
Partition functions The quantum algebra Difference Hamiltonian

Generalized Toda hamiltonians acting on partition functions

Rinat Kedem
(Joint work with Philippe Di Francesco)

University of Illinois

KITP February 2016

Kedem University of Illinois



Partition functions The quantum algebra Difference Hamiltonian

Outline

1 Combinatorial partition functions

2 Difference operators and the quantum (toroidal) algebra

3 q-Difference Hamiltonian

Kedem University of Illinois



Partition functions The quantum algebra Difference Hamiltonian

Combinatorial partition functions

A set of symmetric polynomials coming from the combinatorics of the
Bethe ansatz solutions of the generalized inhomogeneous XXX spin chain:

V1 V2 · · · VN
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Combinatorial partition functions

A set of symmetric polynomials coming from the combinatorics of the
Bethe ansatz solutions of the generalized inhomogeneous XXX spin chain:

V1 V2 · · · VN

{Vi} are special g = slr+1-representations and the Hilbert space is
H = ⊗Vi .

Combinatorial partition function χ~λ(z; q) depends only on highest weights
of {Vi}.
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The functions χ~λ
(z; q)

The multi-partition ~λ = (λ(1), · · · , λ(r)) parameterizes the combinatorial

data in the set {Vi}: λ(α) is a partition with n
(α)
ℓ parts of length ℓ,

n
(α)
ℓ := #{Vi = V (ℓωα)}
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The functions χ~λ
(z; q)

The multi-partition ~λ = (λ(1), · · · , λ(r)) parameterizes the combinatorial

data in the set {Vi}: λ(α) is a partition with n
(α)
ℓ parts of length ℓ,

n
(α)
ℓ := #{Vi = V (ℓωα)}

For fixed r , {χ~λ(z; q)} are symmetric polynomials {χ~λ(z;q)} with
coefficients in N[q], with z = (z1, ..., zr+1).
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The functions χ~λ
(z; q)

The multi-partition ~λ = (λ(1), · · · , λ(r)) parameterizes the combinatorial

data in the set {Vi}: λ(α) is a partition with n
(α)
ℓ parts of length ℓ,

n
(α)
ℓ := #{Vi = V (ℓωα)}

For fixed r , {χ~λ(z; q)} are symmetric polynomials {χ~λ(z;q)} with
coefficients in N[q], with z = (z1, ..., zr+1).

Each polynomial χ~λ(z; q) is a partition function of the linearized
spectrum:

χ~λ
(1; 1) = dim H is the dimension of the Hilbert space.

The coefficient of sµ(z) in χ~λ
(z; 1) is the dimension of the “spin sector” µ

in the Bethe ansatz solution.
The polynomial χ~λ

(z; q) is a partition function of the linearized spectrum of
the model.
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Algebras and difference Hamiltonians acting on {χ~λ
(z; q)}

In this talk:

We switch points of view: χ~λ(z; q) are considered as states of a
1-dimensional particle system.

Creation operators: χ~λ(z) can be constructed by the action of elements in

the nilpotent subalgebra of Uv(bsl2) with v =
√

q. [In the polynomial rep]

The set {χ~λ(z;q)} is closed under the action of q-difference Hamiltonians
generalizing the q-difference quantum Toda family. (Related to Cartan
currents).

Special cases: q-Whittaker functions for Uq(slr+1), modified
Hall-Littlewood polynomials.

There is a natural t-deformation helps to see the structure of the algebra
which generates χ~λ(z;q): Quantum toroidal algebra.
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Explicit combinatorial formula for χ~λ
(z; q)

χ~λ(z; q) =
X

~µ

q
1
2
F (~µ)

Y

α,i

"
p

(α)
i + m

(α)
i

m
(α)
i

#

q

sλ−Cµ(z)
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Explicit combinatorial formula for χ~λ
(z; q)

χ~λ(z; q) =
X

~µ

q
1
2
F (~µ)

Y

α,i

"
p

(α)
i + m

(α)
i

m
(α)
i

#

q

sλ−Cµ(z)

where

The sum is over multi-partitions ~µ = (µ(1), ..., µ(r));

F (~µ) =
P
µ

(α)
i Cα,βµ

(β)
i , C = Cartan matrix;

m = {m(α)
i } with m

(α)
i the number of columns of µ(α) of length i .

