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Classification of topological insulators
 and superconductors



question

How many different topoloigcal insulators and superconductors
are there in nature ?



question

How many different topoloigcal insulators and superconductors
are there in nature ?

topological:

- support stable gapless modes at boundaries, possibly 
  in the presence of general discrete symmetries

- states with and without boundary  modes are not
  adiabatically connected 

- may be characterized by a bulk topological invariant
  of some sort

topologcial
insulator (vacuum)

non-topological

quantum phase transition

· · · · · ·

space of all ground states

0 1-1 0 1-2 2



topological insulators; examples 

(i) IQHE

b) stable edge states

in 2D, strong T breaking by B

a) quantized Hall conductance

IQHETKNN (82) Halperin (82)
σxy ∈ Z×

e2

h
Laughlin (81)

TRI

- characterized by Z2 topological number - stable edge/surface states∆=0,1

iσyH
T (−iσy) = H

(ii) Z2 topological insulator (QSHE) in 2D

(iii) Z2 topological insulator in 3D

}



classification of discrete symmetries

Zirnbauer (96), Altland &Zirnbauer (97)

-natural framework:  random matrix theory (RMT) Wigner-Dyson

T H∗T −1 = H

CHTC−1 = −H

Time-Reversal Symmetry (TRS)

Particle-Hole Symmetry (PHS)

two types of anti-unitary symmetries

PHS + TRS = chiral symmetry

CH∗C−1 = −H

TH∗T−1 = H
TCH(TC)−1 = −H

no TRS
{

TRS with 

TRS with 
T T = +T

T T = −T

0

+1

-1

TRS =

{

PHS with 

PHS with 
CT = +C

CT = −C

0

+1

-1

no PHS

PHS =

}

integer spin particle

half-odd integer spin particle



classification of discrete symmetries

Zirnbauer (96), Altland &Zirnbauer (97)

Wigner-Dyson
  (standard)

chiral 
(sublattice)

BdG

A

AI

AII

AIII

BDI

CII

D

CI

DIII

TRS PHS

orthogonal

unitary

symplectic (spin-orbit)

chiral orthogonal

chiral unitary

chiral symplectic

singlet/triplet SC

singlet SC

singlet SC with TRS

singlet/triplet SC with TRS

-natural framework:  random matrix theory (RMT)

Wigner-Dyson

description

C

0

+1

-1

0

+1

-1

0

+1

-1

0

0

0

0

0

+1

-1

+1

-1

+1

-1

SLS

0

0

0

1

1

1

0

1

1

0

U(2N)/U(N) × U(N)

Sp(4N)/Sp(2N) × Sp(2N)

O(2N)/O(2N) ×O(2N)

U(N)

U(2N)/Sp(N)

U(N)/O(N)

O(2N)/U(N)

Sp(N)/U(N)

O(N)

Sp(N)

RM ensembles



classification of discrete symmetries

Zirnbauer (96), Altland &Zirnbauer (97)

-Z2 toplological insulator is a topological insulator in symplectic class (AII).

-Is there a topological insulator in other symmetry classes ?

-natural framework:  random matrix theory (RMT)

Wigner-Dyson

-IQHE is a topological insulator in unitary class (A).

Wigner-Dyson
  (standard)

chiral 
(sublattice)

BdG

A

AI

AII

AIII

BDI

CII

D

CI

DIII

TRS PHS

orthogonal

unitary

symplectic (spin-orbit)

chiral orthogonal

chiral unitary

chiral symplectic

singlet/triplet SC

singlet SC

singlet SC with TRS

singlet/triplet SC with TRS

description

C

0

+1

-1

0

+1

-1

0

+1

-1

0

0

0

0

0

+1

-1

+1

-1

+1

-1

SLS

0

0

0

1

1

1

0

1

1

0



BdG symmetry classes 

CI d-wave, s-wave

C d+id -wave

TR SU(2)

AIII p-wave

examples in 2D

H =
1

2

(

c
†
↑, c

†
↓, c↑, c↓

)

H













c↑

c↓

c
†
↑

c
†
↓













H = (c†↑, c↓)H

(

c↑

c
†
↓

)

- S^z conserving SC

- S^z non-conserving SC

D spinless chiral p-wave

DIII p-wave

TR SU(2) examples in 2D

H =

(

ξ ∆
−∆∗ −ξT

)

ξ = ξ†, ∆ = −∆T

H =

(

ξ↑ ∆
∆† −ξT↓

)

ξσ = ξ†σ

τyH
T τy = −H

τyHτy = −H

τxH
T τx = −H

τxH
T τx = −H, σyH

T σy = H

τyH
T τy = −H, H∗ = H

A spinfull chiral p-waveno constraint



sublattice symmetry classes

BDI random hopping model

CII

AIII random flux model

Dyson (53)

