z
m

!
�x
l , ǎ

2l ⌘
 
Y

m<l

�z
m

!
�y
l . (3.2)

We introduce the matrix �A
` through the relation hǎmǎni = �mn + i�A

` mn with 1  m,n  `.

It has the form of a block Toeplitz matrix

�A
` =

2

6666664

⇧
0

⇧�1

· · · ⇧
1�`

⇧
1

⇧
0

...
...

. . .
...

⇧`�1

· · · · · · ⇧
0

3

7777775
, ⇧l =

2

4 �fl gl

�g�l fl

3

5 . (3.3)

with

gl =
1

2⇡

Z
2⇡

0

d'e�i'le�i✓'(cos�' � i sin�' cos 2✏'t) ,

fl =
i

2⇡

Z
2⇡

0

d'e�i'l sin�' sin 2✏'t , (3.4)

where

✏' =
q
(h� cos')2 + sin2 ' ,

✏0' =
q
(h

0

� cos')2 + sin2 ' ,

e�i✓' =
cos'� h� i sin'

✏'
,

sin�' =
sin'(h

0

� h)

✏'✏0'
,

cos�' =
1� cos'(h+ h

0

) + hh
0

✏'✏0'
. (3.5)

Calling the eigenvalues of �A
` as ±i⌫m, m = 1 . . . `, the entanglement entropy is S =

P`
m=1

H(⌫m) where H(x) is

H(x) = �1 + x

2
log

1 + x

2
� 1� x

2
log

1� x

2
. (3.6)
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The determination of the time-dependent state | (t)i = e�iHI(h)t| 
0

i (and consequently

of the entanglement entropy) proceeds with the Jordan-Wigner transformation in terms of

Dirac or Majorana fermionic operators. All the details of these computations can be found

in the Appendix A.

The final result is that the time-dependent entanglement entropy for ` consecutive spins
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` mn with 1  m,n  `.

It has the form of a block Toeplitz matrix

�A
` =

2

6666664

⇧
0

⇧�1

· · · ⇧
1�`

⇧
1

⇧
0

...
...

. . .
...

⇧`�1

· · · · · · ⇧
0

3

7777775
, ⇧l =

2

4 �fl gl

�g�l fl

3

5 . (3.3)

with

gl =
1

2⇡

Z
2⇡

0

d'e�i'le�i✓'(cos�' � i sin�' cos 2✏'t) ,

fl =
i

2⇡

Z
2⇡

0

d'e�i'l sin�' sin 2✏'t , (3.4)

where

✏' =
q
(h� cos')2 + sin2 ' ,

✏0' =
q
(h

0

� cos')2 + sin2 ' ,

e�i✓' =
cos'� h� i sin'

✏'
,

sin�' =
sin'(h

0

� h)

✏'✏0'
,

cos�' =
1� cos'(h+ h

0

) + hh
0

✏'✏0'
. (3.5)

Calling the eigenvalues of �A
` as ±i⌫m, m = 1 . . . `, the entanglement entropy is S =

P`
m=1

H(⌫m) where H(x) is

H(x) = �1 + x

2
log

1 + x

2
� 1� x

2
log

1� x

2
. (3.6)

8

Evolution of entanglement entropy following a quantum quench:

Analytic results for the XY chain in a tranverse magnetic field

Maurizio Fagotti and Pasquale Calabrese
Dipartimento di Fisica dell’Università di Pisa and INFN, Pisa, Italy

(Dated: November 28, 2010)

The non-equilibrium evolution of the block entanglement entropy is investigated in the XY chain
in a transverse magnetic field after the Hamiltonian parameters are suddenly changed from and to
arbitrary values. Using Toeplitz matrix representation and multidimensional phase methods, we
provide analytic results for large blocks and for all times, showing explicitly the linear growth in
time followed by saturation. The consequences of these analytic results are discussed and the e↵ects
of a finite block length is taken into account numerically.

PACS numbers: 03.67.Mn, 02.30.Ik, 64.60.Ht

The non-equilibrium evolution of extended quantum
systems is one of the most challenging problems of con-
temporary research in theoretical physics. The subject
is in a renaissance era after the experimental realization
[1] of cold atomic systems that can evolve out of equilib-
rium in the absence of any dissipation and with high de-
gree of tunability of Hamiltonian parameters. A strongly
limiting factor for a better understanding of these phe-
nomena is the absence of e↵ective numerical methods to
simulate the dynamics of quantum systems. For meth-
ods like time dependent density matrix renormalization
group (tDMRG) [2] this has been traced back [3] to a too
fast increasing of the entanglement entropy between parts
of the whole system and the impossibility for a classical
computer to store and manipulate such large amount of
quantum information.

This observation partially moved the interest from the
study of local observables to the understanding of the
evolution of the entanglement entropy and in particular
to its growth with time. Based on early results from
conformal field theory [5, 6] and on exact/numerical ones
for simple solvable model [5, 7] it is widely accepted [3]
that the entanglement entropy grows linearly with time
for a so called global quench (i.e. when the initial state
di↵ers globally from the ground state and the excess of
energy is extensive), while at most logarithmically for a
local one (i.e. when the the initial state has only a local
di↵erence with the ground state and so a little excess of
energy). As a consequence a local quench is simulable by
means of tDMRG, while a global one is not.

However, despite this fundamental interest and a large
e↵ort of the community, still analytic results are lacking.
In this letter we fill this gap providing the full analytic
expression for the entanglement entropy at any time in
the limit of large block for the XY chain in a transverse
magnetic field. The model is described by the Hamilto-
nian

H(h, �) = �
NX

j=1


1 + �

4
�x

j

�x

j+1 +
1� �

4
�y

j

�y

j+1 +
h

2
�z

j

�
,

(1)

where �↵

j

are the Pauli matrices at the site j. Periodic
boundary conditions are always imposed. Despite of its
simplicity, the model shows a rich phase diagram being
critical for h = 1 and any � and for � = 0 and h  1, with
the two critical lines belonging to di↵erent universality
classes. The block entanglement entropy is defined as the
Von Neumann entropy S

`

= �Tr⇢
`

log ⇢
`

, where ⇢
`

=
Tr

n�`

⇢ is the reduced density matrix of the block formed
by ` contiguous spins. In the following we will consider
the quench with parameters suddenly changed at t = 0
from h0, �0 to h, �.