The integers p
(α)
i : Sum over the first i columns of the composition

λ(α) − (C~µ)(α).

sλ−Cµ(z) is the Schur function corresponding toP
i (λ

(α)
i − P

β Cα,βµ
β
i )ωα.
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Relation to Bethe ansatz of generalized Heisenberg chain

The polynomial χ~λ(z;q = 1) is the character of the g-module

H = ⊗V (iωα)⊗n
(α)
i

where n
(α)
i is the number of parts of λ(α) of length i : The space of states

of the periodic, inhomogeneous spin chain with a representation of type
V (iωα) at each site.
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Relation to Bethe ansatz of generalized Heisenberg chain

The polynomial χ~λ(z;q = 1) is the character of the g-module

H = ⊗V (iωα)⊗n
(α)
i

where n
(α)
i is the number of parts of λ(α) of length i : The space of states

of the periodic, inhomogeneous spin chain with a representation of type
V (iωα) at each site.

When q is arbitrary, the graded character can be defined using the
representation theory of bslr+1 or Uq(bslr+1).

Given a solution to the BAE parameterized by a set of integers, the power
of q keeps track of the sum of these integers.

The summation is over all sets of Bethe integers corresponding to
solutions of BAE.
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Special case: “Level 1”

Choose all representations to be fundamental representations with highest
weight ωα for various α.

The partitions λ(α) = (1n(α)

) have one column each.

The functions χ~λ(z; q) are polynomial versions of q-Whittaker functions.

Satisfy q-difference version of relativistic Toda equation on the open chain
of length r .

Kedem University of Illinois



Partition functions The quantum algebra Difference Hamiltonian

Special case: “Level 1”

Choose all representations to be fundamental representations with highest
weight ωα for various α.

The partitions λ(α) = (1n(α)

) have one column each.

The functions χ~λ(z; q) are polynomial versions of q-Whittaker functions.

Satisfy q-difference version of relativistic Toda equation on the open chain
of length r .

In terms of Macdonald polynomials,

χ~λ(z; q) = Pλ(z;q, 0)

where λ is the partition with n
(α)
1 columns of length α.

V1 V2 VN

λ
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q

t

t = q
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Macdonald symmetric functions Pλ(z; q, t)
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Special case: Symmetric power representations

Take all representations Vi to be symmetric power representations, with highest
weight ℓiω1. Only λ(1) is non-trivial, and it has n

(1)
i rows of length i .
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Special case: Symmetric power representations

Take all representations Vi to be symmetric power representations, with highest
weight ℓiω1. Only λ(1) is non-trivial, and it has n

(1)
i rows of length i .

The functions χ~λ(z; q) are related to Hall-Littlewood symmetric functions
by a plethysm.

Satisfy q-difference Toda on the semi-infinite lattice.

A specialization of the modified Macdonald polynomial

χ~λ(z; t) = eHλ(z; 0, t).

λ

V1

V2

VN
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Conformal field theory limit

The polynomial χ~λ(z; q) becomes (up to normalization) the graded character
of an affine slr+1-module of level k ∈ N:
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Conformal field theory limit

The polynomial χ~λ(z; q) becomes (up to normalization) the graded character
of an affine slr+1-module of level k ∈ N:

Take Vi = V (kω1) for all i .

Take N(r + 1) sites in the quantum spin chain.

There is a well-defined limit N → ∞ which gives an integrable module
character corresponding to the vacuum module.

Coefficients of sµ(z) are (normalized) Virasoro characters for a WZW
model in CFT.
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Creation operators

How to generate the symmetric polynomials χ~λ(z; q) using difference
operators:

We have an operator χ~λ(z;q) 7→ χ~λ′(z;q), where the multipartition ~λ′

differs from ~λ in having one more row of length k in λ(α).
(n

(α)
k 7→ n

(α)
k + 1).
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Creation operators

How to generate the symmetric polynomials χ~λ(z; q) using difference
operators:

We have an operator χ~λ(z;q) 7→ χ~λ′(z;q), where the multipartition ~λ′

differs from ~λ in having one more row of length k in λ(α).
(n

(α)
k 7→ n

(α)
k + 1).

