Difference Hamiltonian 000000

Generalized Toda hamiltonians acting on partition functions

Rinat Kedem (Joint work with Philippe Di Francesco)

University of Illinois

KITP February 2016

The quantum algebra 00000000

Difference Hamiltonian 000000

Outline

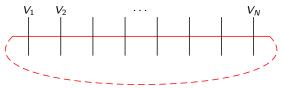
- 1 Combinatorial partition functions
- 2 Difference operators and the quantum (toroidal) algebra
- 3 q-Difference Hamiltonian

The quantum algebra 00000000

Difference Hamiltonian 000000

Combinatorial partition functions

A set of symmetric polynomials coming from the combinatorics of the Bethe ansatz solutions of the generalized inhomogeneous XXX spin chain:

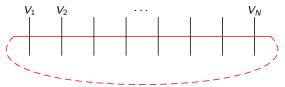


The quantum algebra 000000000

Difference Hamiltonian 000000

Combinatorial partition functions

A set of symmetric polynomials coming from the combinatorics of the Bethe ansatz solutions of the generalized inhomogeneous XXX spin chain:



- $\{V_i\}$ are special $\mathfrak{g} = \mathfrak{sl}_{r+1}$ -representations and the Hilbert space is $\mathcal{H} = \otimes V_i$.
- Combinatorial partition function $\chi_{\vec{\lambda}}(\mathbf{z}; q)$ depends only on highest weights of $\{V_i\}$.

The quantum algebra 000000000

Difference Hamiltonian 000000

The functions $\chi_{\vec{\lambda}}(\mathbf{z}; q)$

The multi-partition λ = (λ⁽¹⁾, · · · , λ^(r)) parameterizes the combinatorial data in the set {V_i}: λ^(α) is a partition with n_ℓ^(α) parts of length ℓ,

$$n_{\ell}^{(\alpha)} := \#\{V_i = V(\ell \omega_{\alpha})\} \qquad \qquad \forall (\ell \omega_{\alpha}) = \int_{\mathcal{O}} \left(\int_{\mathcal{O}} \int_{\mathcal{O}}$$

The quantum algebra 000000000

Difference Hamiltonian 000000

The functions $\chi_{\vec{\lambda}}(\mathbf{z}; q)$

■ The multi-partition λ = (λ⁽¹⁾, · · · , λ^(r)) parameterizes the combinatorial data in the set {V_i}: λ^(α) is a partition with n_ℓ^(α) parts of length ℓ,

For fixed *r*, $\{\chi_{\vec{\lambda}}(\mathbf{z}; q)\}$ are symmetric polynomials $\{\chi_{\vec{\lambda}}(\mathbf{z}; q)\}$ with coefficients in $\mathbb{N}[q]$, with $\mathbf{z} = (z_1, ..., z_{r+1})$.

The quantum algebra 000000000

Difference Hamiltonian 000000

The functions $\chi_{\vec{\lambda}}(\mathbf{z}; q)$

■ The multi-partition λ = (λ⁽¹⁾, · · · , λ^(r)) parameterizes the combinatorial data in the set {V_i}: λ^(α) is a partition with n_ℓ^(α) parts of length ℓ,

$$n_{\ell}^{(\alpha)} := \#\{V_i = V(\ell \omega_{\alpha})\} \qquad \qquad \forall (\ell \omega_{\alpha}) = \int_{\ell} \int_{\ell \to 0} \int_{\ell$$

- For fixed *r*, { $\chi_{\vec{\lambda}}(\mathbf{z}; q)$ } are symmetric polynomials { $\chi_{\vec{\lambda}}(\mathbf{z}; q)$ } with coefficients in $\mathbb{N}[q]$, with $\mathbf{z} = (z_1, ..., z_{r+1})$.
- Each polynomial χ_λ(z; q) is a partition function of the linearized spectrum:
 - $\chi_{\vec{\lambda}}(1; 1) = \dim \mathcal{H}$ is the dimension of the Hilbert space.
 - The coefficient of $s_{\mu}(z)$ in $\chi_{\vec{\lambda}}(z; 1)$ is the dimension of the "spin sector" μ in the Bethe ansatz solution.
 - The polynomial $\chi_{\vec{\lambda}}(\mathbf{z}; q)$ is a partition function of the linearized spectrum of the model.

