Pre-thermalization and thermalization in models with weak integrability breaking

Fabian Essler (Oxford)

Joint works with

Bruno Bertini
(Oxford->SISSA)

Stefan Kehrein (Goettingen)

Neil Robinson
(Oxford->BNL)

Salvatore Manmana (Goettingen)

Outline

A. Quantum Quenches in isolated systems.
B. Local relaxation in integrable/non-integrable models.
C. "Pre-thermalization plateaux".
D. Beyond Pre-thermaliztion.

Quantum Quenches in isolated many-particle systems

A. Consider a quantum many-particle system with Hamiltonian H (no randomness, translationally invariant, short ranged)
B. Prepare the system in density matrix $\rho(0)$ that does not correspond to superposition of small \# of eigenstates of H, fulfils cluster decomposition \& is translationally invariant.
C. Time evolution $\rho(t)=\exp (-i H t) \rho(0) \exp (i H t)$
D. Study time evolution of local observables $\operatorname{Tr}[\rho(t) O(x)]$ (in the thermodynamic limit).

Local Relaxation

Given that we are considering an isolated system, in what sense does the system relax at late times?

It relaxes locally (in space):

- Entire System: $A \cup B$
- Take A infinite, B finite
- Ask questions only about B:

Expectation values of local ops:

Physical Picture: A acts like a bath for B.

Subsystems are described by reduced density matrices:

Reduced density matrix: $\rho_{B}(t)=\operatorname{tr}_{A} \rho(t)$

The system relaxes locally if $\lim _{t \rightarrow \infty} \rho_{B}(t)=\rho_{B}(\infty)$ exists for any finite subsystem B in the thermodynamic limit.

Nonequilibrium Steady State

A density matrix $\rho^{s s}$ describes the steady state of a system $A \cup B$ that relaxes locally, if $\operatorname{Tr}_{A}\left[\rho^{S S}\right]=\operatorname{Tr} A[\rho(\infty)]$ for any finite subsystem B in the thermodynamic limit $|A| \rightarrow \infty$.
N.B. $\rho^{s s}$ is not unique.

Conservation laws

Isolated system \rightarrow energy conserved $\left[H, e^{-i H t}\right]=0$
No other conserved quantities \rightarrow system thermalizes

> Deutsch '91, Srednicki '94,....

Define a Gibbs Ensemble: $\quad \rho_{\mathrm{GE}}=\frac{1}{Z_{\mathrm{GE}}} e^{-\beta_{\mathrm{eff}} H}$
fix effective temperature:

$$
\begin{aligned}
e & =\lim _{L \rightarrow \infty} \frac{1}{L} \operatorname{Tr}[\rho(0) H] \\
& =\lim _{L \rightarrow \infty} \frac{1}{L} \operatorname{Tr}\left[\rho_{\mathrm{GE}} H\right]
\end{aligned}
$$

Thermalization: $\rho^{\text {SS }}=\rho G E$

Further conserved quantities: system does not thermalize

$$
\left[I_{\alpha}, H\right]=0 \Rightarrow \operatorname{Tr}\left[\rho(t) I_{\alpha}\right]=\mathrm{const}
$$

Define a Generalized Gibbs Ensemble: Rigol et. al. '07

$$
\rho_{\mathrm{GGE}}=\frac{1}{Z_{\mathrm{GGE}}} e^{-\sum_{\alpha} \lambda_{\alpha} I_{\alpha}}
$$

fix Lagrange multipliers: $\quad \begin{aligned} e_{\alpha} & =\lim _{L \rightarrow \infty} \frac{1}{L} \operatorname{Tr}\left[\rho(0) I_{\alpha}\right] \\ & =\lim _{L \rightarrow \infty} \frac{1}{L} \operatorname{Tr}\left[\rho_{\mathrm{GGE}} I_{\alpha}\right]\end{aligned}$

Non-thermal Steady State $\rho^{\text {SS }}=\rho G G E$

Barthel\&Schollwöck '08 Cramer et al '08

Quantum Integrable Models

These have extensive numbers of local (in space) integrals of motion $\left[I_{m}, I_{n}\right]=\left[I_{m}, H(h)\right]=0$.

