Quantum thermodynamics (and its breakdown) in optical lattices

Ulrich Schneider

Ludwig-Maximilian Universität München Max-Planck Institut für Quantenoptik

University of Cambridge

Ultracold atoms: Isolated many-body systems

Bose-Einstein condensate of Potassium ³⁹K atoms

Degenerate Fermi gas ⁴⁰K

Held by classical magnetic and laser fields
No thermal environment

Controlling dimensionality

Simulating condensed-matter

- Realizes important model Hamiltonians from solid-state physics:
 - → e.g. Hubbard models

$$H = -J \sum_{\langle i,j \rangle} a_i^+ a_j + \frac{U}{2} \sum_i n_i (n_i - 1)$$

Potential created by standing light wave

Understand and Design Quantum Materials

- High temperature superconductivity
- Quantum Magnetism

Emergent many-body phenomena

Non-Equilibrium physics

Can control and observe real-time dynamics

Fermionic Expansion

band insulator: two spin states

Dynamics within lattice

Fermionic Expansion velocity in 2D

 slower global dynamics driven by gradients in temperature & chemical potential

U. Schneider et al., Nat. Phys. 8, 213 (2012)

Negative absolute temperatures

Temperature

Heat always flows from the hotter to the colder system, until both systems have the same temperature

Temperature defines an ordering relation between systems!

Thermal states: Canonical distribution

Negative Temperatures are *hotter* than all positive temperatures

Energy-Entropy relation

Requirement: Hamiltonian locally bounded from above: $\frac{E}{N} \leq \epsilon_{max}$

Optical lattice band structure (1D)

kinetic energy is bounded from above and below

How to get to negative Temperatures?

Heat, Heat, Heat, ?

Impossible: Above $T = \infty$ entropy decrease again

- \rightarrow Cannot dissipate work in heat anymore
- Quasi-static state change ?
 Impossible: No (class)

Impossible: No (classical) adiabatic path can change sign of T (Landsberg 1959)

Bose gas at pos. and negative Temperature

Science **339**, 52 (2013)

Are negative temperatures stable?

In isolated systems: Yes!

Due to energy conservation they cannot relax to positive temperatures.

(Same argument as stability of isolated large positive tempratures.)

In contact with an environment:

Yes, if environment also at negative T.

 $T > 0 \quad \leftarrow \rightarrow \quad T < 0$ "equivalent" to matter \quad \leftarrow \rightarrow \quad antimatter

> both stable on their own, but do not mix!

Dynamics in different dimensions

2D: Thermalization

$$p_i \propto \exp\left(-\frac{E_i}{k_BT}\right)$$

initial conditions

What can be different in 1D?

Classically: Two-body collisions can only exchange momentum, but not redistribute it! n(k,t) = const. w.r.t. t

Repulsive 1D Bosons with point-like interaction without a lattice are integrable in homogeneous case!

→Lieb-Liniger model

Thermalization constrained by conserved quantities.

Fineprint: Trap, 3-body collisions, quasi 1D

1D Bosons on a lattice

- 1D Bose-Hubbard model is (in general) *not integrable!* classically chaotic for intermediate U and intermediate energy M. Hiller et al. PRA 79, 023621 (2009)
- Integrable limits:
 - Non-interacting
 - Hard-core Bosons: $U \gg J$, $n \in \{0, 1\}$

i.e. no higher occupancies

equivalent to non-interacting spinless Fermions

(Jordan-Wigner transformation)

Bosonic Expansion velocities

PRL **110**, 205301 (2013) & PRL **115**, 175301 (2015)

PRL 110, 205301 (2013)

Thermal states of nearly free Bosons

1D Hard-Core Bosons on a lattice

Hard-core Bosons:

Jordan-Wigner Transformation

$$n_r^B(t) = n_r^F(t)$$
$$n_k^B(t) \neq n_k^F(t)$$

Experiments:

Paredes, Bloch, Weiss, Nägerle,...

Emergence of correlations

Long time behaviour of expanding 1D HCB

- Quasicondensation is transient effect
- Long times: Fermionization
- Timescales depends on chain length
- Experiment done in parallel on different chains

L. Vidmar et. al, PRB 88, 235117 (2013)

Robust alternatives to thermalization ?

Localization

• Anderson (1958):

A single particle in a disordered potential can become localized by disorder \rightarrow *Anderson localization*

1D: arbitrarily small disorder localizes Eigenstates at all energies
 → quantum-mechanical interference effect

Interactions: Many-body localization

Theory: Yes! D. M. Basko, I. L. Aleiner, B. L. Altschuler + essentially everyone (since 2005)

Experiments:

Cold Atoms (Aspect, Modugno, DeMarco, Schneble, ...) Ions (Monroe), NV Centers (Lukin), Disordered supraconductors (Sharhar)

Many-body localization

Stability of (disorder induced) Anderson localization in the presence of interactions (and finite energy density)

Non-ergodic behaviour!

So what?

No thermalization, no standard statistical mechanics

Potential for novel long-time dynamics

Ergodicity breaking in Many-body localization

Aubry-André model

Superimpose two *in-commensurable* lattices ($\lambda_s \approx 532 nm$, $\lambda_d \approx 738 nm$) \rightarrow projected version of 2D Harper hamiltonian

irrational

- Real random: Localization for $\Delta > 0$
- Quasi-periodic: Localization for $\Delta > 2J$
- Critical behaviour controlled by β!
 A. Szabó, U. Schneider arXiv:1803.09756

Localization in Aubry-André model

Science **349**,842 (2015)

Many-body localization

• Remaining CDW after t $\approx 15 - 20 \tau$

Two-component Fermi gas

Ergodicity broken also for interacting atoms

direct observation of Many-body localization

→ Particles only probe their direct surrounding,
 → no differences between quasi-periodic and disordered

Photon Scattering

Coupling an MBL system to a $T = \infty$ bath.

 \rightarrow Photon induced hopping: Randomizing positions for $\Gamma t \rightarrow \infty$

Closed System Phase transition?

 \rightarrow Susceptibility χ expected to diverge at phase transition

Imbalance dynamics

H.P. Lüschen et al., PRX 7, 011034 (2017)

Disorder & Interactions

Challenge: Losses and population of non-localized band become relevant

H.P. Lüschen *et al.*, PRX **7**, 011034 (2017)

www.manybody.phy.cam.ac.uk