

String-net condensation and topological phases in quantum spin systems

Michael Levin, Xiao-Gang Wen *MIT*

Gapped

- Gapped
- Degenerate ground state on torus

- Gapped
- Degenerate ground state on torus
- Fractional statistics

Real life examples

• FQH liquids.

4

Real life examples

- FQH liquids.
- Hope: Frustrated magnets
 - Many theoretical models
 - A few candidate materials
 - Cs₂CuCl₄
 - κ -(BEDT-TTF)₂Cu₂(CN)₃

Theory of topological phases

Theory of topological phases

- We understand:
 - Low energy/Long distance physics

- We're missing:
 - Connection with microscopics!

How do topological phases emerge from microscopic spins?

How can we realize them? What interactions favor them?

How do topological phases emerge from microscopic spins?

How can we realize them? What interactions favor them?

Outline

I. Physical picture

II. Quantitative results

A. Explicit ground state wave functions

B. Exactly soluble Hamiltonians

III. Examples

String-net models

Data

1. String types: Number of string types N.

$$_{\underline{\hspace{1cm}}}^{i}$$
 (i = 1,...,N)

2. Branching rules: Triplets {i, j, k} allowed to meet at a point.

Data

Data

- 1. Number of string types: N = 2.
- 2. Branching rules: {2, 2, 2}, {1, 2, 2}.

String-net Hamiltonian

$$H = t H_t + U H_U$$

$$String String kinetic tension energy$$

4

String-net Hamiltonian

- String-net condensed phases ARE topological phases!
- Mechanism for topological phases
- Very general: all non-chiral topological phases can be realized

Low energy degrees of freedom can be string-like:

What does this have to do with spin systems?

Low energy degrees of freedom can be string-like:

Low energy degrees of freedom can be string-like:

Examples

Z₂ gauge theory

 $SO_3(3) \times SO_3(3)$ Chern-Simons

S₃ gauge theory

4

Representative wave functions

Want "fixed-point" wave functions:

$$\Phi(\bigcirc\bigcirc\bigcirc\bigcirc) = \dots$$

Ans

Ansatz

- 1. Amplitude of Φ only depends on topology of string-net: e.g., $\Phi(\ \bigcirc\) = \Phi(\ \bigcirc\)$
- 2. Φ satisfies local constraint equations:

$$\Phi(\bigcirc^{i}) = d_{i} \Phi(\bigcirc)$$

$$\Phi(\frac{i}{i}) = 0 \quad \text{if } i \neq j$$

$$\Phi() = \sum_{n} \operatorname{Fijm}_{k \mid n} \Phi() = \sum_{n \mid k} \Phi()$$

Local constraints specify Φ completely

$$\Phi(\underbrace{\downarrow_{k}}) = \sum_{l} F^{ikj}_{kil} \Phi(\underbrace{\downarrow_{k}})$$

$$= F^{ikj}_{ki0} \Phi(\underbrace{\downarrow_{k}})$$

$$= F^{ikj}_{ki0} d_{i} d_{k} \Phi(\text{vacuum})$$

$$= F^{ikj}_{ki0} d_{i} d_{k}$$

But rules are not usually self-consistent!

4

Self-consistency conditions

$$\sum_{n} F^{mlq}_{kpn} F^{jip}_{mns} F^{jsn}_{lkr} = F^{jip}_{qkr} F^{riq}_{mls}$$
 (a)

$$F^{ijm}_{kln} = F^{lkm}_{jin} = F^{jim}_{lkn} = F^{imj}_{knl} (d_m d_n / d_j d_l)^{1/2}$$
 (b)

$$F^{ijk}_{ji0} = (d_k/d_id_j)^{1/2} \delta_{ijk}$$
 (c)

(where $\delta_{ijk} = 1$ if $\{i,j,k\}$ allowed, 0 otherwise).