Our result is that, in the thermodynamic limit N !1
and subsequently in the limit of a large block ` � 1, the
time dependence of the entanglement entropy is

S(t) = t

Z

2|✏0|t<`

d'

2⇡
2|✏0|H(cos �

'

)+ `

Z

2|✏0|t>`

d'

2⇡
H(cos �

'

) ,

(2)
where ✏0 = d✏/d' is the derivative of the dispersion re-
lation ✏2 = (h � cos ')2 + �2 sin2 ' and represents the
momentum dependent sound velocity (that because of
locality has a maximum we indicate as v

M

⌘ max
'

|✏0|),
cos �

'

= (hh0 � cos '(h + h0) + cos2 ' + ��0 sin2 ')/✏✏0
contains all the quench information [8] and H(x) =
�((1 + x)/2 log(1 + x)/2 + (1� x)/2 log(1� x)/2).

We first prove Eq. (2) and then discuss its interpreta-
tion and physical consequences. The readers not inter-
ested to the derivation can jump directly to latter part.

The method. Writing the entanglement entropy in
terms of a block Toeplitz matrix is rather standard
[5, 9]. One first introduce Majorana operators ǎ2l�1 ⌘�Q

m<l
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and ǎ2l

⌘
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l

and the corre-
lation matrix �A

`

through the relation hǎ
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ǎ
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i = �
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+
i�A

`

mn

with 1  m, n  `, that is a block Toeplitz matrix

�
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=

2

66664
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...
...

. . .
...
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.

t/lt, l � 1
M. Fagotti, P. Calabrese, 2008
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• Horizon: points at separation   become correlated when left- and 
right-moving particles originating from the same point first reach 
them


• If              , connected correlations are then frozen for  

The same scenario is valid for correlations: 

Quantum Quench in the Transverse Field Ising chain I 9

Figure 4. Numerical data for a quench within the ferromagnetic phase from h
0

= 1/3 to
h = 2/3. Left: The two-point function against the asymptotic prediction Eq. (19) for ` = 30 (up
to a multiplicative factor) showing excellent agreement in the scaling regime. Inset: Ratio between
the numerical data and asymptotic prediction (69). The leading correction is time independent,
but subleading contributions oscillate. Right: The connected correlation function for the same
parameters as on the left. For t < t

F

, ⇢xx

c

(`, t) vanishes identically in the scaling regime.

In the limit ` ! 1 (19) gives the square of the result (13) for the one-point function. For
times smaller than the Fermi time

tF =
`

2v
max

, (21)

the first exponential factor in (19) equals 1. Thus, in the space-time scaling limit, connected
correlations vanish identically for times t < tF and begin to form only after the Fermi time. This
is a general feature of quantum quenches [9, 22] and has been recently observed in experiments on
one dimensional cold-atomic gases [4]. We stress that this by no means implies that the connected
correlations are exactly zero for t < tF : in any model, both on the lattice or in the continuum
there are exponentially suppressed terms (in `) which vanish in the scaling limit. The form factor
approach gives the following result for large t and ` (see Section 4.3)

⇢xx
FF (`, t) ' (1� h2)

1

4 exp
h

� 2`

Z ⇡

0

dk

⇡
K2(k)✓H

�

2"0
h(k)t� `

�

i

⇥ exp
h

� 4t

Z ⇡

0

dk

⇡
"0

h(k)K2(k)✓H

�

`� 2"0
h(k)t

�

i

. (22)

As expected, it gives the low density approximation to the full result (19).
A comparison (for a typical quench from h

0

= 1/3 to h = 2/3) between the asymptotic results
(19) (22) and numerical results for the correlation function at a finite but large distance (` = 30) is
shown in Fig. 4. The numerical results are obtained by expressing the two-point correlator in the
thermodynamic limit as the determinant of an `⇥ ` matrix (see section 3) and then evaluating the
determinant for di↵erent times. As we are concerned with equal time correlators only we do not
need to extract the two-point function from a cluster decomposition of the 4-point function [61].
The agreement is clearly excellent. The ratio between the exact numerics and the analytic result
(19) in the space-time scaling limit is shown in the inset of Fig. 4 for two values of  = v

max

t/`.
We see the ratio approaches a constant for large `. The corrections to this constant are seen to

Example: Ising model within ferromagnetic phase
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FIG. 1: (color online) Time evolution of the equal-time density correlation function Ci,j(t) of spinless fermions after a quench
from the CDW ground state of H(V0) with V0 = 10, evolved by the Hamiltonian H(V ), with (a) V = 0, (b) V = 2, (c) V = 5,
(d) and V = 20.

to u(V = 0) = 2vF = 4th, as expected, where vF denotes
the Fermi velocity for V = 0. In addition to the light
cone, additional propagation fronts at later times can be
identified in Fig. 1(a), which, however, possess a lower ve-
locity. This signals that slower quasiparticles stemming
from regions without linear dispersion also participate
in spreading information. Figure 1(c) shows the evolu-
tion of the correlation function for a quench within the
CDW phase, i.e., a case which should not be describable
by conformal field theory. Interestingly, we nevertheless
find a pronounced light-cone behavior in the correlation
function. Although the conformal field theory underlying
the treatment of Calabrese and Cardy is not valid in this
region, the physical picture that ballistically propagating
quasiparticles are generated by the quench seems to hold.
However, in contrast to the case of the quench to the LL
displayed in Figs. 1(a) and (b), we see that a strong alter-
nating pattern forms in the density correlation function
and remains present and qualitatively unchanged after
the onset of the light cone.

A more detailed view of the temporal evolution of the
correlation functions is shown in Fig. 2, in which we plot
the values of Ci,j(t) as a function of time for increasing
distance | i−j | for V = 0 and V = 2, the two extremes of
the Luttinger-liquid phase. After the arrival of the first
signal, oscillatory behavior as a function of time can be
observed at each distance. However, as V is increased,
the observed oscillations both decrease in magnitude and
are damped out more rapidly. Comparing the results for
the free case to the ones obtained for V = 2 in Fig. 2, it
can be seen that the incoming front travels with a higher
velocity when V is larger, as can also be seen in Fig. 1.