The quantum algebra 000000000

Difference Hamiltonian 000000

Algebras and difference Hamiltonians acting on $\{\chi_{\vec{\lambda}}(\mathbf{z}; q)\}$

In this talk:

- We switch points of view: $\chi_{\vec{\lambda}}(\mathbf{z}; q)$ are considered as states of a 1-dimensional particle system.
- Creation operators: $\chi_{\vec{\lambda}}(\mathbf{z})$ can be constructed by the action of elements in the nilpotent subalgebra of $U_{\nu}(\widehat{\mathfrak{sl}}_2)$ with $\nu = \sqrt{q}$. [In the polynomial rep]
- The set { $\chi_{\vec{\lambda}}(\mathbf{z}; q)$ } is closed under the action of *q*-difference Hamiltonians generalizing the *q*-difference quantum Toda family. (Related to Cartan currents).
- Special cases: *q*-Whittaker functions for *U_q*(*s*l_{*r*+1}), modified Hall-Littlewood polynomials.
- There is a natural *t*-deformation helps to see the structure of the algebra which generates $\chi_{\vec{\lambda}}(\mathbf{z}; q)$: Quantum toroidal algebra.

The quantum algebra 00000000

Difference Hamiltonian 000000

Explicit combinatorial formula for $\chi_{\vec{\lambda}}(\mathbf{z}; q)$

$$\chi_{\vec{\lambda}}(\mathbf{z};q) = \sum_{\vec{\mu}} q^{\frac{1}{2}F(\vec{\mu})} \prod_{\alpha,i} \begin{bmatrix} p_i^{(\alpha)} + m_i^{(\alpha)} \\ m_i^{(\alpha)} \end{bmatrix}_q s_{\lambda - C\mu}(\mathbf{z})$$

University of Illinois

Kedem

The quantum algebra 000000000

Difference Hamiltonian 000000

Explicit combinatorial formula for $\chi_{\vec{\lambda}}(\mathbf{z}; q)$

$$\chi_{\vec{\lambda}}(\mathbf{z};q) = \sum_{\vec{\mu}} q^{\frac{1}{2}F(\vec{\mu})} \prod_{\alpha,i} \begin{bmatrix} p_i^{(\alpha)} + m_i^{(\alpha)} \\ m_i^{(\alpha)} \end{bmatrix}_q s_{\lambda - C\mu}(\mathbf{z})$$

where

• The sum is over multi-partitions $\vec{\mu} = (\mu^{(1)}, ..., \mu^{(r)});$

•
$$F(\vec{\mu}) = \sum \mu_i^{(\alpha)} C_{\alpha,\beta} \mu_i^{(\beta)}$$
, $C = \text{Cartan matrix}$;

- **m** = { $m_i^{(\alpha)}$ } with $m_i^{(\alpha)}$ the number of columns of $\mu^{(\alpha)}$ of length *i*.
- The integers $p_i^{(\alpha)}$: Sum over the first *i* columns of the composition $\lambda^{(\alpha)} (C\vec{\mu})^{(\alpha)}$.
- $s_{\lambda-C\mu}(\mathbf{z})$ is the Schur function corresponding to $\sum_i (\lambda_i^{(\alpha)} - \sum_{\beta} C_{\alpha,\beta} \mu_i^{\beta}) \omega_{\alpha}.$

University of Illinois

The quantum algebra 000000000

Difference Hamiltonian 000000

Relation to Bethe ansatz of generalized Heisenberg chain

• The polynomial $\chi_{\vec{\lambda}}(\mathbf{z}; q=1)$ is the character of the g-module

$$\mathcal{H} = \otimes V(i\omega_{\alpha})^{\otimes n_{i}^{(\alpha)}}$$

where $n_i^{(\alpha)}$ is the number of parts of $\lambda^{(\alpha)}$ of length *i*: The space of states of the periodic, inhomogeneous spin chain with a representation of type $V(i\omega_{\alpha})$ at each site.

The quantum algebra 00000000

Difference Hamiltonian 000000

Relation to Bethe ansatz of generalized Heisenberg chain

The polynomial $\chi_{\vec{\lambda}}(\mathbf{z}; q = 1)$ is the character of the g-module

$$\mathcal{H} = \otimes V(i\omega_{\alpha})^{\otimes n_{i}^{(\alpha)}}$$

where $n_i^{(\alpha)}$ is the number of parts of $\lambda^{(\alpha)}$ of length *i*: The space of states of the periodic, inhomogeneous spin chain with a representation of type $V(i\omega_{\alpha})$ at each site.

- When q is arbitrary, the graded character can be defined using the representation theory of \mathfrak{sl}_{r+1} or $U_q(\widehat{\mathfrak{sl}}_{r+1})$.
- Given a solution to the BAE parameterized by a set of integers, the power of *q* keeps track of the sum of these integers.
- The summation is over all sets of Bethe integers corresponding to solutions of BAE.

Partition	functions
0000000000	

Difference Hamiltonian 000000

Special case: "Level 1"

Choose all representations to be fundamental representations with highest weight ω_{α} for various α .

- The partitions $\lambda^{(\alpha)} = (1^{n^{(\alpha)}})$ have one column each.
- The functions $\chi_{\vec{\lambda}}(\mathbf{z}; q)$ are polynomial versions of *q*-Whittaker functions.
- Satisfy *q*-difference version of relativistic Toda equation on the open chain of length *r*.