Example: transverse-field Ising chain Grady '82, Prosen'98
define operators $\quad S_{j, j+\ell}^{\alpha \beta}=\sigma_{j}^{\alpha}\left[\sigma_{j+1}^{z} \ldots \sigma_{j+\ell-1}^{z}\right] \sigma_{j+\ell}^{\beta}$

$$
\begin{aligned}
I_{0}^{+} & =H(h)=-J \sum_{j} S_{j, j+1}^{x x}+h \sum_{j} \sigma_{j}^{z} \\
I_{1}^{+} & =-J \sum_{j}\left(S_{j, j+2}^{x x}-\sigma_{j}^{z}\right)-h \sum_{j}\left(S_{j, j+1}^{x x}+S_{j, j+1}^{y y}\right) \\
I_{n \geq 2}^{+} & =-J \sum_{j}\left(S_{j, j+n+1}^{x x}+S_{j, j+n-1}^{y y}\right)-h \sum_{j}\left(S_{j, j+n}^{x x}+S_{j, j+n}^{y y}\right) \\
I_{n}^{-} & =-J \sum_{j}\left(S_{j, j+n+1}^{x y}-S_{j, j+n+1}^{y x}\right)
\end{aligned}
$$

In involve spins on $n+2$ neighbouring sites

Integrable vs non-integrable models

Non-equilibrium evolution of quantum integrable models is markedly different from that of non-integrable models:

- Integrable models relax locally to GGEs
- Non-integrable models thermalize.

What happens if we add a small perturbation to a quantum integrable model?

Adding small perturbations to integrable models

Steady state will be thermal, but there could be a "proximity effect" at intermediate times:
"remnants of integrability"?
thermalization?

0

```
Manmana et al '07
Moeckel&Kehrein '08
Kollar et al '11
Marcuzzi et al '13
Brandino et al '13
Essler et al `14
Nessi et al '14
```

T

What are these "remnants of integrability"?

Essler, Kehrein, Manmana \&Robinson '14

(1) integrable model = free theory for simplicity
(2) Two tuneable parameters:

1 for quench in integrable model, 1 to break integrability;

Non-interacting (integrable) theory:

$$
\begin{aligned}
H(\delta, 0) & =\sum_{0<k<\pi \alpha= \pm} \sum_{\alpha=1} \epsilon(k, \delta) a_{\alpha}^{\dagger}(k) a_{\alpha}(k) \\
& \begin{array}{l}
2 \text { bands of free fermions } \\
\\
c_{l}
\end{array}=\frac{1}{\sqrt{L}} \sum_{k>0} \sum_{\alpha= \pm} \gamma_{\alpha}\left(l, k \mid \delta a_{\beta}(p)\right\}=\delta_{\alpha, \beta} \delta_{p, k}
\end{aligned}
$$

Quenches in the free (integrable) theory

Prepare the system in the ground state $\left|\Psi_{0}\right\rangle$ of $H\left(\delta_{i}, 0\right)$
At $\mathrm{t}=0$ quench $\delta_{i} \longrightarrow \delta_{f}$
Single particle Green's function $G(j, \ell, t)=\left\langle\Psi_{0}(t)\right| c_{j}^{\dagger} c_{\ell}\left|\Psi_{0}(t)\right\rangle$

$$
\begin{aligned}
\delta_{i} & =0.75 \\
\delta_{f} & =0.25
\end{aligned}
$$

$\lim _{t \rightarrow \infty} G_{0}(j, \ell, t) \sim g_{1}(j, \ell)+g_{2}(j, \ell) t^{-3 / 2}+\ldots$
\downarrow given by a GGE

Stationary State : GGE

Free theories: local conservation laws \Leftrightarrow mode occupation ops

$$
\begin{aligned}
& n_{\alpha}(k)=a_{\alpha}^{\dagger}(k) a_{\alpha}(k) \\
& {\left[H\left(\delta_{f}, 0\right), n_{\alpha}(k)\right]=0=\left[n_{\alpha}(k), n_{\beta}(q)\right]} \\
& \rho_{\mathrm{GGE}}=\frac{1}{Z_{\mathrm{GGE}}} \exp \left[\sum_{k} \sum_{\alpha= \pm} \mu_{k, \alpha} n_{\alpha}(k)\right]
\end{aligned}
$$

Momentum occupation numbers for the two bands:

$$
\begin{aligned}
\delta_{i} & =0.75 \\
\delta_{f} & =0.25
\end{aligned}
$$

Very non-thermal!