In contrast to the oscillatory behavior in the Luttinger-
liquid phase, a steady increase of the correlations is ob-
served when the quench occurs within the CDW phase, as
can be seen in Fig. 3. The alternating pattern imprinted
at the onset of the light cone is preserved. Presumably,
the correlation functions saturate at some time that is
significantly longer than the maximum time reached here.
While results for both V < V0 and V > V0 show the same
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Figure 3. Time-evolution of correlation functions after a quench from Ui = 2J to
Uf = 40J . The upper panel shows the single particle correlation functions

�
b†0br

⇥

for di�erent distances r. The correlations show partial revivals up to a time tr when
they start to reach a quasi-steady state. This time tr grows approximately linearly
with the distance r as marked by the vertical lines. The central panel shows the
same correlations functions after filtering out the high frequencies, see text for details.
The lowest panel shows the density density correlations function

�
n0nr

⇥
after shifting

and rescaling their amplitude for better visibility. The common vertical dashed lines
denote the arrival of the minima as determined from the density-density correlations.
The data shown is ED for a L = 14 and DMRG data for L = 32 and filling n = 1.

correlations ⇧b†jbj+r⌃ and the density-density correlations ⇧njnj+r⌃ at equal time. In

Fig. 3 we show the time-evolution of the di�erent correlations after a quench from the

superfluid, Ui = 2, to the Mott-insulating, Uf = 40, parameter regime.

Single-particle correlations The upper panel shows the correlations ⇧b†0br⌃ for di�erent

distances r‡. For short times the single particle correlations oscillate with the period

2⇥/Uf . The origin of these oscillations lies in the integer spectrum of the operator

n̂j(n̂j � 1)/2. Consider the limit of very strong interactions, where the time-evolution

is totally dominated by the interactions. The time evolution of the single particle

correlations is given by

⇧b†ibj⌃(t) =
⇤

{m},{m0}

�mi,m0
i+1 ⇥ �mj ,m0

j�1 ⇥ eiUf (m0
j�m0

i�1)tc⇥mcm0⇧{m}|b†ibj|{m⇤}⌃.

Here we use the notation {m} for the Fock state with mi particles on site i. The time-

evolution of the correlation function is determined by the non-vanishing cross terms

‡ To extract these correlations from the DMRG data with open boundary conditions the average over
central sites is taken. Note that for periodic boundary conditions this quantitiy is real due to symmetry,
whereas for open boundary conditions an imaginary part can develop. However for the shown functions
and times the imaginary part is negligible.
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t
2

bosons described by the Bose-Hubbard Hamiltonian

H (U) =� Â
hR,R0i

⇣
b†

RbR0 +h.c.
⌘
+

U
2 Â

R
nR(nR �1), (3)

where R denotes a lattice site, hR,R0i a pair of nearest-
neighbor sites, b†

R (bR) the creation (annihilation) operator of
a boson on site R, nR = b†

RbR the boson density on site R,
and U the two-body interaction strength. In the following, the
lattice will be either a 1D chain or a 2D square lattice, with
periodic boundary conditions and average density hnRi = 1.
The system is first prepared in the ground state of H (Ui). At
time t = 0, it is then driven out of equilibrium upon realizing a
sudden quantum quench in the interaction strength, from Ui to
Uf. We study the dynamics of the density-density correlation
function

N(R, t) = hnR(t)n0(t)i�hnR(0)n0(0)i, (4)

where the average is over the ground state of H (Ui) and the
density operators are evolved in time with H (Uf) i.e., Eq. (2)
where both A and B are the density operators.

Our analysis makes use of the t-VMC approach [13] that we
briefly outline here. The starting point is to define a class of
time-dependent variational many-body wave functions, which
we take of the Jastrow type

Y(x, t)⌘ hx|Y(t)i= exp

Â
r

ar(t)Or(x)
�

F0(x), (5)

where x spans a configuration basis, F0(x) is a bosonic time-
independent state, and ar(t) are complex variational parame-
ters coupled to a set of operators Or that are diagonal in the x-
basis, i.e., hx|Or|x0i = dx,x0Or(x). The explicit form of these
operators and their total number define the variational sub-
space. Here we use the Fock basis, x = {ni}, and the complete
set of density-density correlations, Or = ÂR nRnR+r, where
r spans all independent distances on the lattice. The initial
state is chosen to be the variational Jastrow ground state of
H (Ui) with |F0i the noninteracting-boson ground state of
H (0). This choice provides an excellent approximation of
the exact ground state of H (Ui) [14, 15]. For instance, the
superfluid-insulator transition is obtained for Uvar

c ' 5 and
Uvar

c ' 21 in 1D and 2D respectively, in fair agreement with
exact results [16, 17].

The variational dynamics of the system is fully contained
in the trajectories of the variational parameters ar(t). The
latter are obtained by minimizing the Hilbert-space distance
between the infinitesimal exact dynamics and the time deriva-
tive of the variational state (5) at each time step. This process
is equivalent to project the exact time-evolved wave function
onto the variational subspace. It yields a closed set of coupled
equations of motion:

iÂ
r0

Sr,r0(t)
...
ar0(t) = hOrH it �hOrithH it , (6)

where Sr,r0(t) = hOrOr0 it �hOrithOr0 it and the quantum av-
erages are taken over the time-dependent variational state (5).
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Figure 1: (Color on-line) Spreading of correlations in a 1D chain.
(a) Density-density correlations N(R, t) versus separation and time
for a quench in the interaction strength from Ui = 2 to Uf = 4. The
inset shows the instantaneous velocity as obtained from t-VMC (red
points) and exact diagonalization (for a 12-site lattice; blue point).
(b) Time dependence of N(R, t) for various values of R. For clar-
ity, the curves are vertically shifted by a value proportional to R, and
the linear light-cone wave-front clearly appears. (c) Relative energy
fluctuations versus time for various values of Uf. The t-VMC calcu-
lations are performed for 200 (a and b) or 500 (c) sites.

