

OPEN QUANTUM SYSTEMS

Examples of environment?

the first and main assumption

No initial correlations

$$\rho_T(0) = \rho_S \otimes \rho_E$$
Time

generally correlations are created

$$\rho_T(t) \qquad \rho_S(t) = Tr_E(\rho_T(t))$$

the goal of OQS theory

Dynamics

$$\rho_S(0)$$
 $\rho_S(t)$

master equation dynamical map

dynamical map

$$\rho_S(t) = \Lambda_t \rho_S(0)$$

t-parametrised family of quantum channels (CPTP linear maps)

$$t \ge 0$$
 $\Lambda_0 = \mathbb{1}_n$

master equation - dynamical map

the connection

$$rac{d
ho_S(t)}{dt} = L_t
ho_S(t)$$
 $\Lambda_t = L_t \Lambda_t \; , \quad \Lambda_0 = \mathbb{1}_n$ solution the generator $\Lambda_t = \operatorname{Texp}\left(\int_0^t L_{ au} d au
ight)$

the most important OQS theorem

Gorini-Kossakowski-Sudarshan-Lindblad (GKSL theorem)

$$\frac{d\rho_S(t)}{dt} = L_t \rho_S(t) \qquad \frac{d\rho_S(t)}{dt} = L\rho_S(t)$$

$$\Lambda_t = \operatorname{Texp}\left(\int_0^t L_\tau \, d\tau\right) \qquad \qquad \Lambda_t = e^{-Lt}$$

the most important OQS theorem

Gorini-Kossakowski-Sudarshan-Lindblad (GKSL theorem)

(GKSL theorem)
$$decay \ rates \ \gamma_k \geq 0$$

$$L(\rho) = -i[H,\rho] + \sum_k \gamma_k \left(V_k \rho V_k^\dagger - \frac{1}{2} \{V_k^\dagger V_k,\rho\} \right)$$

jump (or Lindblad) operators

What if

$$\frac{d\rho_S(t)}{dt} = L_t \rho_S(t) \label{eq:loss}$$
 time dependent

GKSL theorem still holds!

$$\det \text{decay rates } \gamma_k(t) \geq 0$$

$$L(\rho) = -i[H,\rho] + \sum_k \gamma_k(t) \left(V_k \rho V_k^\dagger - \frac{1}{2} \{V_k^\dagger V_k,\rho\}\right)$$

MARKOVIAN

what happens to the dynamical map

dynamical map

semigroup

$$\Lambda_t = e^{Lt}$$

$$\Lambda_{t+s} = \Lambda_t \Lambda_s$$

$$\Lambda_t = \Lambda_{t,s} \Lambda_s$$

GKSL theorem does not hold anymore!

decay rates can be temporarily negative

$$L(\rho) = -i[H, \rho] + \sum_{k} \gamma_{k}(t) \left(V_{k} \rho V_{k}^{\dagger} - \frac{1}{2} \{ V_{k}^{\dagger} V_{k}, \rho \} \right)$$

NON-MARKOVIAN

dynamical map

non-divisibility

$$\Lambda_t = \Lambda_{t,s} \Lambda_s$$

the "intermediate map" is not CP

GKSL theorem does not hold anymore!

decay rates can be temporarily negative

$$L(\rho) = -i[H, \rho] + \sum_{k} \gamma_{k}(t) \left(V_{k} \rho V_{k}^{\dagger} - \frac{1}{2} \{ V_{k}^{\dagger} V_{k}, \rho \} \right)$$

NON-MARKOVIAN

dynamical map

non-divisibility

$$\Lambda_t = \Lambda_{t,s} \Lambda_s$$

the "intermediate map" is not CP

Distinguishability between two quantum states

$$D(\rho_1, \rho_2) = \frac{1}{2} \text{Tr} |\rho_1 - \rho_2|,$$

H.-P. Breuer, E.-M. Laine and J. Piilo, PRL 103, 210401 (2009)