Partition	functions
0000000000	

Difference Hamiltonian 000000

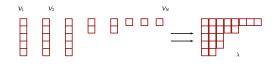
Special case: "Level 1"

Choose all representations to be fundamental representations with highest weight ω_{α} for various α .

- The partitions $\lambda^{(\alpha)} = (1^{n^{(\alpha)}})$ have one column each.
- The functions $\chi_{\vec{\lambda}}(\mathbf{z}; q)$ are polynomial versions of *q*-Whittaker functions.
- Satisfy *q*-difference version of relativistic Toda equation on the open chain of length *r*.
- In terms of Macdonald polynomials,

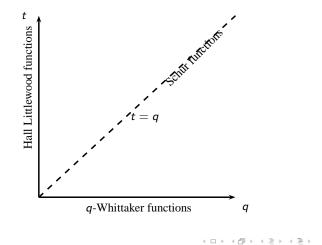
$$\chi_{\vec{\lambda}}(\mathsf{z};q) = P_{\lambda}(\mathsf{z};q,0)$$

where λ is the partition with $n_1^{(\alpha)}$ columns of length α .



Difference Hamiltonian

Macdonald symmetric functions $P_{\lambda}(\mathbf{z}; q, t)$



 \equiv University of Illinois

The quantum algebra 00000000

Difference Hamiltonian 000000

Special case: Symmetric power representations

Take all representations V_i to be symmetric power representations, with highest weight $\ell_i \omega_1$. Only $\lambda^{(1)}$ is non-trivial, and it has $n_i^{(1)}$ rows of length *i*.

Special case: Symmetric power representations

 V_1 V_2

VN

Take all representations V_i to be symmetric power representations, with highest weight $\ell_i \omega_1$. Only $\lambda^{(1)}$ is non-trivial, and it has $n_i^{(1)}$ rows of length *i*.

- The functions $\chi_{\vec{\lambda}}(\mathbf{z}; q)$ are related to Hall-Littlewood symmetric functions by a plethysm.
- Satisfy *q*-difference Toda on the semi-infinite lattice.
- A specialization of the modified Macdonald polynomial

$$\chi_{\bar{\lambda}}(\mathbf{z}; t) = H_{\lambda}(\mathbf{z}; \mathbf{0}, t).$$

University of Illinois

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

The quantum algebra 00000000

Difference Hamiltonian 000000

Conformal field theory limit

The polynomial $\chi_{\vec{\lambda}}(\mathbf{z}; q)$ becomes (up to normalization) the graded character of an affine \mathfrak{sl}_{r+1} -module of level $k \in \mathbb{N}$:

The quantum algebra 000000000

Difference Hamiltonian 000000

Conformal field theory limit

The polynomial $\chi_{\vec{\lambda}}(\mathbf{z}; q)$ becomes (up to normalization) the graded character of an affine \mathfrak{sl}_{r+1} -module of level $k \in \mathbb{N}$:

- Take $V_i = V(k\omega_1)$ for all *i*.
- **Take** N(r+1) sites in the quantum spin chain.
- There is a well-defined limit $N \rightarrow \infty$ which gives an integrable module character corresponding to the vacuum module.
- Coefficients of s_µ(z) are (normalized) Virasoro characters for a WZW model in CFT.

The quantum algebra •00000000 Difference Hamiltonian 000000

Creation operators

How to generate the symmetric polynomials $\chi_{\vec{\lambda}}(\mathbf{z}; q)$ using difference operators:

• We have an operator $\chi_{\vec{\lambda}}(\mathbf{z}; q) \mapsto \chi_{\vec{\lambda}'}(\mathbf{z}; q)$, where the multipartition $\vec{\lambda}'$ differs from $\vec{\lambda}$ in having one more row of length k in $\lambda^{(\alpha)}$. $(n_k^{(\alpha)} \mapsto n_k^{(\alpha)} + 1)$.

Creation operators

How to generate the symmetric polynomials $\chi_{\vec{\lambda}}(\mathbf{z}; q)$ using difference operators:

- We have an operator $\chi_{\vec{\lambda}}(\mathbf{z}; q) \mapsto \chi_{\vec{\lambda}'}(\mathbf{z}; q)$, where the multipartition $\vec{\lambda}'$ differs from $\vec{\lambda}$ in having one more row of length k in $\lambda^{(\alpha)}$. $(n_k^{(\alpha)} \mapsto n_k^{(\alpha)} + 1).$
- Theorem: If λ₁^(α) ≤ k for all α, adding 1 to n_k^(α) corresponds to acting with a q-difference operator on χ_λ(z; q):

$$\chi_{\vec{\lambda}'}(\mathbf{z}; q^{-1}) = q^{\#} M_k^{(\alpha)} \chi_{\vec{\lambda}}(\mathbf{z}; q^{-1})$$