At each time, the quantum averages appearing in Eq. (6) are
computed by variational Monte Carlo simulations and the lin-
ear system of equations (6) is solved for

...
ar(t). The trajec-

tories ar(t) are then found by time-integrating the functions
...
ar(t).

We emphasize that our variational scheme is symplectic and
exactly conserves both the total energy and the square modu-
lus of the wave function. In the numerical calculations, we use
a sufficiently small time-step, d t = 0.01, and a fourth-order
Runge-Kutta integration scheme, which conserves the energy
with a very small systematic error of the order of one part in
a thousand, for times up to t = 100. The t-VMC is therefore
intrinsically stable, amenable to simulating time scales that
exceed by about two orders of magnitudes those achievable
by t-DMRG in 1D, and applies as well in higher dimensions.

Results.— Let us first discuss our results for the 1D chain.
Figure 1(a) shows the density-density correlation N(R, t) as a
function of separation and time for a quantum quench from
Ui = 2 to Uf = 4. Figure 1(b) shows vertical cuts of the lat-
ter, plotted with a vertical shift proportional to R for clarity.
A light-cone effect is clearly visible: N(R, t) is unaffected at
short times, then develops a maximum at a finite time t?(R),
and finally undergoes damped oscillations. Similar results are
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FIG. 2. Space-time plot of the Sz correlation functions (3) for the
quench from �i = 4 to �f = cos(⇡/4). This particular value of the
final interaction is chosen due to technical reason in the Bethe ansatz
calculations. The upper panel shows ground state data whereas the
lower panel shows data from a thermal density matrix at T/J = 1.
This illustrates that the light-cone effect in this observable persists
also at finite temperatures.

product state (MPS) framework. We come back to the de-
scription of the algorithm and a discussion of its performance
towards the end of this paper.

Results.— In the following we consider quenches to the
spin-1/2 Heisenberg XXZ chain with anisotropy �

H(�) = J
L�1X

i=1

�
Sx

i S
x
i+1 + Sy

i S
y
i+1 + �Sz

i S
z
i+1

�
. (1)

Initially, the system is prepared in a Gibbs state corresponding
to an XXZ Hamiltonian with anisotropy �i at a temperature
T , i.e.

⇢(t = 0) = Z�1
� exp[��H(�i)] , � =

1

kBT
, (2)

where Z� = Tr exp[��H(�i)] (we set kB = 1). The
anisotropy is then quenched at time t = 0+ from �i to
0  �f  1, as depicted in Fig. 1(a), and the system sub-
sequently evolves unitarily with Hamiltonian H(�f ) [40]. In
order to probe the spreading of correlations we consider the
longitudinal spin correlation functions

Sz(j; t) = hSz
L/2(t)S

z
j (t)i � hSz

L/2(t)ihSz
j (t)i (3)

centered around the middle of the chain. Results for Sz(j; t)
are most easily visualized in space-time plots, and typical re-
sults are shown in Fig. 2. The most striking feature observed
in these plots is the light-cone effect: at a given separation j
connected correlations Sz(j; t) arise fairly suddenly at a time
that scales linearly with j.

These results demonstrate that the light-cone effect persists
for mixed initial states, although the visibility of the signal
is diminished with increasing temperature (until it vanished
completely at � = 0 since the initial density matrix is trivial
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FIG. 3. a) Extracted inflection points versus distance for different
initial temperatures for the quench from � = 4 to cos(⇡/4). The
straight lines correspond to the velocities extracted from the GGE
where only the offset of the time axis has been fitted. The orange
dashed line denotes the ground state Bethe ansatz velocity at �f .
b) Rescaled averaged spin correlation functions for the quench from
� = 4 to cos(⇡/4) for T/J = 1 and the ground state (dashed line)
and different distances j = 3, 5, 7 and 9. We omit the error bars for
clarity of the figure. The time axis is relative to the first inflection
point of the correlation functions for j = 3. One can see that the
signal is delayed as the initial temperature is increased.

and stationary). Comparing the time evolution of the corre-
lation functions for different initial temperatures, we see (cf
Fig. 2 and Fig. 3) that the signal front is delayed when the
temperature of the initial state is increased, signalling that the
spreading slows down. We further observe that the spreading
velocity is sensitive to the strength of the quench, i.e. the value
of the initial interaction. At this point we should note that this
finding is unexpected. Based on our current understanding of
quenches to CFTs or of Lieb-Robinson bounds, there are no
predictions available which support spreading velocities de-
pending on the initial state.

Having established the result that the spreading velocity de-
pends both on the initial density matrices and the final Hamil-
tonian, an obvious question is which properties of ⇢(t = 0)
are relevant in this context. In order to quantify this aspect we
define the precise location of the light-cone as the first inflec-
tion point of the signal front observed in Sz (alike Ref. 29).
This allows us to extract a spreading velocity vs by perform-
ing a linear fit to the largest accessible time, where expected
finite-distance effects [41] are small.

Our main result, shown in Fig. 4, is that the spreading ve-
locity is mainly determined by the final energy density

ef =
Tr[H(�f )⇢(t = 0)]

L
. (4)

Plotting the measured velocities against ef leads to a remark-
able data collapse for a variety of quenches from thermal as
well as pure initial states for various �i. This holds in spite
of the fact that the system is integrable and thus its dynam-
ics is constrained by an infinite set of conserved quantities.
As we will show in the following, the observed velocities can
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FIG. 1. Spreading of correlations in a quenched atomic
Mott insulator. a, A 1d ultracold gas of bosonic atoms
(black balls) in an optical lattice is initially prepared deep
in the Mott-insulating phase with unity filling. The lattice
depth is then abruptly lowered, bringing the system out of
equilibrium. b, Following the quench, entangled quasiparticle
pairs emerge at all sites. Each of these pairs consists of a
doublon (red ball) and a holon (blue ball) on top of the unity-
filling background, which propagate ballistically in opposite
directions. It follows that a correlation in the parity of the
site occupancy builds up at time t between any pair of sites
separated by a distance d = vt, where v is the relative velocity
of the doublons and holons.

