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Basics of Fault-Tolerance

• The purpose of fault-tolerance is to enable reliable

quantum computations when the computer’s basic

components are unreliable.

• To achieve this, the qubits in the computer are encoded

in blocks of a quantum error-correcting code, which

allows us to correct the state even when some qubits are

wrong.

• A fault-tolerant protocol prevents catastrophic error

propagation by ensuring that a single faulty gate or time

step produces only a single error in each block of the

quantum error-correcting code.



Concatenated Codes

Error correction is

performed more

frequently at

lower levels of

concatenation.

Threshold for fault-tolerance proven using

concatenated error-correcting codes.

Effective error rate
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One qubit is

encoded as n,

which are

encoded as n2, …



Threshold for Fault-Tolerance
Theorem: There exists a threshold pt such that, if the

error rate per gate and time step is p < pt, arbitrarily

long quantum computations are possible.
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Proof sketch: Each level of concatenation changes

the effective error rate p ! pt (p/pt)
2.  The effective

error rate pk after k levels of concatenation is then

and for a computation of length T, we need only

log (log T) levels of concatention, requiring

polylog (T) extra qubits, for sufficient accuracy.



Determining the Threshold Value

There are three basic methodologies used to

determine the value of the threshold:

• Numerical simulation: Randomly choose errors on a

computer, see how often they cause a problem.  Tends

to give high threshold value, but maybe this is an

overestimate; only applies to simple error models.

• Rigorous proof: Prove a certain circuit is fault-

tolerant for some error rate.  Gives the lowest

threshold value, but everything is included (up to

proof’s assumptions).

• Analytic estimate: Guess certain effects are

negligible and calculate the threshold based on that.

Gives intermediate threshold values.
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Requirements for Fault-Tolerance

1. Low gate error rates.

2. Ability to perform operations in parallel.

3. A way of remaining in, or returning to, the

computational Hilbert space.

4. A source of fresh initialized qubits during the

computation.

5. Benign error scaling: error rates that do not

increase as the computer gets larger, and no

large-scale correlated errors.



Additional Desiderata

1. Ability to perform gates between distant qubits.

2. Fast and reliable measurement and classical

computation.

3. Little or no error correlation (unless the

registers are linked by a gate).

4. Very low error rates.

5. High parallelism.

6. An ample supply of extra qubits.

7. Even lower error rates.



Threshold Values

Best proofs of the threshold give pT " 2.7 x 10-5 (Aliferis,

Gottesman, Preskill, quant-ph/0504218; also Reichardt,

quant-ph/0509203), assuming all desiderata.

Best methods trade extra ancilla qubits for error rate:

Ancilla factories create complex ancilla states to substitute

for most gates on the data.  Errors on ancillas are less

serious, since bad ancillas can be discarded safely.

Taking this idea to an extreme (e.g., overhead of 106 or

more physical qubits per logical qubit), simulations show

a threshold of 1% or higher (Knill, quant-ph/0404104,

Reichardt, quant-ph/0406025.)  Proofs have not fully

included these techniques yet.



Local Gates

Proof that threshold still exists with local gates: Gottesman,

quant-ph/9903099; Aharonov, Ben-Or, quant-ph/9906129.

We are starting to understand the value of the threshold in

this case:

• Storage threshold using topological codes " 10-4 in 2D

(Dennis, Kitaev, Landahl, Preskill, quant-ph/0110143)

• With concatenation, in 2D, lose factor of 2-3 in

threshold (Svore, Terhal, DiVincenzo, quant-

ph/0410047, quant-ph/0604090)

• In (almost) 1D, lose factor of 10-100 in threshold

(Szkopek et al., quant-ph/0411111)



Non-Markovian Errors

• Questioning fault-tolerance for non-Markovian
environments: Alicki, Horodecki3 (quant-ph/0105115),
Alicki, Lidar, Zanardi (quant-ph/0506201)

• Proof of fault-tolerant threshold with single-qubit errors
and separate environments for separate qubits: Terhal,
Burkhard (quant-ph/0402104)

• Proof of fault-tolerant threshold with shared environment:
Aliferis, Gottesman, Preskill (quant-ph/0504218)

• With 2-qubit errors: Aharonov, Kitaev, Preskill (quant-
ph/0510231)

• Unbounded Hamiltonians (spin boson model)? See
Terhal, Burkhard and Klesse, Frank (quant-ph/0505153)

What happens when the environment has a memory?



Distance 3 Proof
If a block of a QECC has errors, how do we define the

state of the encoded data?  How do we define when a state

has errors?

Solution: Use a syntactic notion of correctness, not a

semantic one.  States are not correct or incorrect, only

operations.

Define encoded state using ideal decoder:

FT error

correction
EC

FT encoded

gates

Conventions:



Extended Rectangles

Definition: An “extended rectangle” (or “ExRec”) consists

of an EC step (“leading”), followed by an encoded gate,

followed by another EC step (“trailing”).

Definition: An ExRec is “good” if it contains at most one fault

(roughly speaking).  A fault is a bad lower-level rectangle or

gate.
Note: Extended rectangles overlap with each other.

EC EC EC

1st ExRec 2nd ExRec



Good Circuits are Correct

Lemma [ExRec-Cor]: An ideal decoder can be pulled

back through a good ExRec to just after the leading EC.

EC EC =

EC =

(gate ExRec)

(preparation ExRec)

EC = EC

(measurement ExRec)

EC



Correct Means What It Ought To

Suppose we have a circuit consisting of only good ExRecs.

Then its action is equivalent to that of the corresponding ideal

circuit:

EC EC EC

1. Use ExRec-Cor for measurement to introduce an ideal

decoder before the final measurement.

2. Use ExRec-Cor for gates to push the ideal decoder back

to just after the very first EC step.

3. Use ExRec-Cor for preparation to eliminate the decoder.



The Future of Fault-Tolerance

Industrial Age

Experimental FT

Ancilla

factories

Understanding

of resource

tradeoffs

Efficient fault-

tolerance

Large quantum

computers! Quantum

Information Age


