Reversible and Irreversible In a quantum measurement,
or
do quantum measurements reset initial conditions?

WHZ (2018) Quantum reversibility is relative, or does a
guantum measurement reset initial conditions?

Phil. Trans. R. Soc. A 376: 20170315.

Iniormation plays a central role in quantum (but not in classical’)
physics.



Classical apparatus measures the state of a classical system Measurement by a quantum apparatus of a quantum system

Cs
sAg =4 sa,. MUQV,_U,V A0) 225 )" als)IAs).
S

Reversibility of evolution = one can (in principle) undo

that measurement... 1 C+
on, 54 on, Y esls)As) =24 ( el ) 1)
...so that both the apparatus and the system return to initial states. ...both Eo apparatus and the mwmﬁoﬂb return to initial states.

This is true also when a copy of the outcome 1s made and kept: ~ This is no longer true when copy of the outcome is kept...

m>

mmmeo L meUw ,

Qm_vv_\rv _Uo Da__\:_cv
(L, Mvu M

sAsDs —3 sAgDs

And it remains true in measurements of classical mixtures: M\FW A MU as|s)|As)|Ds) | = |Ap) MU as|s)|Ds)
¢ -
(Wss + Wyr)R) —3 wss Ag + Wyr A,

¢ ...since the state of the system is now mixed:
Agmm wm + WrX wH.vHVO k swmwm—um + WrX wH.UH.. y

Esa S N (e — lor. |2
WsS AsDg + wyr AyDy == (Wss Dg + wyr Dy)Ao. 0° =) wsls)(s|, Wss=lasl|*



Conclusions

Irreversibility in quantum physics can arise from the acquisition of information
(not necessarily its loss — not always entropy increase).

The records you keep define the branch of the Universe you inhabit.

. Us . S ) Ua S - -

s
|5)|As)|Ds) =% |s)|Ao)|Ds).
Increase of entropy after an attempted reversal is tied to discord.

Agent’s (“Wigner’s”) friend can confirm that agent knows the outcome and can
still reverse the dynamics (providing he does not copy the outcome!).

Information about the outcome does not preclude reversal of classical
measurements (classical dynamics is independent of information about evolving
systems) but quantum evolutions adjust to what is known about them.

Information plays a central role in quantum (but not in classical!) physics.
Measurement “resets” initial conditions relevant for the observer!



Decotrienence, (Yhaos, and the Second Law

DECOHERENCE, CHAOS, AND THE 2ND LAW WHZ & PAZ, JP PRL 72 pp. 2508-2511 (1994);
WHZ, DECOHERENCE, CHAOS, QUANTUM-CLASSICAL...., Physica Scr. T76, 186-198 (1998)



EINSELECTION", POINTER BASIS, AND DECOHERENCE

REDUCED DENSITY MATRIX fgfil- Bl . ())(@.. ()| = Sa[]o; )0

EINSELECTION®* leads to POINTER STATES

Stable states, appear on the diagonal of .cms after decoherence time;
pointer states are effectively classical!

Pointer states left unperturbed by the “environmental monitoring”.

*Environment INduced superSELECTION




Reduction of the Wavepacket in
Quantum Brownian Motion

Harmonic oscillator system coupled
to a free field environment via H;,,.

Harmonic

\ oscilator (x,p)

Field ¢ ()

_|_m3ﬁ € X @HA_VAAU_V

To obtain the effective equation of motion for the
density matrix of the harmonic oscillator:

1. Obtain the exact solution of the whole problem.

2. Trace out the field.



MASTER EQUATION™
(in the position representation)

Von Neumann relaxation/damping

plx,x") = |WT&F& —y(x=x )9, — 3, )p

2mykyT ,
— NW\Nw A.H|.vab

DECOHERENCE

w
-1 VISCOSIty 1) = £ . where £is

Y 2

the coupling constant in H, ,, = € X@.

A solution (to a leading order ‘‘for small Planck constant’).
P\ 2
nk,T(x — x')

o(x,x";t) = p(x,x’;0) expq — . t

*High temperature limit. Master equations for arbitrary temperatures,
non- ohmic spectral densities, etc. also can be derived and predict decoherence.