Break integrability through interactions

(1) Prepare the system in the ground state $\left|\Psi_{0}\right\rangle$ of $H\left(\delta_{i}, 0\right)$
(2) At $\dagger=0$ quench $\delta_{i} \longrightarrow \delta_{f} \quad U_{i}=0 \longrightarrow U_{f}>0$
(3) Calculate Green's function $\quad G(j, \ell, t)=\left\langle\Psi_{0}(t)\right| c_{j}^{\dagger} c_{\ell}\left|\Psi_{0}(t)\right\rangle$
using t-DMRG and non-equilibrium CUT method Moeckel\&Kehrein '08

$$
\delta_{i}=0.75, \quad \delta_{f}=0.5, \quad U=0.15 \mathrm{~J}
$$

Observe $t^{-3 / 2}$ power-law decay to constant values

Thermalization?

Constant values are neither thermal nor GGE

"Prethermalization Plateaux"

Moeckel\&Kehrein '08 Kollar et al '11

Statistical Ensemble describing the pre-thermalization plateau

Essler, Kehrein, Manmana \&Robinson '14

Construct operators

$$
\begin{aligned}
\mathcal{Q}_{\alpha}(k)=a_{\alpha}^{\dagger}(k) a_{\alpha}(k)- & U \sum_{q_{j}>0} N_{\alpha \alpha}^{\gamma}(\mathbf{q} \mid k, k, B=\infty) a_{\gamma_{1}}^{\dagger}\left(q_{1}\right) a_{\gamma_{2}}\left(q_{2}\right) a_{\gamma_{3}}^{\dagger}\left(q_{3}\right) a_{\gamma_{4}}\left(q_{4}\right) \\
& +\mathcal{O}\left(U^{2}\right)
\end{aligned}
$$

Physical interpretation as quasiparticle occupation numbers

Commutation relations:

$$
\left[\mathcal{Q}_{\alpha}(k), \mathcal{Q}_{\beta}(p)\right]=\mathcal{O}\left(U^{2}\right) . \quad\left[\mathcal{Q}_{\alpha}(k), H\left(\delta_{f}, U\right)\right]=\mathcal{O}(U)
$$

\rightarrow charges not (perturbatively) conserved at the operator level, but

$$
\operatorname{Tr}\left(\rho(t) \mathcal{Q}_{\alpha}(k)\right)-\left\langle\Psi_{0}\right| \mathcal{Q}_{\alpha}(k)\left|\Psi_{0}\right\rangle=\mathcal{O}\left(U^{2}\right)
$$

Define a density matrix ("deformed GGE") by

$$
\varrho_{\mathrm{PT}}=\frac{1}{Z_{\mathrm{PT}}} \exp \left(\sum_{k, \alpha} \lambda_{k}^{(\alpha)} \mathcal{Q}_{\alpha}(k)\right) .
$$

fix Lagrange multipliers by $\quad \operatorname{tr}\left[\varrho_{\mathrm{PT}} \mathcal{Q}_{\alpha}(k)\right]=\left\langle\Psi_{0}\right| \mathcal{Q}_{\alpha}(k)\left|\Psi_{0}\right\rangle$.

PPT reproduces the prethermalization plateaux values to $O\left(U^{2}\right)$ for both two-point and 4-point functions.

Belief: this can be extended to higher orders in U

Prepare system in density matrix $\rho(0)$ s.t. Wick's thm holds

Study time-evolution using equation of motion methods (BBGKY)

```
cf Stark & Kollar '13
    Nessi & Iucci '15
```

remnants of integrability?
equations of motion late times

$\overrightarrow{0}$ T cross-over scale | higher |
| :--- |
| cumulants | Lux et al'14 time