Theorem: If λ
(α)
1 ≤ k for all α, adding 1 to n

(α)
k corresponds to acting

with a q-difference operator on χ~λ(z; q) :

χ~λ′(z; q
−1) = q

#
M

(α)
k χ~λ(z;q−1)

where
M

(α)
k = q

αk/2
X

I⊂[1,r+1]
|I |=α

Y

i∈I

z
k
i

Y

j /∈I

zi

zi − zj

Y

i∈I

q
δi .
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Particles in one dimension picture

α = 2

α = 1

i = 1 i = k

n
(1)
1 = 3, n

(2)
1 = 1,... and M

(α)
k creates a particle of color α in box k .
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Particles in one dimension picture

α = 2

α = 1

i = 1 i = k

n
(1)
1 = 3, n

(2)
1 = 1,... and M

(α)
k creates a particle of color α in box k .

χ~λ(z; q−1) ∝
1Y

i=k

(M
(α)
i )n

(α)
i (1).
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Relation to quantum affine algebra

M
(α)
n = q

nα/2
X

I⊂[1,r+1]
|I |=α

Y

i∈I

z
n
i

Y

j /∈I

zi

zi − zj

Y

i∈I

q
δi .
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Relation to quantum affine algebra

M
(α)
n = q

nα/2
X

I⊂[1,r+1]
|I |=α

Y

i∈I

z
n
i

Y

j /∈I

zi

zi − zj

Y

i∈I

q
δi .

Theorem 1: The operators M
(α)
k with α > 1 are polynomials of degree α

(iterated q-commutators) in the generators {Mn := M
(1)
n : n ∈ Z}:

M
(α)
n ∝ [[· · · [Mn−α+1,Mn−α+3]q2 ,Mn−α+5]q3 , · · · ,Mn+α−1]qα .

So that M(1) generate the algebra of creation operators.
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Relation to quantum affine algebra

M
(α)
n = q

nα/2
X

I⊂[1,r+1]
|I |=α

Y

i∈I

z
n
i

Y

j /∈I

zi

zi − zj

Y

i∈I

q
δi .

Theorem 1: The operators M
(α)
k with α > 1 are polynomials of degree α

(iterated q-commutators) in the generators {Mn := M
(1)
n : n ∈ Z}:

M
(α)
n ∝ [[· · · [Mn−α+1,Mn−α+3]q2 ,Mn−α+5]q3 , · · · ,Mn+α−1]qα .

So that M(1) generate the algebra of creation operators.

Theorem: In terms of the generating function e(x) =
P

k∈Z
Mkxk ,

M
(α)
n =

1

n!
CTx1,...,xα

2

4

0

@

Y

1≤i<j≤α

(xi − xj)(xi − qxj )

xixj

1

A

e(x1) · · · e(xα)

(x1 · · · xα)n

3

5
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Quadratic relations

Theorem 2: The currents

e(x) =
X

n

z
n
Mn

satisfy the exchange relation

x − qy

x − y
e(x)e(y) =

y − qx

y − x
e(y)e(x).

Same as the Drinfeld generators of the nilpotent subalgebra of the
quantum affine algebra of sl2, U√

q(bn+).
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Quadratic relations

Theorem 2: The currents

e(x) =
X

n

z
n
Mn

satisfy the exchange relation

x − qy

x − y
e(x)e(y) =

y − qx

y − x
e(y)e(x).

Same as the Drinfeld generators of the nilpotent subalgebra of the
quantum affine algebra of sl2, U√

q(bn+).
In component form:

[Mn,Mn+p]q + [Mn+p−1,Mn+1]q = 0, [a, b]q = ab − qba.
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Quadratic relations

Theorem 2: The currents

e(x) =
X

n

z
n
Mn

satisfy the exchange relation

x − qy

x − y
e(x)e(y) =

y − qx

y − x
e(y)e(x).