H =

(

0 D
D† 0

)

H = (c†A, c
†
B)H

(

cA

cB

)

TR SU(2) examples

τyHτy = −H

τyHτy = −H, σyH
T σy = H

τyHτy = −H, H∗ = H

- Classes CI and DIII have an off-diagonal form ! (will be important later)

Gade (93)

γH = −Hγ γ =

(

1 0
0 −1

)

PHS + TRS = chiral (sublattice) symmetry

CHTC−1 = −H

THTT−1 = H
TCH(TC)−1 = −H



classification of 3D topological insulators

-3D topological insulators for 5 out of 10 symmetry classes

AIII, DIII, CI : top. insulators labeled by an integer
AII, CII: top. insulators of Z2 type

Schnyder, SR, Furusaki, Ludwig (2008)

Wigner-Dyson
  (standard)

chiral 
(sublattice)

BdG

A

AI

AII

AIII

BDI

CII

D

CI

DIII

TRS PHS

orthogonal

unitary

symplectic (spin-orbit)

chiral orthogonal

chiral unitary

chiral symplectic

singlet/triplet SC

singlet SC

singlet SC with TRS

singlet/triplet SC with TRS

description

C

0

+1

-1

0

+1

-1

0

+1

-1

0

0

0

0

0

+1

-1

+1

-1

+1

-1

SLS

0

0

0

1

1

1

0

1

1

0

RESULT:



classification of 3D topological insulators

Schnyder, SR, Furusaki, Ludwig (2008)

- bulk-boundary correspondence 

- discover a topological invariant  

absence of Anderson localization at boundaries 

integer topological invairant for 3 out of 5 classes 

underlying strategy 

ν =

∫

Bz

d3k

24π2
ǫµνρtr [(q−1∂µq)(q

−1∂νq)(q
−1∂ρq)]

BZ:q U(m) spectral projector



topological distinction of ground states

projector:

: BZ

no top. insulator in 3D without constraint (Class A)

kx

ky

kz

filled empty

IQHE in 2D

Q(k) = 2
∑

a∈filled

|ua(k)〉〈ua(k)| − 1

Q2
= 1, Q†

= Q, trQ = m− n

U(m+ n)/U(m) × U(n)Q

π3[U(m+ n)/U(m) × U(n)] = 0

π2[U(m+ n)/U(m) × U(n)] = Z

(for large enough m,n)

quantum ground state = map from Bz onto Grassmannian

k

ε(k)

εF

filled 

empty



BZ

topological insulators labeled by an integer

:

-projectors in classes AIII

topological distinction of ground states

Q(k) =

(

0 q(k)
q†(k) 0

)

ν =

∫

Bz

1

24π2
tr [(q−1dq)3]

q U(m)

π3[U(m)] = Z

qT (−k) = −q(k)

qT (−k) = q(k)

q∗(−k) = q(k)

DIII

CI

iσyq
∗(−k)(−iσy) = −q(k)

BDI

CII

ν ∈ Z

ν ∈ 2Z

ν = 0

-discrete symmetries limit possible values of nu

AIII & DIII

CI

CII & BDI

Z2 insulators in CII (later)

ΓHΓ = −Hchiral symmetry



Anderson delocalization at boundaries

- AIII, CI, DIII; exact results

- "abnormal terms" in NLsM

- Bernard-Le Clair: 13-fold symmetry classifcation of 2d Dirac fermions

Wigner-Dyson
  (standard)

chiral 
(sublattice)

BdG

A

AI

AII

AIII

BDI

CII

D

CI

DIII

TRS PHS

C

0

+1

-1

0

+1

-1

0

+1

-1

0

0

0

0

0

+1

-1

+1

-1

+1

-1

SLS

0

0

0

1

1

1

0

1

1

0

U(2N)/U(N) × U(N)

Sp(4N)/Sp(2N) × Sp(2N)

O(2N)/O(2N) ×O(2N)

U(N)

U(2N)/Sp(N)

U(N)/O(N)

O(2N)/U(N)

Sp(N)/U(N)

O(N)

Sp(N)

fermionic replica NLsM

Pruisken

Pruisken

Pruisken

WZW

WZW

WZW

Z2

Z2

topological bulk

newly derived !