mentum k, respectively, and k belongs to the first Bril-
louin zone. Quasiparticles thus emerge at any site in the
form of entangled pairs, consisting of a doublon and a
holon with opposite momenta. Some of these pairs are
bound on nearest-neighbour sites while the others form
wave packets, due to their peaked momentum distribu-
tion. The wave packets propagate in opposite directions
with a relative group velocity v determined by the dis-
persion relation �d(k) + �h(�k) of doublons and holons
(Fig. 1b). The propagation of quasiparticle pairs is re-
flected in the two-point parity correlation functions [21]:

Cd(t) = ⌃ŝj(t)ŝj+d(t)⌥ � ⌃ŝj(t)⌥⌃ŝj+d(t)⌥ , (2)

where j labels the lattice sites. The operator ŝj(t) =
ei�[n̂j(t)�n̄] measures the parity of the occupation number
n̂j(t). It yields +1 in the absence of quasiparticles (odd
occupancy) and -1 if a quasiparticle is present (even occu-
pancy). Because the initial state is close to a Fock state
with one atom per lattice site, we expect Cd(t = 0) ⇧ 0.
After the quench, the propagation of quasiparticle pairs
with the relative velocity v results in a positive correla-
tion between any pair of sites separated by a distance
d = vt.

The experimental sequence started with the prepara-
tion of a two-dimensional (2d) degenerate gas of 87Rb
confined in a single antinode of a vertical optical lattice
[17, 21] (z-axis, alat = 532nm). The system was then
divided into about 10 decoupled 1d chains by adding a
second optical lattice along the y-axis and by setting both

lattice depths to 20.0(5)Er, where Er = (2⇤~)2/(8ma2lat)
is the recoil energy of the lattice and m the atomic mass of
87Rb. The e⇢ective interaction strength along the chains
was tuned via a third optical lattice along the x-axis. The
number of atoms per chain ranged between 10 and 18, re-
sulting in a lattice filling n̄ = 1 in the Mott-insulating do-
main. The inital state was prepared by adiabatically in-
creasing the x-lattice depth until the interaction strength
reached a value of (U/J)0 = 40(2). We then brought the
system out of equilibrium by lowering the lattice depth
typically within 100 µs, which is fast compared to the
inverse tunnel coupling ~/J , but still adiabatic with re-
spect to transitions to higher Bloch bands. The final
lattice depths were in the Mott-insulating regime, close
to the critical point. After a variable evolution time, we
“froze” the density distribution of the many-body state
by rapidly raising the lattice depth in all directions to
⌅ 80Er. Finally, the atoms were detected by fluorescence
imaging using a microscope objective with a resolution
on the order of the lattice spacing and a reconstruction
algorithm extracted the occupation number at each lat-
tice site [17]. Because inelastic light-assisted collisions
during the imaging lead to a rapid loss of atom pairs, we
directly detected the parity of the occupation number.

Our experimental results for the time evolution of the
two-point parity correlations after a quench to U/J =
9.0(3) show a clear positive signal propagating with in-
creasing time to larger distances d (Fig. 2). In addition,
the propagation velocity of the correlation signal is con-
stant over the range 2 ⇤ d ⇤ 6 (inset of Fig. 2). We found
similar dynamics also for quenches to U/J = 5.0(2) and
7.0(3) (Fig. 4). We note that the observed signal can-
not be attributed to a simple density wave because such
an excitation would result in ⌃ŝj ŝj+d⌥ = ⌃ŝj⌥⌃ŝj+d⌥. We
compared the experimental results to numerical simula-
tions of an infinite, homogeneous system at T = 0 using
the adaptive time-dependent density matrix renormal-
ization group [22, 23] (t-DMRG). In the simulation, the
initial and final interaction strengths were fixed at the ex-
perimentally determined values and the quench was con-
sidered instantaneous, at t = 0. We found remarkable
agreement between the experiment and theory over all
explored distances and times, despite the finite tempera-
ture T ⇧ 0.1U/kb (kb is the Boltzmann constant) and the
harmonic confinement with frequency ⇥ = 68(1)Hz that
characterise the experimental system. The observed dy-
namics is also qualitatively reproduced by our analytical
model for U/J = 9.0. For lower values of U/J , however,
the model breaks down due to the increasing number of
quasiparticles.

We extracted the propagation velocity v from the time
of the correlation peak as a function of the distance
d (Fig. 3a). A linear fit restricted to 2 ⇤ d ⇤ 6
yields v ⇥ ~/(Jalat) = 5.0(2), 5.6(5) and 5.0(2) for U/J =
5.0(2), 7.0(3) and 9.0(3), respectively. The points for
d = 1 were excluded from the fit, as they result from the

3

FIG. 2. Time evolution of the two-point parity cor-
relations. After the quench, a positive correlation signal
propagates with increasing time to larger distances. The ex-
perimental values for a quench from U/J = 40 to U/J = 9.0
(circles) are in good agreement with the corresponding numer-
ical simulation for an infinite, homogeneous system at zero
temperature (continuous line). Our analytical model (dashed
line) also qualitatively reproduces the observed dynamics. In-
set: Experimental data displayed as a colormap, revealing the
propagation of the correlation signal with a well defined ve-
locity. The experimental values result from the average over
the central N sites of more than 1000 chains, where N equals
80% of the length of each chain. Error bars represent the
standard deviation.

interference between propagating and bound quasiparti-
cle pairs (Eq. (1)). A comparison of the experimental
velocities with the ones obtained from numerical simu-
lations (Fig. 3b) shows agreement within the error bars.
The measured velocities can also be compared with two
limiting cases: On the one hand, they are significantly
larger than the spreading velocity of non-interacting par-
ticles, v = 4 Jalat/~, and twice the velocity of sound
in the superfluid phase [24]; on the other hand, they re-
main below the maximum velocity predicted by our e�ec-
tive model, that can be interpreted as a Lieb–Robinson

