Classification of topological insulators and superconductors

Shinsei Ryu (Berkeley)

in collaboration with

Andreas Schnyder (KITP, UCSB)
Akira Furusaki (RIKEN, Japan)
Andreas Ludwig (UCSB)
Christopher Mudry (PSI, Switzerland)
Hideaki Obuse (RIKEN, Japan)
Kentaro Nomura (Tohoku, Japan)
Mikito Koshino (Titech, Japan)

question

How many different topoloigcal insulators and superconductors are there in nature ?

question

How many different topoloigcal insulators and superconductors are there in nature?

topological:

- support stable gapless modes at boundaries, possibly in the presence of general discrete symmetries

- states with and without boundary modes are not adiabatically connected
- may be characterized by a bulk topological invariant of some sort

topological insulators; examples

(i) IQHE in 2D, strong T breaking by B
a) quantized Hall conductance

$$
\sigma_{x y} \in \mathbf{Z} \times \frac{e^{2}}{h} \quad \begin{array}{ll}
\text { TKNN (82) } \\
\text { Laughlin (81) }
\end{array}
$$

b) stable edge states

Halperin (82)

(ii) Z2 topological insulator (QSHE) in 2D
(iii) Z2 topological insulator in 3D

- characterized by Z 2 topological number $\Delta=0,1$

TRI

$$
i \sigma_{y} \mathcal{H}^{T}\left(-i \sigma_{y}\right)=\mathcal{H}
$$

- stable edge/surface states

classification of discrete symmetries

-natural framework: random matrix theory (RMT)
Wigner-Dyson
Zirnbauer (96), Altland \&Zirnbauer (97)
two types of anti-unitary symmetries
Time-Reversal Symmetry (TRS)

$$
\mathcal{T} \mathcal{H}^{*} \mathcal{T}^{-1}=\mathcal{H}
$$

$$
\text { TRS }=\left\{\begin{array}{cl}
0 & \text { no TRS } \\
+1 & \text { TRS with } \mathcal{T}^{\mathcal{T}}=+\mathcal{T} \\
-1 & \text { TRS with } \mathcal{T}^{\mathcal{T}}=-\mathcal{T}
\end{array}\right.
$$

half-odd integer spin particle
Particle-Hole Symmetry (PHS)

$$
C \mathcal{H}^{T} C^{-1}=-\mathcal{H}
$$

$$
\text { PHS }= \begin{cases}0 & \text { no PHS } \\ +1 & \text { PHS with } C^{T}=+C \\ -1 & \text { PHS with } C^{T}=-C\end{cases}
$$

PHS + TRS = chiral symmetry

$$
\left.\begin{array}{rl}
T \mathcal{H}^{*} T^{-1} & =\mathcal{H} \\
C \mathcal{H}^{*} C^{-1} & =-\mathcal{H}
\end{array}\right\} \longrightarrow \quad T C \mathcal{H}(T C)^{-1}=-\mathcal{H}
$$

classification of discrete symmetries

-natural framework: random matrix theory (RMT)
Wigner-Dyson Zirnbauer (96), Altland \&Zirnbauer (97)

		TRS	PHS	SLS	description	RM ensembles
Wigner-Dyson (standard)	A	0	0	0	unitary	$U(N)$
	AI	+1	0	0	orthogonal	$U(N) / O(N)$
	AlI	-1	0	0	symplectic (spin-orbit)	$U(2 N) / S p(N)$
chiral (sublattice)	AlII	0	0	1	chiral unitary	$U(2 N) / U(N) \times U(N)$
	BDI	+1	+1	1	chiral orthogonal	$O(2 N) / O(2 N) \times O(2 N)$
	CII	-1	-1	1	chiral symplectic	$S p(4 N) / S p(2 N) \times S p(2 N)$
BdG	D	0	+1	0	singlet/triplet SC	$O(N)$
	C	0	-1	0	singlet SC	$S p(N)$
	DIII	-1	+1	1	singlet/triplet SC with TRS	$O(2 N) / U(N)$
	CI	+1	-1	1	singlet SC with TRS	$S p(N) / U(N)$

classification of discrete symmetries

-natural framework: random matrix theory (RMT)
Wigner-Dyson Zirnbauer (96), Altland \&Zirnbauer (97)

		TRS	PHS	SLS	description
Wigner-Dyson (standard)	A	0	0	0	unitary
	AI	+1	0	0	orthogonal
	AlI	-1	0	0	symplectic (spin-orbit)
chiral (sublattice)	AlII	0	0	1	chiral unitary
	BDI	+1	+1	1	chiral orthogonal
	CII	-1	-1	1	chiral symplectic
BdG	D	0	+1	0	singlet/triplet SC
	C	0	-1	0	singlet SC
	DIII	-1	+1	1	singlet/triplet SC with TRS
	Cl	+1	-1	1	singlet SC with TRS

-IQHE is a topological insulator in unitary class (A).
-Z2 toplological insulator is a topological insulator in symplectic class (AII).