# ... Feyman and Vernon; Caldeira and Leggett; Unruh and Zurek; Hu, Paz and
Zhang; Gallis; Gell-Mann and Hartle; Anglin, Paz and Zurek...
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Decoherence Time Scale
and the Role of Position

Pt
Experimental confirmation: ENS

RELAXATION: . (Brune, Haroche, Raimond...);

P = —VP NisT (Monroe, Wineland....);

DECOHERENCE RATE: Vienna TDL.BQF N@ZWSMGH. . v e

2
% - 1 ¥ h A X u
— NU =
Aus (1)

Where thermal de Broglie length is:

Zurek ‘84-86; Joos & Zeh*85
Paz, Habib & Zurek’93



Decoherence in the Phase Space
& Wigner Distribution

| B y y
W(x,p) = — NE:NAklli T+Iv&
(e.p)=5—1 YA

A Gaussian Wigner Distribution:

1

S\Aku%wxovﬁov = X

NCQ — Nuovw 52 — Ak — kov
h’ 267

Goes into a point in the phase space in the classical limit.

2

x exp| —

For a superposition of two stationary peaks:

i 26°

_ NN%TESN
SA&EHAN%Q@T %lA vv+

two peaks

H NR%QJFEBVN
ox_ulwl N +
27h h 26

NN N ZOH@A&wZ
! @N@m — 2p wu = Nu oomﬂk .cv POSITIVE
2h h 20 h -cannnot be

interference! classical!!
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Classical Limit of Quantum Dynamics
& the Fokker - Planck Equation

Jw P JOW  JVip OW {H.p} —Poisson Bracket
It  m Ix + I op Liouville Dynamics
o
+2y — pW relaxation & dissipation
op P
W Here diffusion in
+2my kgl > momentum:
op Decoherence

Estimate of the Decoherence Timescale:

;q..,; ‘/ /..%H

Negative contribution ! *

Oscilations in W disappear on timescale Ty« W becomes
nonnegative and can be regarded as ““CLASSICAL’!

P
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Quantum-Classical Correspondence
and Chaotic Dynamics

Von Neumann equation for density operator:

inp =|H.p]

Von Neumann bracket

Evolution in phase space:

d\ﬂ\ - %mu%wngv\QN -

72
24

Quantum Corrections

2
W|h_. /\xxxggﬁ

o(n") OE™
smmall LARGE

%mw%uvmugmh%Qﬁ + A Q\VWA\Q\VWSN + ..u



Breakdown of Quantum-Classical
Correspondence

In quantum chaotic systems correction to Poisson
bracket grow as ~exp(At) and become comparable with it
after:

Apo X

t, = A" In S

The scale of nonlinearities:

A simple (over)estimate of the correspondence
breakdown time:

t, = A lIn =,
A

where A is the characteristic action of the system.



HYPERION Y o B

YEAR: 20086 Assumed to be a "captured” astercid, Hype:
MISSION: CASSINI scientists when it revealed an almost spong
TARGET: SATURN / HYPERION and mysterious dark bottoms to many crate:




Ax” + Bx* + A cos(wt)
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DECOHERENCE, CHAOS, & THE SECOND 1AW

HZQHWHUHHZ-H@ Paz & WHZ, PRL 1994...Monteoliva and Paz, 2001
e Open quantum system with classically

chaotic counterpart -- 1.e., trajectories that

diverge with Lyapunov exponents A__

0‘\/ e

®* Von Neumann entropy of the reduced
density matrix of the system:

H = —Trpog(t)Inpg (0




dH/d( A t)

Von Neumann Entropy Production
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Decoherence, Chaos, & the 2"? Law
—
1 + Decotzerzeccce + Dnrevernscbility

(1) Equations of motion; (11) Structure of phase space;
(111) “Limited” reversibility (for smooth W)

Classicality Condition for Chaotic Systems:.

xXO . >> h

or
x >> (. =h/oO,
where x = )\4\ /V . and O, =2D/ A
2. Entropy Production (Dynamical 2" Law!)

o & |Hr
F = 770 In = S A"
- Irpln o M ;

Independent of the strength of the coupling to the

environment.......