Equations of motion for $\quad \hat{n}_{\alpha \beta}(q, t)=a_{\alpha}^{\dagger}(q, t) a_{\beta}(q, t)$
(1) $\frac{\partial}{\partial t} \hat{n}_{\alpha \beta}(k, t)=i\left[H, \hat{n}_{\alpha \beta}(k, t)\right]$

$$
=i\left[\epsilon_{\alpha}(k, \delta)-\epsilon_{\beta}(k, \delta)\right] \hat{n}_{\alpha \beta}(k, t)+i U \sum_{\alpha} \sum_{q>0} Y_{\alpha \beta}^{\alpha}(k, \boldsymbol{q}) \hat{A}_{\alpha}(\boldsymbol{q}, t),
$$

$$
\hat{A}_{\alpha}(\boldsymbol{q}, t)=a_{\alpha_{1}}^{\dagger}\left(q_{1}, t\right) a_{\alpha_{2}}^{\dagger}\left(q_{2}, t\right) a_{\alpha_{3}}\left(q_{3}, t\right) a_{\alpha_{4}}\left(q_{4}, t\right)
$$

(2) $\frac{\partial}{\partial t} \hat{A}_{\boldsymbol{\alpha}}(\boldsymbol{q}, t)=i\left[H, \hat{A}_{\boldsymbol{\alpha}}(\boldsymbol{q}, t)\right]=i E_{\boldsymbol{\alpha}}(\boldsymbol{q}) \hat{A}_{\boldsymbol{\alpha}}(\boldsymbol{q}, t)+i U \sum_{\gamma} \sum_{\boldsymbol{p}>0} V_{\gamma}(\boldsymbol{p})\left[\hat{A}_{\gamma}(\boldsymbol{p}, t), \hat{A}_{\boldsymbol{\alpha}}(\boldsymbol{q}, t)\right]$

Integrate (2) in time, then take expectation values wrt $\rho(0)$

$$
\begin{aligned}
\dot{n}_{\alpha \beta}(k, t)= & {\left[\epsilon_{\alpha}(k, \delta)-\epsilon_{\beta}(k, \delta)\right] n_{\alpha \beta}(k, t)+i U \sum_{\boldsymbol{\alpha}} \sum_{\boldsymbol{q}>0} Y_{\alpha \beta}^{\boldsymbol{\alpha}}(k, \boldsymbol{q})\left\langle\hat{A}_{\boldsymbol{\alpha}}(\boldsymbol{q}, 0)\right\rangle e^{i t E_{\boldsymbol{\alpha}}(\boldsymbol{q})} } \\
& -U^{2} \int_{0}^{t} d s \sum_{\boldsymbol{\alpha}, \boldsymbol{\gamma} \boldsymbol{\gamma}, \boldsymbol{p}>0} \sum_{\boldsymbol{q}}\left\langle\hat{A}_{\boldsymbol{\gamma}}(\boldsymbol{p}, s) \hat{A}_{\boldsymbol{\alpha}}(\boldsymbol{q}, s)\right\rangle\left[Y_{\alpha \beta}^{\boldsymbol{\alpha}}(k, \boldsymbol{q}) e^{i(t-s) E_{\boldsymbol{\alpha}}(\boldsymbol{q})} V_{\gamma}(\boldsymbol{p})-(\boldsymbol{\alpha}, \boldsymbol{q}) \rightarrow(\gamma, \boldsymbol{p})\right]
\end{aligned}
$$

Drop terms involving 4,6,... particle cumulants:

$$
\left\langle\hat{A}_{\gamma}(\boldsymbol{p}, t) \hat{A}_{\boldsymbol{\alpha}}(\boldsymbol{q}, t)\right\rangle=f\left(\left\{n_{\alpha \beta}(k, t)\right\}\right)+\mathcal{C}\left[\left\langle\hat{A}_{\gamma}(\boldsymbol{p}, t) \hat{A}_{\boldsymbol{\alpha}}(\boldsymbol{q}, t)\right\rangle\right],
$$

disconnected parts (retained)
higher cumulants (dropped)