ΓWZW =
1

24π2

∫

M3

tr
[

(g−1dg)3
]

Z =

∫

D[g]e2πiνΓWZWe−S[g]

Z =

∫

D[Q](−1)N[Q]e−S[Q]

WZW type

Z2 type SR, Mudry, Obuse Furusaki (07) 



characterization at boundaries

Wigner-Dyson
  (standard)

chiral 
(sublattice)

BdG

A

AI

AII

AIII

BDI

CII

C

D

CI

DIII

TR SU(2)

orthogonal

unitary

symplectic (spin-orbit)

chiral orthogonal

chiral unitary

chiral symplectic

singlet/triplet SC

singlet SC

singlet SC

singlet/triplet SC

description

H =

(

V+ + V− −i∂̄ +A+

+i∂ +A− V+ − V−

)

-classification of 2D Dirac Hamiltonians Bernard-LeClair (2001)

13 classes (not 10 !)

AIII

CI singlet SC

DIII singlet/triplet SC

always gapless 

AIII, CI, DIII has an extra class.

even/odd effect

extrachiral unitary

extra

extra



3He is a 3D topological insulator

- Class DIII top. insulator: B 3He

H =

(

ξ ∆
−∆∗ −ξT

)

∆k = |∆|iσyk · σξk =
k2

2m
− µ

Salomma and Volovik (1988)

Roy (2008)

Qi-Hughes-Raghu-Zhang (2008)

µ
weak pairingstrong pairing

ν = 0 ν = 10

Z2 classification:

-stable surface Majorana fermion state

isotropic gap
kx

ky

kz

|∆|



singlet BCS pairing model on the diamond lattice

∆ > 0

∆′ < 0

-wave like (?) pairing

SU(2) symmetric

- class CI top. insulator:

d3z2−r2

topological singlet superconductor in 3D

t nn: hopping
Delta: nn d-wave pairing
t’: nnn hopping
mu_s: staggered chemical potential

four-nodes, two-fold degenerate 
       = two 8-component Dirac



ν = ±2

nnn hopping

t and Delta only

staggered chemical potential

nnn hopping

topological singlet superconductor in 3D

ν =

∫

Bz

d3k

24π2
ǫµνρtr [(q−1∂µq)(q

−1∂νq)(q
−1∂ρq)]



-- stable surf. Dirac fermions

σ
spin =

1

π
× 2 × N ×

s
2

h

(irrespective of disorder strength)

-- surface Dirac fermion + disorder 

exactly solvable 

surface of 3d top. singlet SC = "1/2 of cuprate"

Tsvelik (1995)

surface Bz 

-- T-breaking -> half spin quantum Hall effect ("1/2 of d+id SC")



- Topological insulator /Anderson delocalization correspondence

- 3D topological insulators for 5 out of 10 symmetry classes.

AIII, DIII, CI : top. insulators labeled by an integer

AII, CII: top. insulators of Z2 type

surface of top. insulator is always conducting.

summary

- The same strategy is applicable to other dimensions.

- Transport experiments on Bismuth-Antimony ?

perfectly conducting because of Z2 topological term

- Topological field theory ?

S =
θ

32π2

∫

d4x ǫµνρλtr [FµνFρλ] Aµ ∈ SU(2)



summary

Wigner-Dyson
  (standard)

chiral 
(sublattice)

BdG

A

AI

AII

AIII

BDI

CII

D

CI

DIII

TRS PHS

orthogonal

unitary

symplectic (spin-orbit)

chiral orthogonal

chiral unitary

chiral symplectic

singlet/triplet SC

singlet SC

singlet SC with TRS

singlet/triplet SC with TRS

description

C

0

+1

-1

0

+1

-1

0

+1

-1

0

0

0

0

0

+1

-1

+1

-1

+1

-1

SLS

0

0

0

1

1

1

0

1

1

0

d=1

Z

Z

Z

Z2

Z2

0

0

0

0

0

d=2

Z

Z2

Z2

Z

0

0

0

0

0

Z

Z2

Z

Z

Z2

0

0

0

0

0

d=3

Z

IQHE

3He Bd+id wave SC

QSHE
Z2 top. ins

polyacetylene

chiral p-wave SC

- 3D weak topological insulators are also possible
in classes A, AII, D, C, CI



topological field theory description

Z =

∫

D[ψ†, ψ]e−
∫

d3xL
L = ψ†i(H − iη)ψ

- generating function for single particle Green’s function

- introduce external gauge fields

- integrate over fermions

(3+0) dim field theory

L = ψ̄(∂µγµ − iaµγµ − ibµγ0γµ +mγ5)ψ

e−Seff [aµ,bµ] =

∫

D[ψ̄, ψ]e−S[aµ,bµ,ψ̄,ψ]

Seff = ν
(

I[A+] − I[A−]
)

I[A] =
−i

4π

∫

d3x ǫµνλ
[

Aµ∂νAλ +
2i

3
AµAνAλ

]

A±
µ = aµ ± bµ

non Abelian doubled Chern-Simons