Same as the Drinfeld generators of the nilpotent subalgebra of the
quantum affine algebra of sl2, U√

q(bn+).
In component form:

[Mn,Mn+p]q + [Mn+p−1,Mn+1]q = 0, [a, b]q = ab − qba.

Warning: The algebras are not isomorphic: For r <∞ fixed, there is one
further relation:

M
(r+2)
n = 0.

Next: What is the role of the rest of the quantum affine algebra?
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Ding-Iohara or Drinfeld algebras

The Drinfeld presentation of the quantum affine algebra at level 0 has the form
of commutations of generating functions ψ±(z), x±(z), where ψ±(z) are
commuting power series in z±1, and relations

g
ǫǫ′(z ,w)ψǫ(z)xǫ′(w) = g

ǫǫ′(w , z)xǫ′(w)ψǫ(z)

g
ǫ(z ,w)xǫ(z)xǫ(w) = g

ǫ(w , z)xǫ(w)xǫ(z)

ˆ
x

+(z), x−(w)
˜

=
δ(z/w)

g(1, 1)
(ψ+(z) − ψ−(z))

+ Serre

where ǫ, ǫ′ ∈ ±1.
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Ding-Iohara or Drinfeld algebras

The Drinfeld presentation of the quantum affine algebra at level 0 has the form
of commutations of generating functions ψ±(z), x±(z), where ψ±(z) are
commuting power series in z±1, and relations

g
ǫǫ′(z ,w)ψǫ(z)xǫ′(w) = g

ǫǫ′(w , z)xǫ′(w)ψǫ(z)

g
ǫ(z ,w)xǫ(z)xǫ(w) = g

ǫ(w , z)xǫ(w)xǫ(z)

ˆ
x

+(z), x−(w)
˜

=
δ(z/w)

g(1, 1)
(ψ+(z) − ψ−(z))

+ Serre

where ǫ, ǫ′ ∈ ±1.

If g(z ,w) = z−q2w

z−w
this is the Drinfeld presentation of Uq(bsl2) at level 0.

If g(z ,w) = (z−qw)(z−t−1w)(z−tq−1w)
z−w

, this is currently called the quantum

toroidal algebra of bgl1
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t-deformed operators

We can easily deform the difference operators to satisfy relations in the
quantum toroidal algebra at level 0.
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t-deformed operators

We can easily deform the difference operators to satisfy relations in the
quantum toroidal algebra at level 0.

Let θ =
√

t with t ∈ C and define

M
(α)
k (z;q, t) := q

αk/2
X

I⊂[1,r+1]
|I |=α

Y

i∈I

z
k
i

Y

j /∈I

θzi − zj/θ

zi − zj

Y

i∈I

q
δi .

When k = 0 these are Macdonald operators.

When t → ∞, we get the generators M
(α)
k from the previous slide.
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t-deformed operators

We can easily deform the difference operators to satisfy relations in the
quantum toroidal algebra at level 0.

Let θ =
√

t with t ∈ C and define

M
(α)
k (z;q, t) := q

αk/2
X

I⊂[1,r+1]
|I |=α

Y

i∈I

z
k
i

Y

j /∈I

θzi − zj/θ

zi − zj

Y

i∈I

q
δi .

When k = 0 these are Macdonald operators.

When t → ∞, we get the generators M
(α)
k from the previous slide.

Theorem 1’: The operators M
(α)
k (z; q, t) are polynomials in the

generators Mn := M
(1)
n (z;q, t).

Kedem University of Illinois



Partition functions The quantum algebra Difference Hamiltonian

Exchange relations for the quantum toroidal algebra

Theorem 2’: The generating functions

e(x) :=
X

k∈Z

Mk (z;q, t)x
k

satisfy the exchange relation

g(x , y)e(x)e(y) = g(y , x)e(y)e(x),

where g(x , y) = (x−qy)(x−t−1y)(x−q−1ty)
x−y

, plus Serre.
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Exchange relations for the quantum toroidal algebra

Theorem 2’: The generating functions

e(x) :=
X

k∈Z

Mk (z;q, t)x
k

satisfy the exchange relation

g(x , y)e(x)e(y) = g(y , x)e(y)e(x),

where g(x , y) = (x−qy)(x−t−1y)(x−q−1ty)
x−y

, plus Serre.