DECOHERENCE, CHAOS, AND THE 2ND LAW ZUREK, WH; PAZ, JP Foundations of statistical mechanics from symmetries of entanglement
PHYSICAL REVIEW LETTERS 72 Pages: 2508-2511 (1994) S. Deffner, W. H. Zurek N.J. Phys. 18 (2016) 063013 arXiv:1504.02797
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Physical significance:
WHZ (2001) Sub-
Planck spots of
Schroedinger cats,
NATURE 412, 712-717

.
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Foundations of Statistical Physics
from
symmetries ol Entanglement

Case Study: Szilard Engine

Wojciech H. Zurek
Los Alamos

S. Deffner & WHZ (2016), Foundations of statistical mechanics from symmetries of entanglement, N. J. Phys. Volume 18, 063013

WHZ (2018), “Eliminating Ensembles from Equilibrium Statistical Physics: Maxwell's Demon, Szilard's Engine, and Thermodynamics
via Entanglement”, Physics Reports, in press, arxiv:1806.03532



summary and conclusions:
EQUILIBIRIUM € 5 “NOTHING HAPPENS”

Without ensembies there is no possibility of equilibrium in Newtonian physics!!!

- Thermodynamics is organized logically around the equilibrium States — states in which
nothing happens.

- Yel, In States oi individual classical systems “something always happens” — Newtonian
dynamics preciudes equilibrium.

- Ensembles were introduced to reconcile Newtonian dynamics with thermodynamics.

- In quanium physics states of individual systems which do not evolve can exist -
entanglement makes this possible.

- Ensembles were also needed to motivate probabilities (needed ior statistical mechanics!).

- We can however get quantum States that embody equilibrium / deduce quantum
probabilities w/0 ensembles, using symmeiries of entanglement.

- Our world is quantum. Therefore, in our quantum world, we can practice statistical physics
with individual systems (that embedded in / entangled with their environments).



Statistical ensembles

* In mathematical physics, especially as introduced into statistical mechanics and
thermodynamics by J. Willard Gibbs in 1902, an ensemble (also statistical
ensemble) 1s an idealization consisting of a large number of virtual copies
(sometimes infinitely many) of a system, considered all at once, each of which
represents a possible state that the real system might be in. I other
words, a statistical ensemble is a probability
distribution for the state of the system.!!!

* A thermodynamic ensemble 1s a specific variety of statistical ensemble that,
among other properties, is in equilibrium, and is used to derive the properties
of thermodynamic systems from the laws of classical or quantum
mechanics.

EQUILABRIUM € © “NOTHING HAPPENS”

Without ensembles there is no possibility oi equilibrinm in classical Newtonian mechanics!!!

(Gibbs, Josiah Willard (1902). Elementary Principles in Statistical Mechanics. New York: Charles Scribner's Sons.




Microcanonical Equilibrium via Entanglement

Entangled “even” state of the system S and the environment £ (the system S alone in microcanonical equilibrium):

K
[Use) o< Y €% |si)ex)
k=1
The state of the system alone is NOT evolving dynamically — it is invariant under EVERY unitary...

Us({&} = {si}) = D 15k (sl

sk)EHs
..because evolution under any unitary can be undone by acting on the environment -- i.e., w/o acting on the system — with:

Us({&} ={a}) = D &) (el
ex)EHe

Proof: It is enough to specify the set of orthogonal states that define the evolution of the environment. In other words,
decomposition on RHS of: K K

>.
[Use) oo Y 15) (D e (Eilsi)lex) = Y [8)|)
=1

should be also Schmidt. That is, the set of states:

{161) = (Zpy €9 (Sils)ler))}

should be an orthogonal basis in the Hilbert space of the environment. This is true, as can be verified. QED.



Szilard engine: Classical version

% %
AW = \ p(v)dv = \nmﬂ\ dv/v = kpT In2

mo
2

V/2 V/2

?
°

?
o

NOTE THE ROLE OF OF THE PARTITION

W

W

">~ in compressing the one-molecule gas.

Above, we have used the law of Gay-Lussac,

p = kT /V, for one-molecule gas.

-
-

~
-

R AF = kgTIn?2

- -

ENSEMBLE ACCOMMODATES

BOTH OF THESE ALTERNATIVES

-

- -

Nl 4
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Frequentist view of probability (relafive frequenciésin an ensemble)

e _..1t 1s assumed that as the length of a series of trials increases, the fraction of experiments in
which a given event occurs will approach a fixed value ... the limiting relative frequency.

* This interpretation i1s often contrasted with Bayesian probability...the term 'frequentist' was first
used by M. G. Kendall”, to contrast with Bayesians, whom he called "non-frequentists".