-Is there a topological insulator in other symmetry classes ?

BdG symmetry classes

- S^z non-conserving SC

$$
H=\frac{1}{2}\left(\mathbf{c}_{\uparrow}^{\dagger}, \mathbf{c}_{\downarrow}^{\dagger}, \mathbf{c}_{\uparrow}, \mathbf{c}_{\downarrow}\right) \mathcal{H}\left(\begin{array}{c}
\mathbf{c}_{\uparrow} \\
\mathbf{c}_{\downarrow} \\
\mathbf{c}_{\uparrow}^{\dagger} \\
\mathbf{c}_{\downarrow}^{\dagger}
\end{array}\right) \quad \mathcal{H}=\left(\begin{array}{cc}
\xi & \Delta \\
-\Delta^{*} & -\xi^{T}
\end{array}\right) \quad \xi=\xi^{\dagger}, \quad \Delta=-\Delta^{T}
$$

	TR	$\mathrm{SU}(2)$		examples in 2D
D	\times	\times	$\tau_{x} \mathcal{H}^{T} \tau_{x}=-\mathcal{H}$	spinless chiral p-wave
DIII	O	\times	$\tau_{x} \mathcal{H}^{T} \tau_{x}=-\mathcal{H}, \sigma_{y} \mathcal{H}^{T} \sigma_{y}=\mathcal{H}$	p-wave

- S^z conserving SC

$$
H=\left(\mathbf{c}_{\uparrow}^{\dagger}, \mathbf{c}_{\downarrow}\right) \mathcal{H}\binom{\mathbf{c}_{\uparrow}}{\mathbf{c}_{\downarrow}^{\dagger}} \quad \mathcal{H}=\left(\begin{array}{cc}
\xi_{\uparrow} & \Delta \\
\Delta^{\dagger} & -\xi_{\downarrow}^{T}
\end{array}\right) \quad \xi_{\sigma}=\xi_{\sigma}^{\dagger}
$$

	TR	$\mathrm{SU}(2)$		examples in 2D
A	\times	\triangle	no constraint	spinfull chiral p-wave
AIII	O	\triangle	$\tau_{y} \mathcal{H} \tau_{y}=-\mathcal{H}$	p-wave
C	\times	\bigcirc	$\tau_{y} \mathcal{H}^{T} \tau_{y}=-\mathcal{H}$	d+id -wave
Cl	O	O	$\tau_{y} \mathcal{H}^{T} \tau_{y}=-\mathcal{H}, \mathcal{H}^{*}=\mathcal{H}$	d-wave, s-wave

sublattice symmetry classes

$$
H=\left(\mathbf{c}_{A}^{\dagger}, \mathbf{c}_{B}^{\dagger}\right) \mathcal{H}\binom{\mathbf{c}_{A}}{\mathbf{c}_{B}} \quad \mathcal{H}=\left(\begin{array}{cc}
0 & D \\
D^{\dagger} & 0
\end{array}\right) \quad \gamma \mathcal{H}=-\mathcal{H} \gamma \quad \gamma=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

	TR	$\mathrm{SU}(2)$		examples
AIII	\times	$\times \mathrm{O}$	$\tau_{y} \mathcal{H} \tau_{y}=-\mathcal{H}$	random flux model
BDI	O	O	$\tau_{y} \mathcal{H} \tau_{y}=-\mathcal{H}, \mathcal{H}^{*}=\mathcal{H}$	random hopping model
CII	O	\times	$\tau_{y} \mathcal{H} \tau_{y}=-\mathcal{H}, \sigma_{y} \mathcal{H}^{T} \sigma_{y}=\mathcal{H}$	

Dyson (53) Gade (93)

- Classes Cl and DIII have an off-diagonal form! (will be important later)

PHS + TRS = chiral (sublattice) symmetry

$$
\left.\begin{array}{l}
T \mathcal{H}^{T} T^{-1}=\mathcal{H} \\
C \mathcal{H}^{T} C^{-1}=-\mathcal{H}
\end{array}\right] \quad \longrightarrow \quad T C \mathcal{H}(T C)^{-1}=-\mathcal{H}
$$

classification of 3D topological insulators

RESULT:

-3D topological insulators for 5 out of 10 symmetry classes
AIII, DIII, CI : top. insulators labeled by an integer
AII, CII: top. insulators of Z2 type

classification of 3D topological insulators

Schnyder, SR, Furusaki, Ludwig (2008)

underlying strategy

- discover a topological invariant
integer topological invairant for 3 out of 5 classes

$$
\nu=\int_{\mathrm{Bz}} \frac{d^{3} k}{24 \pi^{2}} \epsilon^{\mu \nu \rho} \operatorname{tr}\left[\left(q^{-1} \partial_{\mu} q\right)\left(q^{-1} \partial_{\nu} q\right)\left(q^{-1} \partial_{\rho} q\right)\right]
$$

$$
q: \mathrm{BZ} \longrightarrow U(m) \quad \text { spectral projector }
$$

- bulk-boundary correspondence
absence of Anderson localization at boundaries

topological distinction of ground states

projector:

$$
\begin{equation*}
Q(k)=2 \sum_{a \in \text { filled }}\left|u_{a}(k)\right\rangle\left\langle u_{a}(k)\right|-1 \tag{k}
\end{equation*}
$$

$$
Q^{2}=1, Q^{\dagger}=Q, \operatorname{tr} Q=m-n
$$

$Q: \mathrm{BZ} \longrightarrow U(m+n) / U(m) \times U(n)$

$$
\varepsilon(\mathbf{k})
$$

quantum ground state $=$ map from Bz onto Grassmannian

$$
\begin{aligned}
& \pi_{2}[U(m+n) / U(m) \times U(n)]=\mathbf{Z} \quad \longrightarrow \quad \text { IQHE in 2D } \\
& \pi_{3}[U(m+n) / U(m) \times U(n)]=0
\end{aligned}
$$

\longrightarrow no top. insulator in 3D without constraint (Class A) (for large enough m,n)

topological distinction of ground states

-projectors in classes Alll

$$
\text { chiral symmetry } \quad \Gamma \mathcal{H} \Gamma=-\mathcal{H} \quad \longrightarrow \quad Q(k)=\left(\begin{array}{cc}
0 & q(k) \\
q^{\dagger}(k) & 0
\end{array}\right)
$$

$$
q: \mathrm{BZ} \longrightarrow U(m)
$$

$$
\pi_{3}[U(m)]=\mathbf{Z} \quad \longrightarrow \text { topological insulators labeled by an integer }
$$

$$
\nu=\int_{\mathrm{Bz}} \frac{1}{24 \pi^{2}} \operatorname{tr}\left[\left(q^{-1} d q\right)^{3}\right]
$$

-discrete symmetries limit possible values of nu

$$
\begin{array}{llll}
q^{T}(-k)=-q(k) & \text { DIII } & \text { Alll \& DIII } & \nu \in \mathbf{Z} \\
q^{T}(-k)=q(k) & \mathrm{CI} & \mathrm{CI} & \nu \in 2 \mathbf{Z} \\
q^{*}(-k)=q(k) & \text { BDI } & \text { CII \& BDI } & \nu=0 \\
i \sigma_{y} q^{*}(-k)\left(-i \sigma_{y}\right)=-q(k) & \text { CII } & \text { Z2 insulators in CII (later) }
\end{array}
$$

Anderson delocalization at boundaries

\longleftrightarrow topological bulk

		TRS	PHS	SLS	fermionic replica NLsM	
Wigner-Dyson (standard)	A	0	0	0	$U(2 N) / U(N) \times U(N)$	Pruisken
	AI	+1	0	0	$S p(4 N) / S p(2 N) \times S p(2 N)$	
chiral (sublattice)						
	BDI	+1	+1	1	$U(2 N) / S p(N)$	
BdG	D	0	+1	0	$O(2 N) / U(N)$	Pruisken
	C	0	-1	0	$S p(N) / U(N)$	Pruisken
	Conl. 4.6					

- Bernard-Le Clair: 13-fold symmetry classifcation of 2d Dirac fermions
- AIII, CI, DIII; exact results
- "abnormal terms" in NLsM

WZW type $\quad Z=\int \mathcal{D}[g] e^{2 \pi i \nu \Gamma \mathrm{WZW}} e^{-S[g]} \quad \Gamma_{\mathrm{WZW}}=\frac{1}{24 \pi^{2}} \int_{\mathcal{M}^{3}} \operatorname{tr}\left[\left(g^{-1} d g\right)^{3}\right]$
Z2 type
$Z=\int \mathcal{D}[Q](-1)^{N[Q]} e^{-S[Q]}$
SR, Mudry, Obuse Furusaki (07)

characterization at boundaries

-classification of 2D Dirac Hamiltonians

$$
\mathcal{H}=\left(\begin{array}{cc}
V_{+}+V_{-} & -i \bar{\partial}+A_{+} \\
+i \partial+A_{-} & V_{+}-V_{-}
\end{array}\right)
$$

Bernard-LeClair (2001)
13 classes (not 10 !)
AIII, CI, DIII has an extra class.