Self-consistency conditions

$$\sum_{n} F^{mlq}_{kpn} F^{jip}_{mns} F^{jsn}_{lkr} = F^{jip}_{qkr} F^{riq}_{mls}$$
 (a)

$$F^{ijm}_{kln} = F^{lkm}_{jin} = F^{jim}_{lkn} = F^{imj}_{knl} (d_m d_n / d_j d_l)^{1/2}$$
 (b)

$$F^{ijk}_{ji0} = (d_k/d_id_j)^{1/2} \delta_{ijk}$$
 (c)

(where $\delta_{ijk} = 1$ if $\{i,j,k\}$ allowed, 0 otherwise).

Solutions \Leftrightarrow fixed point wave functions Φ

Classification of non-chiral topological phases

String-net condensates/
non-chiral topological
phases

Classification of non-chiral topological phases

String-net condensates/ non-chiral topological phases

"Tensor categories"

Exactly soluble lattice models

Each "spin" can be in N+1 states: $|0\rangle, |1\rangle, ..., |N\rangle$

4

Exactly soluble lattice models

Each "spin" can be in N+1 states: $|0\rangle, |1\rangle, ..., |N\rangle$

4

Exactly soluble lattice models

Each "spin" can be in N+1 states: $|0\rangle, |1\rangle, ..., |N\rangle$

Hamiltonians

Generalization of Kitaev's toric code

First term: Q

Defined by:

$$Q_{l} \mid \stackrel{\diamondsuit}{\underset{i \ j}{\Diamond}} \stackrel{k}{\rangle} = \delta_{ijk} \mid \stackrel{\diamondsuit}{\underset{i \ j}{\Diamond}} \stackrel{k}{\rangle}$$

First term: Q

Defined by:

$$Q_{l} \mid \stackrel{\diamondsuit k}{\underset{j}{\longleftrightarrow}} \rangle = \delta_{ijk} \mid \stackrel{\diamondsuit k}{\underset{j}{\longleftrightarrow}} \rangle$$

"Electric charge"

Second term: B_n

Defined by: $B_p = \sum_s d_s B_p^s$ where

$$B_{p} \left| \begin{array}{c} b > h < c \\ g & i \\ a < j > d \end{array} \right| =$$

$$\sum_{g'h'\cdots l'} \mathsf{Falg}_{\mathsf{s}g'l'} \mathsf{Fbgh}_{\mathsf{s}h'g'} \cdots \mathsf{Ffkl}_{\mathsf{s}l'k'} \begin{vmatrix} \mathsf{b} \\ \mathsf{g'} \\ \mathsf{a} \\ \mathsf{j'} \\ \mathsf{b} \end{vmatrix}$$

$$\begin{vmatrix}
b & h' < c \\
g' & i' \\
a < & b < d \\
i' & j' \\
f > k' < e
\end{vmatrix}$$

Second term: B_n

Defined by: $B_p = \sum_s d_s B_p^s$ where:

$$B_{p} \left| \begin{array}{c} b > h < c \\ g & i \\ a < j > d \end{array} \right| =$$

$$\sum_{g'h'\cdots l'} \mathsf{Falg}_{\mathsf{s}g'l'} \mathsf{Fbgh}_{\mathsf{s}h'g'} \cdots \mathsf{Ffkl}_{\mathsf{s}l'k'} \begin{vmatrix} b & h' \prec c \\ g' & i' \\ a \prec & -d \\ l' & j' \\ f > k' \prec g \end{vmatrix}$$

$$\begin{vmatrix}
b & h' < c \\
g' & i' \\
a < & b < d \\
i' & j' \\
f > k' < e
\end{vmatrix}$$

"Magnetic flux"

Properties of Hamiltonian

- 1. $\{B_p\}$, $\{Q_l\}$ commuting projectors \Rightarrow H is exactly soluble.
- 2. Ground state wave function is Φ .

3. Model describes a topological phase.

 $oldsymbol{
ho}^{i heta}$

Properties of Hamiltonian

- 4. Fixed points: Correlation length $\xi = 0$
 - zero coupling gauge theory

"Right way" to put topological theories on lattice.