* ....we may broadly distinguish two main attitudes. One takes probability as 'a degree of rational
belief', or some similar idea...the second defines probability in terms of frequencies of
occurrence of events, or by relative proportions in 'populations' or 'collectives’

* .... It might be thought that the differences between the frequentists and the non-frequentists .
are largely due to the differences of the domains which they purport to cover. ...I assert that
this is not so ... The essential distinction between the frequentists and the non-frequentists
is, I think, that the former, in an effort to avoid anything savouring of matters of opinion,

seek to define probability in terms of the objective properties of a population, real or
hypothetical, whereas the latter do not. [SUBJECTIVE vs OBJECTIVE]

IN QUANTUM THEORY ONE CAN DERIVE OBJECTIVE PROBABILITY W/0
APPEAL TO RELATIVE FREQUENCIES — W/0 APPEAL TO ENSEMBLES

*Kendall, Maurice George (1949). "On the Reconciliation of Theories of Probability". Biometrika. Biometrika Trust. 36 (1/2): 101-116




2
Born’s rule: i

e Born’sruleis one of the “textbook axioms” of quantum theory.

e |t relates the probability of an outcome of a measurement to
the state vector.

 Probability of finding an outcome |k) given |W) M%L»
guantum state vector of the system.

e Born’sruleis essential in connecting mathematics odﬂ guantum
theory with physics — with the experiments.

e Without it we would just have “guantum mathematics”, not
guantum physics.

We first derive Born’s rule to get objective probabilities then use
similar ideas to sShow how one can practice
statistical physics in our quanium Universe without ensembies.






ENVARIANCE
(Entanglement-Assisted Invariance)

DEFINITION:

Consider a composite quantum object consisting of system S and
environment £ When the combined state {\mm is transformed by:

U.=u_®1,
but can be ‘“‘untransformed’ by acting solely on £, that is, if
there exists: [
e =1 Qug

then Ve is ENVARIANT with respect to u <-

Ug(Ug Smva =Ug SmmV = T\\mmv

Envariance is a property of U g and the joint state <\mm of two
systems, S & £ .




ENTANGLED STATE AS AN EXAMPLE OF

ENVARIANCE:

Schmidt %8_:@85@:.

DECOHERENCE AS A LOCAL
ENTANGLEMENT-ASSISTED
SYMMETRY: DECOHERENCE

W)= M“Q sl IS DUE TO ENVARIANCE

Above Schmidt states T»v v are orthonormal and o, complex.

Lemma: Unitary transformations with Schmidt eigenstates:

u(s,)= Mox_uc.ﬁ»v_ S, Xm» _

leave Vs envariant.

Proof: u Am»v_c\mmvHMQ oxﬁQﬁ»i v; v

U (g,) = Mo%m; +2ml)Ye e,

g (8, (5, Wee )} = Mg exp{i(9, 4, +27L,)s v_ &) Ms_h &) =|wee)
LOCALLY, SCHMIDT PHASES DO NOT MATTER: DECOHERENCE!!!



Envariance of entangled states:
the case of equal coefficients

Wz ) o 2 exp(ig,)]s, e, )

k=1
In this case ANY orthonormal basis 1s Schmidt. In particular, in the

Y vw one can define a

Hilbert subspace spanned by any two ﬂ &AY

Hadamard basis; _Hv _ Q %»v HTNVV\)\M

EDIE 25uh HIF I

<& T
Q& &WNW._Q\WLW Yo N Miﬂvw_muv‘w?

B IR SLNE DI PECIE DIL DLl SIE o1



Probability of envariantly swappable states

_c\mmV oC M@N@Q&»V_ hwv_m»v

By the Phase Envariance Theorem the set of pairs |e], |s,)
provides a complete description of S. But all |o,| are equal.

b

With additional assumption about probabilities (e.g., perfect correlation as
on the previous transparency), one can prove

THEOREM: Probabilities of envariantly swappable states are equal.
(a) “Pedantic assumption”; when states get swapped, so do probabilities;
(b) When the state of the system does not change under any unitary in

a part of its Hilbert space, probabilities of any set of basis states are equal.
(c) Because there is one-to-one correlation between _ Sk v m\av

Therefore, by normalization: 1




Microcanonical Equilibrium via Entanglement

Entangled “even” state of the system and the environment (the system alone in microcanonical equilibrium):

K
[Use) o< Y €% |si)ex)
k=1
The state of the system alone is NOT evolving dynamically — it is invariant under EVERY unitary...