Distinguishability between two quantum states

$$D(\rho_1, \rho_2) = \frac{1}{2} \text{Tr} |\rho_1 - \rho_2|,$$

$$D(\Phi \rho_1, \Phi \rho_2) \leq D(\rho_1, \rho_2)$$
 Φ CPTP map

information loss

Distinguishability between two quantum states

$$D(\rho_1, \rho_2) = \frac{1}{2} \text{Tr} |\rho_1 - \rho_2|,$$

$$D(\Phi \rho_1, \Phi \rho_2) \le D(\rho_1, \rho_2)$$

 Φ CPTP map

Rate of change of the trace distance

$$\sigma(t, \rho_{1,2}(0)) = \frac{d}{dt}D(\rho_1(t), \rho_2(t))$$

information flow

$$\sigma(t, \rho_{1,2}(0)) = \frac{d}{dt}D(\rho_1(t), \rho_2(t))$$

$$\sigma(t, \rho_{1,2}(0)) \leq 0$$
 Markovian

$$\sigma(t, \rho_{1,2}(0)) > 0$$

$\sigma(t, \rho_{1,2}(0)) > 0$ Non-Markovian **Backflow of information**

$$\mathcal{N}(\Phi) = \max_{\rho_{1,2}(0)} \int_{\sigma>0} dt \sigma(t, \rho_{1,2}(0))$$

PRL 103, 210401 (2009)

Trace distance

Channel capacities
Scientific Reports 4
5720 (2014)

Entanglement

with ancilla PRL 105, 050403 (2010)

Divisibility

Mutual information PRA 86, 044101 (2012)

Fisher information PRA 86, 044101 (2012)

Fidelity

PRA 84, 052118 (2011)

References

Recent reviews:

- H.-P. Breuer, et al., Rev. Mod. 88, 021002 (2016)
- A. Rivas, et al., Rep. Prog. Phys. 77, 094001 (2014)
- I. de Vega and D. Alonso, Rev. Mod. Phys. 89, 015001 (2017)
- L. Li, M. J. W. Hall, H. M. Wiseman, arXiv:1712.08879

Degree of non-Markovianity

D. Chruscinski and S. Maniscalco, Phys. Rev. Lett. 112, 120404 (2014)

Detecting non-Markovianity

D. Chruscinski, C. Macchiavello and S. Maniscalco, Phys. Rev. Lett. 118, 080404 (2017)

Experiment

Nature Physics, 2011

NATURE PHYSICS | LETTER

Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems

Bi-Heng Liu, Li Li, Yun-Feng Huang, Chuan-Feng Li, Guang-Can Guo, Elsi-Mari Laine, Heinz-Peter Breuer & Jyrki Piilo

Affiliations | Contributions | Corresponding authors

Nature Physics 7, 931–934 (2011) | doi:10.1038/nphys2085

Received 05 May 2011 | Accepted 08 August 2011 | Published online 11 September 2011

Rights & permissions

Article metrics

Experiment

Scientific Reports, 2015

SCIENTIFIC REPORTS

OPEN

Experimental observation of weak non-Markovianity

Nadja K. Bernardes¹, Alvaro Cuevas², Adeline Orieux^{2,3}, C. H. Monken¹, Paolo Mataloni², Fabio Sciarrino² & Marcelo F. Santos¹

Received: 04 August 2015

Accepted: 30 October 2015

Published: 02 December 2015

Non-Markovianity has recently attracted large interest due to significant advances in its characterization and its exploitation for quantum information processing. However, up to now, only non-Markovian regimes featuring environment to system backflow of information (strong non-Markovianity) have been experimentally simulated. In this work, using an all-optical setup we simulate and observe the so-called weak non-Markovian dynamics. Through full process tomography, we experimentally demonstrate that the dynamics of a qubit can be non-Markovian despite an

All-optical quantum simulator of qubit noisy channels

© Simone Cialdi^{1,a),b)}, © Matteo A. C. Rossi^{1,b)}, Claudia Benedetti^{1,b)}, Bassano Vacchini^{1,2}, more... View Affiliations

Dario Tamascelli^{1,b)}

Appl. Phys. Lett. 110, 081107 (2017); doi: http://dx.doi.org/10.1063/1.4977023

Experiment

arXiv:1712.08071

Experimental implementation of fully controlled dephasing dynamics and synthetic spectral densities

```
Zhao-Di Liu, <sup>1,2</sup>, Henri Lyyra, <sup>3</sup>, Yong-Nan Sun, <sup>1,2</sup> Bi-Heng Liu, <sup>1,2</sup> Chuan-Feng Li, <sup>1,2</sup>,  Guang-Can Guo, <sup>1,2</sup> Sabrina Maniscalco, <sup>3,4</sup> and Jyrki Piilo<sup>3</sup>, <sup>‡</sup>

<sup>1</sup>CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China 

<sup>2</sup>Synergetic Innovation Center of Quantum Information and Quantum Physics, 
University of Science and Technology of China, Hefei, 230026, People's Republic of China 

<sup>3</sup>Turku Centre for Quantum Physics, Department of Physics and Astronomy, 
University of Turku, FI-20014 Turun yliopisto, Finland 

<sup>4</sup>Centre for Quantum Engineering, Department of Applied Physics, 
Helsinki, P.O. Box 11000, FI-00076 Aalto, Finland 
(Dated: December 22, 2017)
```