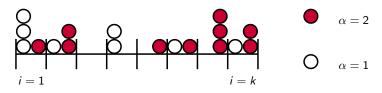
where

$$\mathcal{M}_k^{(\alpha)} = q^{\alpha k/2} \sum_{\substack{I \subset [1,r+1] \\ |I| = \alpha}} \prod_{i \in I} z_i^k \prod_{j \notin I} \frac{z_i}{z_i - z_j} \prod_{i \in I} q^{\delta_i}.$$

University of Illinois

The quantum algebra 00000000 Difference Hamiltonian 000000

Particles in one dimension picture

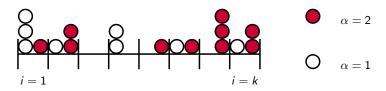


 $n_1^{(1)} = 3$, $n_1^{(2)} = 1$,... and $M_k^{(\alpha)}$ creates a particle of color α in box k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

The quantum algebra 00000000 Difference Hamiltonian 000000

Particles in one dimension picture



 $n_1^{(1)} =$ 3, $n_1^{(2)} =$ 1,... and $M_k^{(\alpha)}$ creates a particle of color α in box k.

$$\chi_{\vec{\lambda}}(\mathbf{z}; \boldsymbol{q}^{-1}) \propto \prod_{i=k}^{1} (M_{i}^{(lpha)})^{n_{i}^{(lpha)}}(1).$$

University of Illinois

Kedem

The quantum algebra

Difference Hamiltonian 000000

Relation to quantum affine algebra

$$M_n^{(\alpha)} = q^{n\alpha/2} \sum_{\substack{I \subset [1,r+1] \\ |I| = \alpha}} \prod_{i \in I} z_i^n \prod_{j \notin I} \frac{z_i}{z_i - z_j} \prod_{i \in I} q^{\delta_i}.$$

The quantum algebra

Difference Hamiltonian 000000

Relation to quantum affine algebra

$$\mathcal{M}_n^{(\alpha)} = q^{n\alpha/2} \sum_{\substack{I \subset [1,r+1] \\ |I| = \alpha}} \prod_{i \in I} z_i^n \prod_{j \notin I} \frac{z_i}{z_i - z_j} \prod_{i \in I} q^{\delta_i}.$$

■ **Theorem 1:** The operators $M_k^{(\alpha)}$ with $\alpha > 1$ are polynomials of degree α (iterated *q*-commutators) in the generators $\{M_n := M_n^{(1)} : n \in \mathbb{Z}\}$:

$$\mathcal{M}_n^{(\alpha)} \propto [[\cdots [\mathcal{M}_{n-\alpha+1}, \mathcal{M}_{n-\alpha+3}]_{q^2}, \mathcal{M}_{n-\alpha+5}]_{q^3}, \cdots, \mathcal{M}_{n+\alpha-1}]_{q^{\alpha}}.$$

So that $M^{(1)}$ generate the algebra of creation operators.

The quantum algebra

Difference Hamiltonian 000000

Relation to quantum affine algebra

$$\mathcal{M}_n^{(\alpha)} = q^{n\alpha/2} \sum_{\substack{I \subset [1,r+1] \\ |I| = \alpha}} \prod_{i \in I} z_i^n \prod_{j \notin I} \frac{z_i}{z_i - z_j} \prod_{i \in I} q^{\delta_i}.$$

■ **Theorem 1:** The operators $M_k^{(\alpha)}$ with $\alpha > 1$ are polynomials of degree α (iterated *q*-commutators) in the generators $\{M_n := M_n^{(1)} : n \in \mathbb{Z}\}$:

$$\mathcal{M}_n^{(\alpha)} \propto [[\cdots [\mathcal{M}_{n-\alpha+1}, \mathcal{M}_{n-\alpha+3}]_{q^2}, \mathcal{M}_{n-\alpha+5}]_{q^3}, \cdots, \mathcal{M}_{n+\alpha-1}]_{q^{\alpha}}.$$

So that $M^{(1)}$ generate the algebra of creation operators.

Theorem: In terms of the generating function $e(x) = \sum_{k \in \mathbb{Z}} M_k x^k$,

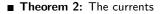
$$M_n^{(\alpha)} = \frac{1}{n!} CT_{x_1, \dots, x_{\alpha}} \left[\left(\prod_{1 \le i < j \le \alpha} \frac{(x_i - x_j)(x_i - qx_j)}{x_i x_j} \right) \frac{e(x_1) \cdots e(x_{\alpha})}{(x_1 \cdots x_{\alpha})^n} \right]$$

University of Illinois

The quantum algebra 000€00000

Difference Hamiltonian 000000

Quadratic relations



$$e(x)=\sum_n z^n M_n$$

satisfy the exchange relation

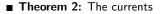
$$\frac{x-qy}{x-y}e(x)e(y)=\frac{y-qx}{y-x}e(y)e(x).$$

Same as the Drinfeld generators of the nilpotent subalgebra of the quantum affine algebra of \mathfrak{sl}_2 , $U_{\sqrt{q}}(\hat{\mathfrak{n}}_+)$.