		TR	SU(2)	description	\qquad even/odd effect
Wigner-Dyson (standard)	A	\times	$\bigcirc \times$	unitary	
	AI	\bigcirc	\bigcirc	orthogonal	
	All	\bigcirc	\times	symplectic (spin-orbit)	
chiral (sublattice)	Alll	\times	$\bigcirc \times$	chiral unitary	
	Alll	\times	$\bigcirc \times$	chiral unitary extra	
	BDI	\bigcirc	\bigcirc	chiral orthogonal	
	ClI	\bigcirc	\times	chiral symplectic	
BdG	C	\times	\bigcirc	singlet SC	
	D	\times	\times	singlet/triplet SC	
	Cl	\bigcirc	0	singlet SC	
	Cl	\bigcirc	\bigcirc	singlet SC extra	
	DIII	\bigcirc	\times	singlet/triplet SC	
	DIII	O	\times	singlettriplet SC extra	

3He is a 3D topological insulator

- Class DIII top. insulator: B 3He

$$
\begin{gathered}
\mathcal{H}=\left(\begin{array}{cc}
\xi & \Delta \\
-\Delta^{*} & -\xi^{T}
\end{array}\right) \\
\begin{array}{c}
\xi_{\mathbf{k}}=\frac{k^{2}}{2 m}-\mu
\end{array} \quad \Delta_{\mathbf{k}}=|\Delta| i \sigma_{y} \mathbf{k} \cdot \sigma \\
\begin{array}{c}
\text { strong pairing } \\
\nu=0
\end{array} \quad \text { weak pairing }
\end{gathered} \mu
$$

[^0]-stable surface Majorana fermion state
Salomma and Volovik (1988)

topological singlet superconductor in 3D

- class CI top. insulator: singlet BCS pairing model on the diamond lattice

SU(2) symmetric

topological singlet superconductor in 3D

$$
\nu=\int_{\mathrm{Bz}} \frac{d^{3} k}{24 \pi^{2}} \epsilon^{\mu \nu \rho} \operatorname{tr}\left[\left(q^{-1} \partial_{\mu} q\right)\left(q^{-1} \partial_{\nu} q\right)\left(q^{-1} \partial_{\rho} q\right)\right]
$$

surface of 3d top. singlet SC = "1/2 of cuprate"

-- stable surf. Dirac fermions
$\sigma^{\text {spin }}=\frac{1}{\pi} \times 2 \times N \times \frac{s^{2}}{h}$
(irrespective of disorder strength)
-- T-breaking -> half spin quantum Hall effect (" $1 / 2$ of $d+i d$ SC")

summary

-3D topological insulators for 5 out of 10 symmetry classes.
AIII, DIII, CI : top. insulators labeled by an integer
All, CII: top. insulators of Z2 type

- Topological insulator/Anderson delocalization correspondence surface of top. insulator is always conducting.
- The same strategy is applicable to other dimensions.
- Transport experiments on Bismuth-Antimony ?
perfectly conducting because of Z2 topological term
- Topological field theory ?

$$
S=\frac{\theta}{32 \pi^{2}} \int d^{4} x \epsilon^{\mu \nu \rho \lambda} \operatorname{tr}\left[F_{\mu \nu} F_{\rho \lambda}\right] \quad A_{\mu} \in \mathrm{SU}(2)
$$

summary

topological field theory description

- generating function for single particle Green's function

$$
Z=\int \mathcal{D}\left[\psi^{\dagger}, \psi\right] e^{-\int d^{3} x \mathcal{L}} \quad \mathcal{L}=\psi^{\dagger} i(\mathcal{H}-i \eta) \psi \quad(3+0) \text { dim field theory }
$$

- introduce external gauge fields

$$
\mathcal{L}=\bar{\psi}\left(\partial_{\mu} \gamma_{\mu}-i a_{\mu} \gamma_{\mu}-i b_{\mu} \gamma_{0} \gamma_{\mu}+m \gamma_{5}\right) \psi
$$

- integrate over fermions

$$
\begin{array}{ll}
e^{-S_{\mathrm{eff}}\left[a_{\mu}, b_{\mu}\right]}=\int \mathcal{D}[\bar{\psi}, \psi] e^{-S\left[a_{\mu}, b_{\mu}, \bar{\psi}, \psi\right]} \\
S_{\mathrm{eff}}=\nu\left(I\left[A^{+}\right]-I\left[A^{-}\right]\right) & A_{\mu}^{ \pm}=a_{\mu} \pm b_{\mu} \\
I[A]=\frac{-i}{4 \pi} \int d^{3} x \epsilon^{\mu \nu \lambda}\left[A_{\mu} \partial_{\nu} A_{\lambda}+\frac{2 i}{3} A_{\mu} A_{\nu} A_{\lambda}\right] \\
\text { non Abelian doubled Chern-Simons }
\end{array}
$$

[^0]: Z2 classification:
 Roy (2008)
 Qi-Hughes-Raghu-Zhang (2008)

