The Thermodynamics of Causal Modelling

Felix Binder

29 June 2018 KITP

Andrew
Garner
IQOQI
(Vienna)

> Jayne
> Thompson
> CQT
> (Singapore)

Mile
Gu
NTU \& CQT (Singapore)
e-mail: quantum@felix-binder.net group website: quantumcomplexity.org
stochastic process
simulator

In this talk: classical processes, quantum modelling
Think of:
stock price, weather, neural spike trains, scan through spin chain...

Example: perturbed coin

- probability to flip: p
- probability to show the same side again: $1-p$

Stochastic Processes (disrete-time \& discrete-valued)

Ingredients

- Alphabet $\mathcal{A}=\left\{r_{1}, r_{2}, \ldots, r_{\alpha}\right\}$
- Bi-infinite sequence of random variables X_{t} :

$$
\overleftrightarrow{X}:=\ldots X_{t-2} X_{t-1} X_{t} X_{t+1} \ldots
$$

- Conditional probabilities:

$$
p\left(X_{t: \infty}=x_{t: \infty} \mid X_{-\infty: t}=x_{-\infty: t}\right)
$$

- Stationarity:

$$
\begin{aligned}
& p\left(X_{t: \infty}=\vec{x} \mid X_{-\infty: t}=\overleftarrow{x}\right) \\
= & p\left(X_{t+L: \infty}=\vec{x} \mid X_{-\infty: t+L}=\overleftarrow{x}\right) \\
= & p(\vec{x} \mid \overleftarrow{x})
\end{aligned}
$$

perturbed coin

- $\mathcal{A}=\{\mathrm{H}, \mathrm{T}\}$
- ...HHHTTHTTTHH...
- $p\left(H_{t} \ldots \mid \ldots T_{t-1}\right)=p$
- $p(H \ldots \mid \ldots T)=p$
crypticity, statistical complexity, and oracular information

Applying Ockham's razor to Ockham's pool

Causal states

Group all histories according to equivalence relation:

ϵ-machines

- Alphabet \mathcal{A}
- Set of causal states

$$
\Sigma=\left\{s_{1}, s_{2}, \ldots, s_{N}\right\}
$$

- Transition matrix

$$
T_{j \mid i}^{x}=p\left(x, s_{i} \mid s_{j}\right)
$$

Perturbed coin

[Crutchfield \& Young, PRL 63 (1989)]
[Shalizi \& Crutchfield, J. Stat. Phys. 104 (2001)]

Complexity: amount of memory required for simulation

Statistical Complexity

$$
C_{\mu}:=H[\pi]=-\sum \pi_{i} \log \pi_{i}
$$

$\pi=\left\{\pi_{i}\right\}$: stationary distribution
ϵ-machines: minimal and unique

Perturbed coin

$$
C_{\mu}=1
$$

because: $\pi_{H}=\pi_{T}=\frac{1}{2}$
(unless $p=\frac{1}{2}$! Then: $C_{\mu}=0$)

[Gu et al., Nat. Comm. 3 (2012)]

Replacing bits with qubits: reduced complexity

Quantum causal states:

$$
s_{i} \rightarrow\left|\sigma_{i}\right\rangle
$$

Stationary state:

$$
\rho=\sum_{i} \pi_{i}\left|\sigma_{i}\right\rangle\left\langle\sigma_{i}\right|
$$

Quantum statistical complexity:

$$
C_{q}:=S(\rho)=-\operatorname{tr}[\rho \log \rho]
$$

Example: perturbed coin

$$
\begin{aligned}
&\left|S_{H}\right\rangle:=\sqrt{p}|T\rangle+\sqrt{1-p}|H\rangle \\
&\left|S_{T}\right\rangle:=\sqrt{p}|H\rangle+\sqrt{1-p}|T\rangle
\end{aligned}
$$

[Gu et al., Nat. Comm. 3 (2012)]
[Mahoney et al., Sci. Rep. 6 (2016)]
[Riechers et al., PRA 93 (2016)]
stochastic process
simulator
quantum simulator

We want:

$$
U\left|\sigma_{i}\right\rangle|0\rangle=\sum_{j, x} \sqrt{p\left(x, s_{j} \mid s_{i}\right)}\left|\sigma_{j}\right\rangle|x\rangle \equiv\left|1_{i}\right\rangle
$$

Such U exists iff

$$
\left\langle 1_{i} \mid 1_{j}\right\rangle=\left\langle\sigma_{i} \mid \sigma_{j}\right\rangle
$$

Construction:

Solve for $\left\langle\sigma_{i} \mid \sigma_{j}\right\rangle$ and proceed with Gram-Schmidt.

Quantum encoding saves memory but C_{q} still exceeds E

[Gu et al., Nat. Comm. (2012)]

Quantum advantage $C_{\mu}-C_{q}$ can be unbounded

[Yang, FB, Narasimhachar, Gu, 1803.08220]
see also: [Garner et al., NJP 19, 103009 (2017)]

Information ratchet \rightarrow prescient pattern generator

Summary

- In stochastic process simulation, there is an unavoidable work cost $\propto \chi_{q}$ due to causality.
- Quantum encoding reduces this cost, compared to classical simulation.
- The difference between classical and quantum encoding can become unbounded for some families of processes.

Thank you for your attention.
e-mail: quantum@felix-binder.net group website: quantumcomplexity.org

Information Thermodynamics

Will the particle be found on the left or on the right?

Maxwell's Demon