FIG. 3. Propagation velocity. a, Determination of the
propagation velocity for the quenches to U/J = 5.0, 7.0 and
9.0. The time of the maximum of the correlation signal is
obtained from fits to the traces Cd(t) (circles). Error bars
represent the 68% confidence interval of these fits. We then
extract the propagation velocities from weigthed linear fits
restricted to 2  d  6 (lines). The data for U/J = 5.0 and
7.0 have been oset horizontally for clarity. b, Comparison
of the experimental velocities (circles) to the ones obtained
from numerical simulations for an infinite, homogeneous sys-
tem at zero temperature (shaded area). The shaded area and
the vertical error bars denote the 68 % confidence interval of
the fit. The horizontal error bars represent the uncertainty
due to the calibration of the lattice depth. The black line cor-
responds to the bound predicted by our eective model (the
shading indicates the break down of this model). The arrows
mark the maximum velocity expected in the non-interacting
case (left) and the asymptotic value derived from our model
when U/J ! 1 (right).

bound (Fig. 3b). This bound equals 6 Jalat/~ in the limit
U/J � ⇥, corresponding to doublons and holons propa-
gating with the respective group velocities 4 Jalat/~ and
2 Jalat/~. The higher velocity of doublons simply reflects
their Bose-enhanced tunnel coupling.

In conclusion, we have presented the first experimen-
tal observation of an e�ective light cone for the spread-
ing of correlations in an interacting quantum many-body
system. Although the observed dynamics can be under-
stood within a fermionic quasiparticle picture valid deep
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mann entropy S = �tr ⇢
A

log ⇢
A

= �tr ⇢
B

log ⇢
B

of the
reduced density matrix of either subsystem. We always
form the two bipartitions by dividing the system at the
center bond.

The type of evolution considered here can be viewed
as a “global quench” in the language of Calabrese and
Cardy [14] as the initial state is the ground state of an
artificial Hamiltonian with local fields. Evolution from an
initial product state with zero entanglement can be stud-
ied e�ciently via time-dependent matrix product state
methods until a time where the entanglement becomes
too large for a fixed matrix dimension. Since entangle-
ment cannot increase purely by local operations within
each subsystem, its growth results only from propagation
across the subsystem boundary, even though there is no
conserved current of entanglement.

The first question we seek to answer is whether there is
any qualitatively di↵erent behavior of physical quantities
when a small interaction

Hint = J
z

X

i

Sz

i

Sz

i+1 (2)

is added. With Heisenberg couplings between the spins
(J

z

= J?), the model is believed to have a dynami-
cal transition as a function of the dimensionless disor-
der strength ⌘/J

z

[4, 5, 7]. This transition is present
in generic eigenstates of the system and hence exists at
infinite temperature at some nonzero ⌘. The spin con-
ductivity, or equivalently particle conductivity after the
Jordan-Wigner transformation, is zero in the many-body
localized phase and nonzero for small enough ⌘/J

z

. How-
ever, with exact diagonalization the system size is so lim-
ited that it has not been possible to estimate the location
in the thermodynamic limit of the transition of eigen-
states or conductivities.

We find that entanglement growth shows a qualitative
change in behavior at infinitesimal J

z

. Instead of the ex-
pected behavior that a small interaction strength leads
to a small delay in saturation and a small increase in
final entanglement, we find that the increase of entan-
glement continues to times orders of magnitude larger
than the initial localization time in the J

z

= 0 case (Fig.
1). This slow growth of entanglement is consistent with
prior observations for shorter times and larger interac-
tions J

z

= 0.5J? and J
z

= J? [12, 13], although the
saturation behavior was unclear. Note that observing
a sudden e↵ect of turning on interactions requires large
systems, as a small change in the Hamiltonian applied
to the same initial state will take a long time to a↵ect
the behavior significantly. We next explain briefly the
methods enabling large systems to be studied.

Numerical methodology. – To simulate the quench, we
use the time evolving block decimation (TEBD) [15, 16]
method which provides an e�cient method to perform a
time evolution of quantum states, | (t)i = U(t)| (0)i, in
one-dimensional systems. The TEBD algorithm can be
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FIG. 1. (a) Entanglement growth after a quench starting
from a site factorized Sz eigenstate for di↵erent interaction
strengths J

z

(we consider a bipartition into two half chains of
equal size). All data is for ⌘ = 5 and L = 10, except for J

z

=
0.1 where L = 20 is shown for comparison.The inset shows
the same data but with a rescaled time axis and subtracted
J
z

= 0 values. (b) Saturation values of the entanglement
entropy as a function of L for di↵erent interaction strengths
J
z

. The inset shows the approach to saturation.

seen as a descendant of the density matrix renormaliza-
tion group [17] method and is based on a matrix product
state (MPS) representation [18, 19] of the wave functions.
We use a second-order Trotter decomposition of the short
time propagator U(�t) = exp(�i�tH) into a product of
term which acts only on two nearest-neighbor sites (two-
site gates). After each application, the dimension of the
MPS increases. To avoid an uncontrolled growth of the
matrix dimensions, the MPS is truncated by keeping only
the states which have the largest weight in a Schmidt de-
composition.

In order to control the error, we check that the ne-
glected weight after each step is small (< 10�6). Al-
gorithms of this type are e�cient because they exploit
the fact that the ground-state wave functions are only
slightly entangled which allows for an e�cient truncation.

Bardarson, Pollmann, Moore ’14

 see also: De Chiara et al. ’05
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spin is flipped and the subsequent evolution of the magnetisation h�z

i (t)i is measured. From a to c, the interaction ranges can be fitted by
power laws with ↵ ⇠ 1.41, 1.07, 0.75. Red lines: fits to the experimentally observed magnon arrival times (see methods; examples shown
in panel d). With increasing interaction range, the signal clearly propagates faster than what is allowed by the nearest-neighbour light-cone
(white lines, derived from the maximal group velocity of the nearest-neighbour model). d. Magnetisation evolution of spins (ions) 6 and 13,
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light-cone (grey dash-dotted line). For smaller ↵, the measured values are consistent with the divergent behaviour predicted when considering
the full power-law interactions (black line).

Jurcevic et al., Nature 511, 202 (2014)

Long-range interaction: 

 see also: Hauke & Tagliacozzo,  ’13
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where �↵

j

are the Pauli matrices and we impose

periodic boundary conditions. The parameters

h
z

and h
x

are dimensionless, while J sets the en-

ergy scale. For h
x

= 0 we recover the integrable

transverse field Ising model (TFIM) which can

be diagonalized by a Jordan-Wigner mapping to

free spinless Majorana fermions a
k

[20, 21]:

H
TFIM

=
X

k

"(k)a†
k

a
k

+ const. , (2)

with the dispersion relation "(k) =

2J
p
1� 2h

z

cos k + h
z

2.