Us({&} = {si}) = D 15k (sl

sk)EHs
..because evolution under any unitary can be undone by acting on the environment -- i.e., w/o acting on the system — with:

Us({&} ={a}) = D &) (el
ex)EHe

Proof: It is enough to specify the set of orthogonal states that define the evolution of the environment. In other words,
decomposition on RHS of: K K

>.
[Use) oo Y 15) (D e (Eilsi)lex) = Y [8)|)
=1

should be also Schmidt. That is, the set of states:

{161) = (Zpy €9 (Sils)ler))}

should be an orthogonal basis in the Hilbert space of the environment. This is true, as can be verified. QED.



Special case with unequal coefficients

Consider system S with two states {|

0).1)J2)t and [+) =(]0) + [1))/+/2
0)+) + RIS (2)i2)

The environment £ has three states {|

Tmmvu

An auxilliary environment £ interacts with £ so that:

g €)= [121004) + {12123 o) = 2lo)oNo) +IINE + 22} -

~ (10)10)/0)+0)1)1) +]2)/2)/2))/v3

States0)[0), |0)|1), . Therefore,
Each of them has probability of 1/3. Consequently:
p(0) = p(0,0)+p(0,1) =2/3, and p2)=1/3.

esses BORN’s RULE!! 70 7ccc toassume

additivity!




Probabilities from Envariance

The case of commensurate probabilities: _S.m.mv M“)\ s_ _ “k

Attach the NEE_EQ ‘counter” environment ¢:

?mmv

)=

) B

/

mg

\._ﬁl_

1)

afl

H M

f=] ———’
o,

Tov =

o.v

c.v

h\év

THEOREM 3: The case with commensurate probabilities can be
reduced to the case with equal probabilitiecs. BORN’s RULE follows:

1

s Pir =

Jik=

General case -- by continuity. QED.

2
- o,




ENVARIANCE* -- SUMMARY

1. New symmetry - ENVARIANCE - of joint states of quantum
systems. It is related to causality.

2. In quantum physics perfect knowledge of the whole may imply
complete ignorance of a part.

3. BORN’s RULE follows as a consequence of envariance — objective symmetry
of entangled quantum states yields objective probabilities.

5. Envariance supplies a new foundation for environment - induced
superselection, decoherence, quantum statistical physics, etc., by
justifying the form and interpretation of reduced density matrices.

We have derived Objective probabilities without employing ensembles -- without

relative irequencies. Now we show €nsembles are not needed ior statistical physics...
+*WHI, PRL 90, 120404; RMP 75, 715 (2003); PRA 71, 052105 (2005); PRI 106, 250402 (2011), Physics Today Oct. (2014).




Microcanonical equilibrium state oi a single system — envariant definition

ENR 253k I Y
& S -
v_¢v+ 2lofe) EPPEL S

P AR = A P A

The microcanonical equilibrium of a system S with Hamiltonian H Ssan
energetically degenerate quantum state envariant under all unitaries.




Canonical equilibrium State of a single system irom envariance

Let us now imagine thatwe can separate the total system S into a smaller subsystem of interest G and its
complement, which we call heat bath 8. The Hamiltonian of S can thenbe written as

Hs=He @ Im + Is @ Hy + hem, (9

where hg i denotes an interaction term. Physically this term is necessary to facilitate exchange of energy
between the & and the heat bath 8. In the following, however, we will assume that he 9 is sufficiently small so
that we can neglect its contribution to the total energy, Es = Eg + Em, and itseffect on the composite
equilibrium state |¢/gg). These assumptions are in complete analogy to the ones of classical statistical mechanics
[12, 13]. Theywill, however, be relaxed in a final part of the analysis.

Under these assumptions every composite energy eigenstate |s;) can bewrittenas a product

Isk) = |sk) @ |bg), (10)

where the states |s;) and | by ) are energy eigenstates in & and B, respectively. At this point envariance is crucial in
our treatment: all orthonormal bases are equivalent under envariance (see footnote 5). Therefore, we can choose

|sk) asenergy eigenstates of Hg.