These would generate the “positive part” of the quantum toroidal algebra.

Warning: The algebra depends on r , it is a quotient by a (q, t) quantum
determinant of “size” r + 2 (automatically satisfied when there is only a
finite number of variables zi ).
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Other currents in the quantum toroidal algebra

We have a difference operator realization of

x
+(z) :=

q1/2

1 − q
e(z ; q, t)

in the (quotient of) the quantum toroidal algebra. Where can we find the
negative currents x−(z) and the Cartan currents ψ±(z)?
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Other currents in the quantum toroidal algebra

We have a difference operator realization of

x
+(z) :=

q1/2

1 − q
e(z ; q, t)

in the (quotient of) the quantum toroidal algebra. Where can we find the
negative currents x−(z) and the Cartan currents ψ±(z)?
Answer: For r finite, construct the difference operator

x
−(z) =

q−1/2

1 − q−1
e(z ; q−1, t−1)

and define ψ±(w) from [x+(z), x−(w)]:

ψ±(w) =

r+1Y

i=1

(1 − q− 1
2 t(ziw)±1)(1 − q

1
2 t−1(ziw)±1)

(1 − q− 1
2 (ziw)±1)(1 − q

1
2 (ziw)±1)
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Limit t → ∞

In the limit t → ∞, x±(z) ∼ θr ,

[x+(z), x−(w)] =
δ(z/w)

g(1, 1)
(ψ+(w) − ψ−(w))

scales as tr and ψ±(w) as tr+1. The limit of the rescaled Cartan current is

ψ±(w ; q) = q
− r+1

2

r+1Y

i=1

(ziw)±1

(1 − q
1
2 (ziw)±1)(1 − q− 1

2 (ziw)±1)
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Limit t → ∞

In the limit t → ∞, x±(z) ∼ θr ,

[x+(z), x−(w)] =
δ(z/w)

g(1, 1)
(ψ+(w) − ψ−(w))

scales as tr and ψ±(w) as tr+1. The limit of the rescaled Cartan current is

ψ±(w ; q) = q
− r+1

2

r+1Y

i=1

(ziw)±1

(1 − q
1
2 (ziw)±1)(1 − q− 1

2 (ziw)±1)

Note that the current has valuation w±(r+1).

Kedem University of Illinois



Partition functions The quantum algebra Difference Hamiltonian

Limit t → ∞

In the limit t → ∞, x±(z) ∼ θr ,

[x+(z), x−(w)] =
δ(z/w)

g(1, 1)
(ψ+(w) − ψ−(w))

scales as tr and ψ±(w) as tr+1. The limit of the rescaled Cartan current is

ψ±(w ; q) = q
− r+1

2

r+1Y

i=1

(ziw)±1

(1 − q
1
2 (ziw)±1)(1 − q− 1

2 (ziw)±1)

Note that the current has valuation w±(r+1).

The non-zero coefficients of each wn ψ+(w ; q) can be expressed in terms
of elementary symmetric functions.
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Limit t → ∞

In the limit t → ∞, x±(z) ∼ θr ,

[x+(z), x−(w)] =
δ(z/w)

g(1, 1)
(ψ+(w) − ψ−(w))

scales as tr and ψ±(w) as tr+1. The limit of the rescaled Cartan current is

ψ±(w ; q) = q
− r+1

2

r+1Y

i=1

(ziw)±1

(1 − q
1
2 (ziw)±1)(1 − q− 1

2 (ziw)±1)

Note that the current has valuation w±(r+1).

The non-zero coefficients of each wn ψ+(w ; q) can be expressed in terms
of elementary symmetric functions.

Acting on χ~λ(z; q) with ψ+(w ; q) gives Pieri-type rules.
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Limit t → ∞

In the limit t → ∞, x±(z) ∼ θr ,

[x+(z), x−(w)] =
δ(z/w)

g(1, 1)
(ψ+(w) − ψ−(w))

scales as tr and ψ±(w) as tr+1. The limit of the rescaled Cartan current is

ψ±(w ; q) = q
− r+1

2

r+1Y

i=1

(ziw)±1

(1 − q
1
2 (ziw)±1)(1 − q− 1

2 (ziw)±1)

Note that the current has valuation w±(r+1).