$$
\begin{aligned}
\dot{n}_{\alpha \beta}(k, t)= & i \epsilon_{\alpha \beta}(k) n_{\alpha \beta}(k, t)+4 i U e^{i t \epsilon_{\alpha \beta}(k)} \sum_{\gamma_{1}} J_{\gamma_{1} \alpha}(k ; t) n_{\gamma_{1} \beta}(k, 0)-J_{\beta \gamma_{1}}(k ; t) n_{\alpha \gamma_{1}}(k, 0) \\
& -U^{2} \int_{0}^{t} \mathrm{~d} t^{\prime} \sum_{\gamma} \sum_{k_{1}, k_{2}>0} K_{\alpha \beta}^{\gamma}\left(k_{1}, k_{2} ; k ; t-t^{\prime}\right) n_{\gamma_{1} \gamma_{2}}\left(k_{1}, t^{\prime}\right) n_{\gamma_{3} \gamma_{4}}\left(k_{2}, t^{\prime}\right) \\
& -U^{2} \int_{0}^{t} \mathrm{~d} t^{\prime} \sum_{\underline{\gamma}} \sum_{k_{1}, k_{2}, k_{3}>0} L_{\alpha \beta}^{\underline{\gamma}}\left(k_{1}, k_{2}, k_{3} ; k ; t-t^{\prime}\right) n_{\gamma_{1} \gamma_{2}}\left(k_{1}, t^{\prime}\right) n_{\gamma_{3} \gamma_{4}}\left(k_{2}, t^{\prime}\right) n_{\gamma_{5} \gamma_{6}}\left(k_{3}, t^{\prime}\right),
\end{aligned}
$$

Can be integrated numerically for large system sizes ($L=360$)

$$
\begin{aligned}
& \text { Can eliminate time-integrals for late } \dagger \\
& \Rightarrow \text { quantum Boltzmann-like equations for } \delta_{\mathrm{f}}=0
\end{aligned}
$$

Results for $\quad \delta_{i}=0.8 \quad \delta_{f}=0.4 \quad U=0.4$

Excellent agreement with tDMRG \& CUT

- Nice prethermalization plateaux up to late times

To be able to tune the "duration" of the plateau at fixed U study

$$
H\left(J_{2}, \delta, U\right)=-J_{1} \sum_{l=1}^{L}\left[1+(-1)^{l} \delta\right]\left(c_{l}^{\dagger} c_{l+1}+\text { H.c. }\right)-J_{2} \sum_{l=1}^{L}\left[c_{l}^{\dagger} c_{l+2}+\text { H.c. }\right]+U \sum_{l=1}^{L} n_{l} n
$$

Extra term modifies $U=0$ band structure, opens additional scattering channels

Initial density matrix: $\quad \rho\left(\beta, J_{2}, \delta\right)=\frac{e^{-\beta H\left(J_{2}, \delta, 0\right)}}{\operatorname{Tr}\left(e^{-\beta H\left(J_{2}, \delta, 0\right)}\right)}$

Thermal state,
Wick's thm holds

Quench to $\quad H\left(J_{2}, \delta=0.1, U=0.4\right)$
Initial state $\rho\left(\beta=2, J_{2}=0, \delta_{i}=0\right) \quad$ (finite T free fermions)

Slow (exponential) drift takes us off the prethermalization plateau

Time scale over which prethermalization plateaux disappear

$$
\mathcal{G}(i, j ; t) \sim \mathcal{G}(i, j)_{\mathrm{th}}+A_{i j}\left(J_{2}, \delta, U\right) e^{-t / \tau_{i j}\left(J_{2}, \delta, U\right)}
$$

where

$$
\tau_{i j}\left(J_{2}, \delta, U\right) \propto U^{2}
$$

Mode occupation numbers approach thermal values:

Quench to $\quad H\left(J_{2}=2, \delta_{f}=0, U=0.4\right)$
Initial state $\rho\left(\beta=2, J_{2}=0, \delta_{i}=0.5\right)$ (finite T free fermions)

Summary

- Integrable models have unusual (non-thermal) steady states after quantum quenches.
- Weak integrability breaking leads to interesting transients: prethermalization plateaux (PP).
- Expectation values of local operators slowly "drift off" the PP towards thermal values.
- Can one take into account 4-particle cumulants to access very late times and quantitatively describe thermalization?
- Weak integrability breaking for strongly interacting models?

$$
H=J_{1} \sum_{j} \mathbf{S}_{j} \cdot \mathbf{S}_{j+1}+J_{2} \sum_{j} \mathbf{S}_{j} \cdot \mathbf{S}_{j+2} \quad 0<J_{2} \ll J_{1}
$$

