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In this talk: classical processes, quantum modelling

Think of:
stock price, weather, neural spike trains, scan through spin chain...



Example: perturbed coin

I probability to flip: p

I probability to show the same side again: 1− p



Stochastic Processes (disrete-time & discrete-valued)

Ingredients

I Alphabet A = {r1, r2, . . . , rα}
I Bi-infinite sequence of random

variables Xt :←→
X := . . .Xt−2Xt−1XtXt+1 . . .

I Conditional probabilities:
p(Xt:∞ = xt:∞|X−∞:t = x−∞:t)

I Stationarity:
p(Xt:∞ = −→x |X−∞:t =←−x )

=p(Xt+L:∞ = −→x |X−∞:t+L =←−x )

=p(−→x |←−x )

perturbed coin

I A = {H, T}
I . . .HHHTTHTTTHH. . .

I p(Ht . . . | . . .Tt−1) = p

I p(H . . . | . . .T ) = p



crypticity, statistical complexity, and oracular information

past futureE

memory



Applying Ockham’s razor to Ockham’s pool

Causal states

Group all histories
according to
equivalence relation:

←−x ∼ε ←−x ′

iff

p(
−→
X |←−x ) = p(

−→
X |←−x ′)



ε-machines
I Alphabet A
I Set of causal states

Σ = {s1, s2, ..., sN}

I Transition matrix
T x
j |i = p(x , si |sj)

Perturbed coin

sH sT

p|T

1-p|H 1-p|T

p|H

[Crutchfield & Young, PRL 63 (1989)]

[Shalizi & Crutchfield, J. Stat. Phys. 104 (2001)]



Complexity: amount of memory required for simulation

Statistical Complexity

Cµ := H[π] = −
∑

πi log πi

π = {πi}: stationary distribution
ε-machines: minimal and unique

Perturbed coin

Cµ = 1

because: πH = πT = 1
2

(unless p = 1
2 ! Then: Cµ = 0)

[Crutchfield & Young, PRL 63 (1989)]

[Shalizi & Crutchfield, J. Stat. Phys. 104 (2001)]



past futureE

[Gu et al., Nat. Comm. 3 (2012)]



Replacing bits with qubits: reduced complexity

Quantum causal states:
si → |σi 〉

Stationary state:
ρ =

∑
i

πi |σi 〉〈σi |

Quantum statistical complexity:

Cq := S(ρ) = −tr[ρ log ρ]

Example: perturbed coin

|SH〉 :=
√
p |T 〉+

√
1− p |H〉

|ST 〉 :=
√
p |H〉+

√
1− p |T 〉

[Gu et al., Nat. Comm. 3 (2012)]

[Mahoney et al., Sci. Rep. 6 (2016)]

[Riechers et al., PRA 93 (2016)]
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U U U

We want:

U |σi 〉 |0〉 =
∑
j ,x

√
p(x , sj |si ) |σj〉 |x〉 ≡ |1i 〉

Such U exists iff
〈1i | 1j〉 = 〈σi | σj〉

Construction:
Solve for 〈σi | σj〉 and proceed with Gram-Schmidt.

[FB, Thompson, Gu, PRL 120, 240502 (2018)]



Quantum encoding saves memory but Cq still exceeds E

past futureE

[Gu et al., Nat. Comm. (2012)]



Quantum advantage Cµ − Cq can be unbounded

[Yang, FB, Narasimhachar, Gu, 1803.08220]

see also: [Garner et al., NJP 19, 103009 (2017)]



Information ratchet → prescient pattern generator

......

L

T

x-6 x-5 x-4 x-3 x-2 x-1 d d d d d d

W
(L)
min = ∆E = Wer + Tχq + W

(L)
mod

I Wer = TL[S(d)− hµ] (hµ = limL→∞ H[Y0:L]/L)

I χq = Cq − E

I W
(L)
mod = 0 ∀ L ≥ R

(classical info ratchets: [Garner et al., PRE 95, 042140 (2017)], [Boyd et al., 1708.03030])



Summary

I In stochastic process simulation, there is an unavoidable work
cost ∝ χq due to causality.

I Quantum encoding reduces this cost, compared to classical
simulation.

I The difference between classical and quantum encoding can
become unbounded for some families of processes.

Thank you for your attention.
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Information Thermodynamics

Will the particle be found on the left or on the right?



Maxwell’s Demon