The quantum algebra 000€00000

Difference Hamiltonian 000000

Quadratic relations



$$e(x)=\sum_n z^n M_n$$

satisfy the exchange relation

$$\frac{x-qy}{x-y}e(x)e(y)=\frac{y-qx}{y-x}e(y)e(x).$$

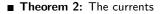
Same as the Drinfeld generators of the nilpotent subalgebra of the quantum affine algebra of \mathfrak{sl}_2 , $U_{\sqrt{q}}(\hat{\mathfrak{n}}_+)$. In component form:

 $[M_n, M_{n+p}]_q + [M_{n+p-1}, M_{n+1}]_q = 0, \quad [a, b]_q = ab - qba.$

The quantum algebra

Difference Hamiltonian 000000

Quadratic relations



$$e(x)=\sum_n z^n M_n$$

satisfy the exchange relation

$$\frac{x-qy}{x-y}e(x)e(y)=\frac{y-qx}{y-x}e(y)e(x).$$

Same as the Drinfeld generators of the nilpotent subalgebra of the quantum affine algebra of \mathfrak{sl}_2 , $U_{\sqrt{q}}(\hat{\mathfrak{n}}_+)$. In component form:

$$[M_n, M_{n+p}]_q + [M_{n+p-1}, M_{n+1}]_q = 0, \quad [a, b]_q = ab - qba.$$

• Warning: The algebras are not isomorphic: For $r < \infty$ fixed, there is one further relation:

$$M_n^{(r+2)}=0$$

■ Next: What is the role of the rest of the quantum affine algebra?

University of Illinois

Sar

The quantum algebra 00000000

Difference Hamiltonian 000000

Ding-Iohara or Drinfeld algebras

The Drinfeld presentation of the quantum affine algebra at level 0 has the form of commutations of generating functions $\psi^{\pm}(z), x^{\pm}(z)$, where $\psi^{\pm}(z)$ are commuting power series in $z^{\pm 1}$, and relations

$$g^{\epsilon\epsilon'}(z,w)\psi^{\epsilon}(z)x^{\epsilon'}(w) = g^{\epsilon\epsilon'}(w,z)x^{\epsilon'}(w)\psi^{\epsilon}(z)$$

$$g^{\epsilon}(z,w)x^{\epsilon}(z)x^{\epsilon}(w) = g^{\epsilon}(w,z)x^{\epsilon}(w)x^{\epsilon}(z)$$

$$[x^{+}(z),x^{-}(w)] = \frac{\delta(z/w)}{g(1,1)}(\psi^{+}(z)-\psi^{-}(z))$$

$$+ \text{ Serre}$$

where $\epsilon, \epsilon' \in \pm 1$.

The quantum algebra 00000000

Difference Hamiltonian 000000

Ding-Iohara or Drinfeld algebras

The Drinfeld presentation of the quantum affine algebra at level 0 has the form of commutations of generating functions $\psi^{\pm}(z), x^{\pm}(z)$, where $\psi^{\pm}(z)$ are commuting power series in $z^{\pm 1}$, and relations

$$g^{\epsilon\epsilon'}(z,w)\psi^{\epsilon}(z)x^{\epsilon'}(w) = g^{\epsilon\epsilon'}(w,z)x^{\epsilon'}(w)\psi^{\epsilon}(z)$$

$$g^{\epsilon}(z,w)x^{\epsilon}(z)x^{\epsilon}(w) = g^{\epsilon}(w,z)x^{\epsilon}(w)x^{\epsilon}(z)$$

$$[x^{+}(z),x^{-}(w)] = \frac{\delta(z/w)}{g(1,1)}(\psi^{+}(z)-\psi^{-}(z))$$

$$+ \text{ Serre}$$

where $\epsilon, \epsilon' \in \pm 1$.

If g(z, w) = ^{z-q²w}/_{z-w} this is the Drinfeld presentation of U_q(ŝl₂) at level 0.
 If g(z, w) = ^{(z-qw)(z-t⁻¹w)(z-tq⁻¹w)}/_{z-w}, this is currently called the quantum toroidal algebra of gl₁

The quantum algebra 000000000

Difference Hamiltonian 000000

t-deformed operators

We can easily deform the difference operators to satisfy relations in the quantum toroidal algebra at level 0.

t-deformed operators

We can easily deform the difference operators to satisfy relations in the quantum toroidal algebra at level 0.