Properties of Hamiltonian

- 4. Fixed points: Correlation length ξ = 0
 - zero coupling gauge theory

"Right way" to put topological theories on lattice.

Turaev/Viro (1992) Ooguri (1992) Loop quantum gravity: "spin networks"

Example #1

- 1. String types: N = 1
- 2. Branching rules: No branching

What phase occurs when strings condense?

Example #1

Two solutions to self-consistency equations:

$$\begin{aligned} &d_0 = 1 \\ &d_1 = F^{110}_{110} = \pm 1 \\ &F^{000}_{000} = F^{101}_{101} = F^{011}_{011} = 1 \\ &F^{000}_{111} = F^{110}_{001} = F^{101}_{010} = F^{011}_{100} = 1 \end{aligned}$$

Two sets of local rules:

$$\Phi(\bigcirc) = \pm \Phi(\bigcirc)$$

 $\Phi(\bigcirc) = \pm \Phi(\bigcirc)$

Two solutions: $\Phi_{+}(X) = (\pm 1)^{N_{loops}(X)}$

Lattice realization

Each "spin" can be in 2 states: $|0\rangle$, $|1\rangle$

Convenient to use spin-1/2 notation:

$$|0\rangle = |\sigma^x = +1\rangle$$

$$|1\rangle = |\sigma^x = -1\rangle$$

Lattice realization

Each "spin" can be in 2 states: $|0\rangle$, $|1\rangle$

Convenient to use spin-1/2 notation:

$$|0\rangle = |\sigma^x = +1\rangle$$

$$|1\rangle = |\sigma^x = -1\rangle$$

Hamiltonian: Φ_+

$$H_{+} = -\sum_{I} \prod_{a} \sigma^{x}_{a} - \sum_{p} \prod_{b} \sigma^{z}_{b}$$

Hamiltonian: Φ_{+}

$$H_{+} = -\sum_{I} \prod_{a} \sigma^{x}_{a} - \sum_{p} \prod_{b} \sigma^{z}_{b}$$

Toric code: Lattice model for Z₂ gauge theory!

Hamiltonian: Φ₋

$$H_{-} = -\sum_{i} \prod_{a} \sigma_{a}^{x} - \sum_{p} \prod_{b} \sigma_{b}^{z} \cdot \prod_{c} i^{(1-\sigma_{c}^{x})/2}$$

Hamiltonian: Φ₋

$$H_{-} = -\sum_{i} \prod_{a} \sigma_{a}^{x} - \sum_{p} \prod_{b} \sigma_{b}^{z} \cdot \prod_{c} i^{(1-\sigma_{c}^{x})/2}$$

U(1)×U(1) Chern-Simons theory with semions!

Two string condensed phases

Example #2

- 1. String types: N = 1
- 2. Branching rules: {1,1,1}

What phase occurs when string-nets condense?

Example #2

Only one set of self-consistent local rules:

$$\Phi(\bigcirc) = \tau \Phi(\bigcirc)$$

$$\Phi(\bigcirc) = 0$$

$$\Phi(\bigcirc) = \tau^{-1} \Phi(\bigcirc) + \tau^{-1/2} \Phi(\bigcirc)$$

$$\Phi(\bigcirc) = \tau^{-1/2} \Phi(\bigcirc) - \tau^{-1} \Phi(\bigcirc)$$

$$\tau = (1+5^{1/2})/2$$

Example #2

Wave function: No closed form!

Hamiltonian: Spin-1/2 model (complicated)

Topological phase: $SO_3(3) \times SO_3(3)$ Chern-Simons theory

- "Fibonacci theory"
- Non-abelian anyons

How do topological phases emerge from microscopic spins?

How can we realize them? What interactions favor them?

How do topological phases emerge from microscopic spins?

How can we realize them? What interactions favor them?