Engineering, controlling, and simulating quantum dynamics is a strenuous task. However, these techniques are crucial to develop quantum technologies, preserve quantum properties, and engineer decoherence. Earlier results have demonstrated reservoir engineering, construction of a quantum simulator for Markovian open systems,

demonstrated experimentally with trapped ions by applying noise to trap electrodes [4], and thereby also influencing how the open system evolves. It is also possible to monitor in time the decoherence of field-states in a cavity [5]. More recently, a quantum simulator for Lindblad or Markovian dynamics was constructed, motivated by the studies of open many-body systems [6], [7], and a sim-

What do all these papers have in common?

VERY SIMPLE OPTICAL MODELS

PHOTONIC ENVIRONMENT

COLD GASES AS ENVIRONMENTS OF IMMERSED IMPURITIES

1D gas of cold bosonic atoms trapped in an optical lattice and confined to the lowest Bloch band

arXiv:1706.09148

Phys. Rev. A 97, 040101 (2018)

Francesco Cosco

Massimo Borrelli

Francesco Plastina

UNIVERSITÀ DELLA CALABRIA

Dieter Jaksch Juan Jose Mendoza-Arenas

THE ENVIRONMENT

$$\hat{H}_{BH} = -J \sum_{\langle i,j \rangle} (\hat{a}_i^{\dagger} \hat{a}_j + \hat{a}_j^{\dagger} \hat{a}_i) + \frac{U}{2} \sum_i \hat{n}_i (\hat{n}_i - 1)$$

U << J superfluid

U >> J

Mott-insulator

 $U o \infty$

Free fermions

THE ENVIRONMENT

U << J

U >> J

 $U \to \infty$

quantum phase transition

superfluid

DELOCALISED

Mott-insulator
LOCALISED

THE OPEN SYSTEM: Impurity

$$\hat{H} = \frac{\omega_0}{2} \hat{\sigma}_z$$

two lowest internal states

$$|e\rangle |g\rangle$$

THE INITIAL STATE

THE SYSTEM-ENVIRONMENT INTERACTION

 $\hat{H}_{int} = U_e |e\rangle\langle e| \otimes \hat{a}_0^{\dagger} \hat{a}_0$

local number operator \hat{n}_0

THE OPEN SYSTEM DYNAMICS

total closed system

$$\hat{H} = \frac{\omega_0}{2} \hat{\sigma}_z + \hat{H}_{BH} + U_e |e\rangle\langle e| \otimes \hat{a}_0^\dagger \hat{a}_0$$
 system environment interaction

open system impurity

$$\frac{d\rho}{dt} = -\frac{i\omega_0}{2}[\hat{\sigma}_z, \rho] + \gamma(t)(\hat{\sigma}_z \rho \hat{\sigma}_z - \rho)$$

MASTER EQUATION

for the impurity (open system)

$$\frac{d\rho}{dt} = -\frac{i\omega_0}{2} [\hat{\sigma}_z, \rho] + \gamma(t) (\hat{\sigma}_z \rho \hat{\sigma}_z - \rho)$$

$$\gamma(t) = U_e^2 \operatorname{Re} \int_0^t dt' \langle \hat{n}_0(t') \hat{n}_0(0) \rangle$$

 $\gamma(t) \geq 0$ Markovian dynamics

 $\gamma(t) < 0 \quad \text{Non-Markovian dynamics}$

density-density
fluctuations of the
Bose gas

Markovian - Nonmarkovian crossover

$$N_s = 96$$

Markovian - Nonmarkovian crossover

Bose lattices are non trivial controllable environment allowing us to induce both Markovian and non-Markovian dynamics

researchers & postdocs

+ Guillermo Garcia Perez

Walter Talarico

+ Master students

Funding:

Finnish Centre of Excellence for Quantum Technologies