• Let
$$\theta = \sqrt{t}$$
 with $t \in \mathbb{C}$ and define

$$\mathcal{M}_k^{(\alpha)}(\mathbf{z}; q, t) := q^{lpha k/2} \sum_{\substack{I \subset [1, r+1] \ |I| = lpha}} \prod_{i \in I} z_i^k \prod_{j \notin I} \frac{ heta z_i - z_j/ heta}{z_i - z_j} \prod_{i \in I} q^{\delta_i}.$$

• When k = 0 these are Macdonald operators.

• When $t \to \infty$, we get the generators $M_k^{(\alpha)}$ from the previous slide.

t-deformed operators

We can easily deform the difference operators to satisfy relations in the quantum toroidal algebra at level 0.

• Let
$$\theta = \sqrt{t}$$
 with $t \in \mathbb{C}$ and define

$$\mathcal{M}_k^{(\alpha)}(\mathbf{z}; q, t) := q^{lpha k/2} \sum_{\substack{I \subset [1, r+1] \ |I| = lpha}} \prod_{i \in I} z_i^k \prod_{j \notin I} rac{ heta z_i - z_j/ heta}{z_i - z_j} \prod_{i \in I} q^{\delta_i}.$$

- When k = 0 these are Macdonald operators.
- When $t \to \infty$, we get the generators $M_k^{(\alpha)}$ from the previous slide.
- **Theorem 1':** The operators $M_k^{(\alpha)}(\mathbf{z}; q, t)$ are polynomials in the generators $M_n := M_n^{(1)}(\mathbf{z}; q, t)$.

The quantum algebra 000000000

Difference Hamiltonian 000000

Exchange relations for the quantum toroidal algebra

Theorem 2': The generating functions

$$e(x) := \sum_{k \in \mathbb{Z}} M_k(\mathsf{z}; q, t) x^k$$

satisfy the exchange relation

$$g(x,y)e(x)e(y)=g(y,x)e(y)e(x),$$
 where $g(x,y)=\frac{(x-qy)(x-t^{-1}y)(x-q^{-1}ty)}{x-y}$, plus Serre.

The quantum algebra 000000000

Difference Hamiltonian 000000

Exchange relations for the quantum toroidal algebra

■ Theorem 2': The generating functions

$$e(x) := \sum_{k \in \mathbb{Z}} M_k(\mathsf{z}; q, t) x^k$$

satisfy the exchange relation

$$g(x, y)e(x)e(y) = g(y, x)e(y)e(x),$$

where $g(x, y) = \frac{(x-qy)(x-t^{-1}y)(x-q^{-1}ty)}{x-y}$, plus Serre.

- These would generate the "positive part" of the quantum toroidal algebra.
- Warning: The algebra depends on r, it is a quotient by a (q, t) quantum determinant of "size" r + 2 (automatically satisfied when there is only a finite number of variables z_i).

Other currents in the quantum toroidal algebra

We have a difference operator realization of

$$x^+(z) := rac{q^{1/2}}{1-q} e(z;q,t)$$

in the (quotient of) the quantum toroidal algebra. Where can we find the negative currents $x^{-}(z)$ and the Cartan currents $\psi^{\pm}(z)$?

Other currents in the quantum toroidal algebra

We have a difference operator realization of

$$x^+(z) := rac{q^{1/2}}{1-q} e(z;q,t)$$

in the (quotient of) the quantum toroidal algebra. Where can we find the negative currents $x^{-}(z)$ and the Cartan currents $\psi^{\pm}(z)$? **Answer:** For *r* finite, construct the difference operator

$$x^{-}(z) = rac{q^{-1/2}}{1-q^{-1}}e(z;q^{-1},t^{-1})$$

and define $\psi^{\pm}(w)$ from $[x^+(z), x^-(w)]$:

$$\psi^{\pm}(w) = \prod_{i=1}^{r+1} \frac{(1-q^{-\frac{1}{2}}t(z_iw)^{\pm 1})(1-q^{\frac{1}{2}}t^{-1}(z_iw)^{\pm 1})}{(1-q^{-\frac{1}{2}}(z_iw)^{\pm 1})(1-q^{\frac{1}{2}}(z_iw)^{\pm 1})}$$

University of Illinois

Kedem

Limit $t \to \infty$

In the limit $t
ightarrow \infty$, $x^{\pm}(z) \sim heta^r$,

$$[x^{+}(z), x^{-}(w)] = \frac{\delta(z/w)}{g(1,1)}(\psi^{+}(w) - \psi^{-}(w))$$

scales as t^r and $\psi^{\pm}(w)$ as t^{r+1} . The limit of the rescaled Cartan current is

$$\psi^{\pm}(w;q) = q^{-rac{r+1}{2}} \prod_{i=1}^{r+1} rac{(z_iw)^{\pm 1}}{(1-q^{rac{1}{2}}(z_iw)^{\pm 1})(1-q^{-rac{1}{2}}(z_iw)^{\pm 1})}$$