Boltzmann-Gibbs formula for thermal equilibrium state

Weare now ready to derive the Boltzmann—Gibbs formula. To this end consider that in the limit of very
large, N > 1, M(ex) (17) can be approximated with Stirling’s formula. We have

In(M(er)) = NIn(N) — W_US. In(n;). (18)

j=1

As pointed out earlier, thermodynamic equilibrium states are characterized by amaximum of symmetry or maximal
number of ‘involved energy states’, which corresponds classically to amaximal volume in phase space. In the case of the
microcanonical equilibrium this condition was met by the state that is maximally envariant, namelyenvariant under all
unitary maps. Now, following Boltzmann’s line of thought we identify the canonical equilibrium bythe configuration
ofthe heatreservoir B for which the maximal number of energy eigenvalues are occupied. Under the constraints

S :—
MEHZm:Qm@IQHME&u 23
=1 i=1

this problem can be solved by variational calculus. One obtains

Single quanfum system — no ensemble! ;= 1 exp (1 ), (20)

which is the celebrated Boltzmann—Gibbs formula. Notice that equation (20) is the number of statesin the heat
reservoir B with energy &..w for © and B beingin thermodynamic, canonical equilibrium. Inthis treatment
temperature merely enters through the Lagrangian multiplier A.



Szilard engine: Classical
& quantum versions

% %
p(v)dv = \amﬂ\
V)2

AW = dv/v = kT In2

V/2

Above, we have used the law of Gay-Lussac,

p = kT /V, for one-molecule gas. AF = kgTIn2

=7 1
Single qua

exp(—BE, ) |[¥n) (¥n!
mm system = no enscemble!

v--.-.w .-.-.--q.-- system = no ensemble!

o0

M p(BEx) {exp(—BAk)|Ui ) (W |} + {exp(BA) [y ) ¥y |}

_M:v BEy) {cosh(BAk)(|Li)(Lr| + |Ri)(Rx|) + sinh(8A&)(|Lr) (R| + |Re)(Lk|)}

k=1

- -

W

- - -
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Consider a measuring apparatus which, when inserted into Szilard’s engine, determines on which side
the molecule is. Formally, this can be accomplished by the measurement of the observable

[T = A(IL)(L| — |R)(R]) .
Here A 1s an arbitrary eigenvalue while;

N

N
L)L =Y L) (Lil,  |R)Y(RI =) |Re)(Rsl
k=1

k=1

The density matrix before the measurement, but after piston is inserted, 1s

p=Z 1D exp(BE;) {exp(—BA)|YE) (Wi |} + {exp(B8AL) v ) (¥r |}
k=1

p=Z 1> exp(—BEx) {cosh(BAR)(|Le){Lk| + |Rx)(Rx|) + sinh(B8AR)(|Le)(R| + |Re){(Lx|)}
k=1

Depending on the outcome of the observation, the density matrix becomes either py, or pr where;
~ Single quantum system = no ensemble!

pr = Z; " MU exp(—BEy) cosh BAk|Li)(Li| , pr=Z5' MU exp(—BEj) cosh BAk|Ri)(Ry| .
k=1 =1
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summary and conclusions:
EQUILIBRIUM € 5 “NOTHING HAPPENS”

Without ensembles there is no possibility of equilibrium in Newtonian physics!!!

- Thermodynamics is organized logically around the equilibrium States — states in which
nothing happens.

Yel, In states of individual classical systems “something always happens” — Newtonian
dynamics preciudes equilibrium.

Ensembles were introduced to reconcile Newtonian dynamics with thermodynamics.

In quantum physics states of individual systems which do not evolve can exist -
entanglement makes this possible.

Ensembles were also needed to motivate probabilities (needed ior statistical mechanics!).

We can however gel quantum states that embody equilibrium / deduce quantum
probabilities w/0 ensembles, using symmeiries of entangiement.

Our world is quantum. Thereiore, in our quanium world, we can practice statistical physics
With individual systems (that embedded In / entangled with thelr environments).

S. Deffner & WHZ (2016), Foundations of statistical mechanics from symmetries of entanglement, N. J. Phys. Volume 18, 063013
WHZ (2018), “Eliminating Ensembles from Equilibrium Statistical Physics: Maxwell's Demon, Szilard's Engine, and Thermodynamics
via Entanglement”, Physics Reports, in press, arxiv:1806.03532