At h
z

= 1 the system has a quantum criti-

cal point separating the paramagnetic and ferro-

magnetic phases. For h
z

< 1 the system is in the

gapped ferromagnetic phase where the massive

fermions can be thought of as freely propagating

domain walls separating domains of magnetiza-

tion �̄ = (1 � h
z

2)1/8. Switching on a non-zero

field h
x

induces a linear attractive potential be-

tween pairs domain walls which enclose a domain

of length d and of magnetization in the direction
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• For         free fermions with dispersion 


•          separates two massive phases 


• For         (ferro phase), the massive fermions can be seen as domain 
walls separating domains of magnetization 


•     induces an attractive interaction between DW that for small  
enough     can be approximated as a linear potential 


• DW do not propagate freely but get confined into mesons 

Free DW Bound state = meson

McCoy & Wu ’78

Confinement in the Ising model

Dynamical confinement in the transverse field Ising chain

Márton Kormos

(Dated: December 5, 2015)

I. CONFINEMENT IN THE TRANSVERSE FIELD ISING CHAIN

The Hamiltonian that we intend to study is

H = �J
LX

j=1

⇥
�x

j

�x

j+1

+ hz�z

j

+ hx�x

j

⇤
, (1)

where �↵

j

are the Pauli matrices and we impose periodic boundary conditions. Note that hz and hx

are now dimensionless factors and J sets the energy scale. This Hamiltonian is sometimes referred

to as the “tilted field Ising chain”.

For hx = 0 we recover the integrable transverse field Ising chain which can be diagonalized by

mapping it to free spinless fermions:

H
TI

=
X

k

"(k)a†
k

a
k

+ const. , (2)

where the dispersion relation is given by

"(k) = 2J
p

1� 2hz cos k + hz2 . (3)

Some care has to be taken with respect to the boundary conditions for the fermions and the

quantization of the momentum k, but we do not go into these details here.

At hz = 1 the system has a quantum critical point separating the paramagnetic and ferro-

magnetic phases. For hz < 1 the system is in the gapped ferromagnetic phase where the massive

fermions can be thought of as freely propagating domain walls separating domains of magnetization

�̄ = (1� hz2)1/8. This picture becomes more and more accurate as hz approaches zero.

A small (?) non-zero field hx induces a linear attractive potential between neighboring domain

walls which border a domain having magnetization in the direction opposite to hx. If d is the

distance between the domain walls, the potential is V (d) = � · d with � = 2Jhx�̄. Clearly, domain

walls do not propagate freely anymore and they get confined into bound states (“mesons”).

h
x

= 0

hz = 1

hz < 1
� = (1� hz)

1/8

h
x

h
x

V (x) = 2Jh
x

� |x|



Rutkevich ’08Consider two fermions in 1D with Hamiltonian

This can be quantized semiclassically a la Bohr-Sommerfeld

2

A. Dispersion relation of the bound states

The energy spectrum can be understood in the following heuristic picture1. Consider two

fermions moving in 1D as a classical system with the Hamiltonian

H = "(✓
1

) + "(✓
2

) + �|x
2

� x
1

| . (4)

The coordinates are taken to be real numbers (continuum system), and ✓
1

, ✓
2

are the canonical

conjugate variables. Let us now make the canonical transformation

X =
x
1

+ x
2

2
, x = x

2

� x
1

, (5)

⇥ = ✓
1

+ ✓
2

, ✓ =
✓
2

� ✓
1

2
. (6)

Then the Hamiltonian takes the form

H = !(✓;⇥) + �|x| , (7)

where

!(✓;⇥) = "(✓ +⇥/2) + "(✓ �⇥/2) . (8)

Energy and momentum conservation give

⇥(t) = ⇥ = const. (9)

! (✓(t);⇥) + �|x(t)| = E = const. (10)

and the canonical equations of motion are

Ẋ(t) =
@!(✓;⇥)

@⇥
, (11)

ẋ(t) =
@!(✓;⇥)

@✓
, (12)

✓̇(t) = �� sgn(x(t)) . (13)

For a given value of the total momentum ⇥ these equations describe the relative motion of two

particles. The solution becomes simple if we think of q = ✓ as a spatial coordinate and consider

p = �x as the conjugate momentum. The the “kinetic energy”, �|p|, is linear in the “momentum”

and !(q;⇥) is the potential energy as a function of the “coordinate” q. The equations then read

ṗ(t) = �@!(q;⇥)

@q
, (14)

q̇(t) = � sgn(p(t)) . (15)
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The number and the energies of mesons depend on hx, hz, Θ

For two minima
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FIG. 1: Semiclassical bound state energy levels in the “relative potential” !(✓,⇥) from the

solutions of Eqs. (21). The dashed vertical lines show the turning points ✓
a,b

.

Now we have to cover the case when !(✓;⇥) has two minima (see Fig. 1b). This happens for

⇥ > ⇥
m

= 2arccoshz (23)

when the second derivative of !(✓;⇥) at zero becomes positive and we get a double well potential.

For E > !(0;⇥) the above treatment is correct, but if E < !(0;⇥), the classical motion takes place

in one of the two separated wells, in the interval [✓
b

, ✓
a

] where the turning points are given by the

two distinct solutions of Eq. (16). This is not invariant under ✓ ! �✓, so the Pauli principle does

not restrict the allowed values of ⌫ = 0, 1, 2, . . . in Eq. (19). Thus the semiclassical energy levels

are now given by

E
n

(⇥)(✓
a

� ✓
b

)�
✓

aZ

�✓

b

d✓ !(✓;⇥) = ⇡�(n� 1/2) , n = 1, 2, . . . (24a)

and

!(✓
a,b

(n;⇥);⇥) = E
n

(⇥) . (24b)

For hz = 0.25, hx = 0.1 there are four semiclassical bound states as it is shown in Fig. 1a. For

these magnetic fields there are no bound states in the double well case when ⇥ is large. Fig. 1b

shows such a case for hz = 0.5, hx = 0.1, and ⇥ = 3.