Limit $t \to \infty$

In the limit $t \to \infty$, $x^{\pm}(z) \sim heta^r$,

$$[x^{+}(z), x^{-}(w)] = \frac{\delta(z/w)}{g(1,1)}(\psi^{+}(w) - \psi^{-}(w))$$

scales as t^r and $\psi^{\pm}(w)$ as t^{r+1} . The limit of the rescaled Cartan current is

$$\psi^{\pm}(w;q) = q^{-rac{r+1}{2}} \prod_{i=1}^{r+1} rac{(z_iw)^{\pm 1}}{(1-q^{rac{1}{2}}(z_iw)^{\pm 1})(1-q^{-rac{1}{2}}(z_iw)^{\pm 1})}$$

• Note that the current has valuation $w^{\pm(r+1)}$.

Limit $t \to \infty$

In the limit $t \to \infty$, $x^{\pm}(z) \sim \theta^r$,

$$[x^{+}(z), x^{-}(w)] = \frac{\delta(z/w)}{g(1,1)}(\psi^{+}(w) - \psi^{-}(w))$$

scales as t^r and $\psi^{\pm}(w)$ as t^{r+1} . The limit of the rescaled Cartan current is

$$\psi^{\pm}(w;q) = q^{-rac{r+1}{2}} \prod_{i=1}^{r+1} rac{(z_iw)^{\pm 1}}{(1-q^{rac{1}{2}}(z_iw)^{\pm 1})(1-q^{-rac{1}{2}}(z_iw)^{\pm 1})}$$

- Note that the current has valuation $w^{\pm(r+1)}$.
- The non-zero coefficients of each $w^n \psi^+(w; q)$ can be expressed in terms of elementary symmetric functions.

University of Illinois

Limit $t \to \infty$

In the limit $t \to \infty$, $x^{\pm}(z) \sim \theta^r$,

$$[x^{+}(z), x^{-}(w)] = \frac{\delta(z/w)}{g(1,1)}(\psi^{+}(w) - \psi^{-}(w))$$

scales as t^r and $\psi^{\pm}(w)$ as t^{r+1} . The limit of the rescaled Cartan current is

$$\psi^{\pm}(w;q) = q^{-rac{r+1}{2}} \prod_{i=1}^{r+1} rac{(z_iw)^{\pm 1}}{(1-q^{rac{1}{2}}(z_iw)^{\pm 1})(1-q^{-rac{1}{2}}(z_iw)^{\pm 1})}$$

- Note that the current has valuation $w^{\pm(r+1)}$.
- The non-zero coefficients of each $w^n \psi^+(w; q)$ can be expressed in terms of elementary symmetric functions.
- Acting on $\chi_{\vec{\lambda}}(\mathbf{z}; q)$ with $\psi^+(w; q)$ gives Pieri-type rules.

University of Illinois

Limit $t \to \infty$

In the limit $t o \infty$, $x^{\pm}(z) \sim heta^r$,

$$[x^{+}(z), x^{-}(w)] = \frac{\delta(z/w)}{g(1,1)}(\psi^{+}(w) - \psi^{-}(w))$$

scales as t^r and $\psi^{\pm}(w)$ as t^{r+1} . The limit of the rescaled Cartan current is

$$\psi^{\pm}(w;q) = q^{-rac{r+1}{2}} \prod_{i=1}^{r+1} rac{(z_iw)^{\pm 1}}{(1-q^{rac{1}{2}}(z_iw)^{\pm 1})(1-q^{-rac{1}{2}}(z_iw)^{\pm 1})}$$

- Note that the current has valuation $w^{\pm(r+1)}$.
- The non-zero coefficients of each $w^n \psi^+(w; q)$ can be expressed in terms of elementary symmetric functions.
- Acting on $\chi_{\vec{\lambda}}(\mathbf{z}; q)$ with $\psi^+(w; q)$ gives Pieri-type rules.
- The resulting difference equations for $\chi_{\vec{\lambda}}(\mathbf{z}; q)$ can be read as (commuting) *q*-difference Hamiltonians acting on the partition functions.

The quantum algebra

Difference Hamiltonian ••••••

Difference equations: Level-k

Fix $k \in \mathbb{N}$ and

• Consider the special case of the function $\chi_{m,n}(\mathbf{z}; q)$ for the Hilbert space

$$\mathop{\otimes}\limits_{lpha} V((k-1)\omega_{lpha})^{\mathop{\otimes} m_{lpha}} \mathop{\otimes} V(k\omega_{lpha})^{\mathop{\otimes} n_{lpha}}$$

- Interpret each polynomial $\chi_{m,n}(\mathbf{z}; q)$ as a wave function of a finite chain with
 - An infinite numbers of particles at sites 0 and r + 1;
 - **•** m_{α} particles of color k-1 at site α ,
 - n_{α} particles of color k at site α .