The non-zero coefficients of each wn ψ+(w ; q) can be expressed in terms
of elementary symmetric functions.

Acting on χ~λ(z; q) with ψ+(w ; q) gives Pieri-type rules.

The resulting difference equations for χ~λ(z;q) can be read as
(commuting) q-difference Hamiltonians acting on the partition functions.
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Difference equations: Level-k

Fix k ∈ N and

Consider the special case of the function χm,n(z;q) for the Hilbert space

⊗
α
V ((k − 1)ωα)⊗mα ⊗ V (kωα)⊗nα

Interpret each polynomial χm,n(z;q) as a wave function of a finite chain
with

An infinite numbers of particles at sites 0 and r + 1;
mα particles of color k − 1 at site α,
nα particles of color k at site α.

k

k − 1

α = 1 α = r
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Hamiltonian

Let Sα denote the hopping of a particle of color k − 1 from site α to α+ 1; Let
Tα be the same for particles of color k .

k

k − 1
α− 1 α

Sα

Tα
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Hamiltonian

Let Sα denote the hopping of a particle of color k − 1 from site α to α+ 1; Let
Tα be the same for particles of color k .

k

k − 1
α− 1 α

Sα

Tα

Theorem: The Hamiltonian

H =

r+1X

α=1

S
−1
α−1Tα−1 − q

k−1
rX

α=1

q
−(k−1)mα−knαS

−1
α−1Tα

acts on χm,n(z;q) as

Hχm,n(z;q) = e1(z)χm,n(z;q),

where e1(z) is the elementary symmetric function in r + 1 variables.
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The Hamiltonian

H =
r+1X

α=1

S
−1
α−1Tα−1 − q

k−1
rX

α=1

q
−(k−1)mα−knαS

−1
α−1Tα
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Special case: q-difference Toda

The level-k difference Hamiltonian can be read as a generalization of the
q-difference Toda: When k = 1, there is no action of Sα, and the Hamiltonian
simplifies:

H =

rX

α=1

(1 − q
−nα)Tα + T0.

We call this a quantum Toda Hamiltonian: A specialization of Etingof’s
hamiltonian acting on q-Whittaker functions corresponding to Uv(slr+1) with
v2 = q−1.
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Special case 2: Symmetric power representations

In the case where
H = ⊗V (ℓω1)

nℓ

(so that the eigenfunctions are modified Hall-Littlewood polynomials) we have
another q difference Toda:

λ = (1n1 , ..., knk ).

We interpret χλ to be the wave function for ni particles at site i ∈ N and an
infinite number of particles at site 0.
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Special case 2: Symmetric power representations

In the case where
H = ⊗V (ℓω1)

nℓ

(so that the eigenfunctions are modified Hall-Littlewood polynomials) we have
another q difference Toda:

λ = (1n1 , ..., knk ).

We interpret χλ to be the wave function for ni particles at site i ∈ N and an
infinite number of particles at site 0.
Define Si to be the hopping term from i to i + 1 and H is the Toda
Hamiltonian on the semi-infinite line:

H = S0 +
∞X

i=1

(1 − q
ni )Si .

Hχλ(z;q−1) = e1(z)χλ(z;q−1)

where χλ = M
nk
k · · ·Mn1

1 (1).
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The “AGT” philosophy

The function χ~λ(z; q) can be interpreted in two ways: As a graded
counting function (“partition function”) or as a wave function.

The algebra acting on χ~λ(z; q) is the t → ∞ limit of the quantum toroidal
algebra.

The quantum toroidal algebra enters the AGT correspondence: Instanton
counting partition function of supersymmetric 5-dimensional gauge theory
vs. inner product of deformed Gaiotto states, degenerate Whittaker
vectors for the q, t-Virasoro algebra (a subalgebra).

The 4-dimensional theory corresponds to the rational (Yangian)
degeneration of the quantum toroidal algebra: t = qβ, q → 1.

Here we have a different limit, t → ∞, which is a quantum algebra.

Major difference: Finite rank r gives us a quotient of the q.t. algebra.
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