The solutions of Eqs. (21,24) give the dispersion relations E
n

(⇥) of the bound states. We plot

the dispersion relations of the four mesons for J = 1, hz = 0.25, hx = 0.1 in Fig. 2a. The energy

gaps (masses) of these states are m = 3.662, 4.127, 4.48, 4.769. They cannot have arbitrarily large

!3 !2 !1 0 1 2 3

4.0

4.2
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hx =0.1, hz= 0.5, Θ=3

2 mesons

Approximation for the meson spectrum

3

The periodic motion is that of a particle in the 1D potential !(q;⇥).

First we consider the case when !(q;⇥) has only one minimum at q = 0 (see Fig. 1a). Then the

particle moves between the two symmetric turning points, ±q
a

, given by the condition

E = !(q
a

;⇥) . (16)

Let us release the particle at t = 0 at the right turning point: q(0) = q
a

, p(0) = 0. Because of Eq.

(14), p starts to decrease from zero and according to Eq. (15) the particle travels with constant

negative velocity �� until it reaches q = 0. Here the slope of the potential changes sign, p grows

back up to zero while the particle continue its constant velocity trip to �q
a

. Then the particle

travels back to q
a

with constant velocity while p grows up to its maximal value

p
max

= (E � !(0;⇥))/� = x
max

(17)

taken at q = 0 and then decreases to zero. The period of the motion is

T = 4q
a

/� . (18)

The semiclassical energy levels are given by the Bohr–Sommerfeld quantization condition,
I

dp q = 2⇡(⌫ + 1/2) , (19)

where the integration path is taken along the periodic path in the phase space. Now we use that

our particles are fermionic so only odd values of ⌫ are allowed, ⌫ = 2n � 1. The integral can be

transformed as

I
dp q = 2

q

aZ

�q

a

dq q
dp(q)

dq
= 2

q

aZ

�q

a

dq q
ṗ(t)

�
= � 2

�

q

aZ

�q

a

dq q
@!(q;⇥)

@q
= � 2

�

0

@2q
a

!(q
a

;⇥)�
q

aZ

�q

a

dq !(q;⇥)

1

A .

(20)

Putting together everything, the semiclassical energy spectrum of bound states of the two fermions

is determined by the equation

2E
n

(⇥)✓
a

�
✓

aZ

�✓

a

d✓ !(✓;⇥) = 2⇡�(n� 1/4) , n = 1, 2, . . . (21a)

where ✓
a

= ✓
a

(n;⇥) is the solution of the equation

!(✓
a

(n;⇥);⇥) = E
n

(⇥) . (21b)

Note that the period of the “breathing” motion is T
n

(⇥) = 4✓
a

(n;⇥)/�, and the sizes of the bound

states are

|x
2

� x
1

|
max

= (E
n

(⇥)� !(0;⇥))/� . (22)
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When    has a single minimum one obtains  
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is the dispersion relation of the mesons
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(a) Semiclassical meson dispersion relations for

hz

= 0.25, hx

= 0.1.
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(b) Finite size spectrum for hz

= 0.5, hx

= 0.1. Dots

are exact diagonalization results, lines are semiclassical

approximations. Continuous lines: 1-meson states of

the first meson. Dashed lines: 1-meson states of the

second meson.

FIG. 2: Semiclassical bound state dispersion relation and the low energy spectrum.

momenta ⇥, at least semiclassically, and higher lying mesons have flatter dispersion relations. Since

their velocities are given by

v
n

(⇥) =
dE

n

(⇥)

d⇥
, (25)

this means that the heavier bound states move very slowly. The maximal velocites of the four mesons

are v = 0.274, 0.166, 0.094, 0.04. For hx = 0.2 the velocities are v = 0.188, 0.052. For comparison,

at this transverse field with zero longitudinal field the maximal velocity of the unbound domain

walls is v = 0.5

The finite size spectrum can be computed via exact diagonalization for small lattices. In Fig. 2b

we plot the low energy part of the spectrum together with one-particle dispersions E
1,2

(k ⇤ 2⇡/L)
with k = 0, 1, . . . . It is obvious that the spectrum can be interpreted as energy levels of traveling

particles, and also that the semiclassical approximation is quite accurate already for the lightest

meson. Note that the lightest two-body states lie beyond the plotted energy range having energies

E > 2E
1

(0, 0) ⇡ 7.3.

vmax = 0.274, 0.166, 0.094, 0.004
vmax of DW = 0.5 

6 7 8 9 10 11 12

3.6

3.8

4.0

4.2

4.4

4.6

L

E

Comparison with exact diagonalization:

hx =0.1, hz= 0.5

1st meson 1pt states

2nd meson 1pt states

m1=3.662  m2=4.127  m3=4.48  m4=4.77

Approximation for the meson spectrum 
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What happens if there are mesons in the spectrum of the post-
quench Hamiltonian in the quasi-particle picture? 

moving away the quasi-particles feel the attractive interaction

The interaction will eventually turn the particles back

             acts as a source of quasi-particles at | 0i t = 0

pairs of particles move in opposite directions with velocity vp

Back to quenches
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Quenches from ferro to ferro 
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Half-chain entanglement entropy 

The entanglement entropy  does 
not grow indefinitely but seems 
to oscillate around a finite value

Ferro to Ferro

(almost) NO Light-cone! 
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but slower compared to the 
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Zooming in: escaping correlations
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hz=2, hx =0, hz =1.75
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Quench in the paramagnetic phase

Change for small hx is 

perturbative.

For large hx new fast excitations 

appear. No confinement.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

h   = 0
h   = 0.1
h   = 0.2
h   = 0.4

t

S

h  = 2 → h  = 1.75z

x

x

x

x

z



In the Ising chain, confinement changes the light 
cone spreading of correlations and entanglement 

Questions:
Is it a general property of other cond-mat models featuring 
confinement? Presumably yes, possible to check numerically
Is it true in higher dimensions? e.g. in QCD?  

maybe holography can offer some hints

Conclusions
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