3 University of Illinois

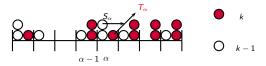
Sac

The quantum algebra 00000000

Difference Hamiltonian ○●○○○○

Hamiltonian

Let S_{α} denote the hopping of a particle of color k-1 from site α to $\alpha+1$; Let T_{α} be the same for particles of color k.

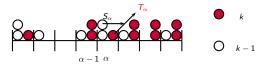


The quantum algebra 00000000

Difference Hamiltonian 00000

Hamiltonian

Let S_{α} denote the hopping of a particle of color k-1 from site α to $\alpha+1$; Let T_{α} be the same for particles of color k.



Theorem: The Hamiltonian

$$H = \sum_{\alpha=1}^{r+1} S_{\alpha-1}^{-1} T_{\alpha-1} - q^{k-1} \sum_{\alpha=1}^{r} q^{-(k-1)m_{\alpha}-kn_{\alpha}} S_{\alpha-1}^{-1} T_{\alpha}$$

acts on $\chi_{\mathsf{m},\mathsf{n}}(\mathsf{z};q)$ as

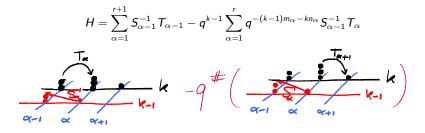
$$H\chi_{\mathsf{m},\mathsf{n}}(\mathsf{z};q) = e_1(\mathsf{z})\chi_{\mathsf{m},\mathsf{n}}(\mathsf{z};q),$$

where $e_1(z)$ is the elementary symmetric function in r + 1 variables.

The quantum algebra 00000000

Difference Hamiltonian

The Hamiltonian



The quantum algebra 000000000

Difference Hamiltonian 000000

Special case: q-difference Toda

The level-k difference Hamiltonian can be read as a generalization of the q-difference Toda: When k = 1, there is no action of S_{α} , and the Hamiltonian simplifies:

$$H=\sum_{\alpha=1}^r(1-q^{-n_\alpha})T_\alpha+T_0.$$

We call this a quantum Toda Hamiltonian: A specialization of Etingof's hamiltonian acting on *q*-Whittaker functions corresponding to $U_v(\mathfrak{sl}_{r+1})$ with $v^2 = q^{-1}$.

The quantum algebra 000000000

Difference Hamiltonian 000000

Special case 2: Symmetric power representations

In the case where

$$\mathfrak{H} = \otimes V(\ell \omega_1)^{n_\ell}$$

(so that the eigenfunctions are modified Hall-Littlewood polynomials) we have another q difference Toda:

$$\lambda = (1^{n_1}, ..., k^{n_k}).$$

We interpret χ_{λ} to be the wave function for n_i particles at site $i \in \mathbb{N}$ and an infinite number of particles at site 0.

The quantum algebra 000000000

Difference Hamiltonian

Special case 2: Symmetric power representations

In the case where

$$\mathcal{H} = \otimes V(\ell \omega_1)^{n_\ell}$$

(so that the eigenfunctions are modified Hall-Littlewood polynomials) we have another q difference Toda:

$$\lambda = (1^{n_1}, ..., k^{n_k}).$$

We interpret χ_{λ} to be the wave function for n_i particles at site $i \in \mathbb{N}$ and an infinite number of particles at site 0.

Define S_i to be the hopping term from i to i + 1 and H is the Toda Hamiltonian on the semi-infinite line:

$$H=S_0+\sum_{i=1}^\infty(1-q^{n_i})S_i.$$

$$H\overline{\chi}_{\lambda}(\mathsf{z}; q^{-1}) = e_1(\mathsf{z})\overline{\chi}_{\lambda}(\mathsf{z}; q^{-1})$$

where $\overline{\chi}_{\lambda} = M_k^{n_k} \cdots M_1^{n_1}(1).$

University of Illinois

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

The quantum algebra 000000000

The "AGT" philosophy

- The function \(\chi_{\bar{\lambda}}(z; q)\) can be interpreted in two ways: As a graded counting function ("partition function") or as a wave function.
- The algebra acting on $\chi_{\vec{\lambda}}(\mathbf{z}; q)$ is the $t \to \infty$ limit of the quantum toroidal algebra.
- The quantum toroidal algebra enters the AGT correspondence: Instanton counting partition function of supersymmetric 5-dimensional gauge theory vs. inner product of deformed Gaiotto states, degenerate Whittaker vectors for the *q*, *t*-Virasoro algebra (a subalgebra).
- The 4-dimensional theory corresponds to the rational (Yangian) degeneration of the quantum toroidal algebra: $t = q^{\beta}$, $q \rightarrow 1$.
- \blacksquare Here we have a different limit, $t \to \infty$, which is a quantum algebra.
- Major difference: Finite rank r gives us a quotient of the q.t. algebra.