

Many-body physics using

arrays of individual Rydberg atoms

(and optical dipoles...)

Antoine Browaeys

Laboratoire Charles Fabry, Institut d'Optique, CNRS, FRANCE

KITP, may 1st 2019

The team (atom-tweezers-io.org)

Collaborators

T. Macri, A. Läuchli, Hans Peter Büchler, I. Lesanovsky C.S. Adams & I. Hughes, J. Ruostekoski, J.-.J Greffet, P. Pillet,

Spin models: one of the "simplest" many-body problem

Interacting spin ½ particles on a lattice:

Open questions: Dynamics (hard for N>40, long range...) Topology, disorder, dissipation... Use control over artificial quantum matter (circuits, ions, atoms, photons...)

Our platform: arrays of interacting Rydberg atoms

Individual atoms in assembled arrays of tweezers (~70 at.)

Barredo, de Léséleuc, Science (2016) Also Lukin (Harvard), Ahn (Korea)...

Barredo, Nature 2018 Also: Weiss 2018; Ahn, Opt. Exp (2016)

Our platform: arrays of interacting Rydberg atoms

Individual atoms in assembled arrays of tweezers (~70 at.)

Barredo, de Léséleuc, Science (2016) Also Lukin (Harvard), Ahn (Korea)...

\Rightarrow Large dipole-dipole interactions

$$\begin{array}{l} R = 10 \ \mu \mathrm{m} \Rightarrow V_{\mathrm{int}}/h \sim 1 - 10 \ \mathrm{MHz} \\ \Rightarrow \mathsf{timescales} < \mu \mathsf{sec} \end{array} \right]_{\mathsf{Lukin, Saffman}}$$

Saffman, RMP 2010 Browaeys, JPhysB 2016

Zoller 2000

Rydberg atoms and their interactions

Outline

H.-P. Büchler S. Weber, N. Lang

1. Topological matter with resonant dip.-dip. Interactions the "coherent" arXiv:1810.13286

2. Resonant dipole interaction and quantum optics the dissipative

Resonant dipole-dipole interaction between Rydberg atoms

Spin "exchange": XY model

Observation of spin exchange between 2 atoms

Prepare $|\uparrow\downarrow\rangle$ using microwaves + addressing beam

The Su-Schrieffer-Heeger model

• Introduced to explain conductivity in polymers

Volume 42, Number 25

PHYSICAL REVIEW LETTERS

18 June 1979

Solitons in Polyacetylene

• Now, considered as simplest example of **topological model**

Asboth, arXiv:1509.02295, Cooper, arXiv:1803.00249

- Goal: build an artificial SSH system to explore role
 - Symmetries
 - Interactions
 - •

The Su-Schrieffer-Heeger model for a finite chain: edge states

Implementation of SSH spin chain with Rydberg atoms

Chain at magic angle ⇒ **chiral symmetry** (no A-A or B-B hopping)

$$J/h = 2.4 \text{ MHz}$$

 $J'/h = -0.9 \text{ MHz}$

"Topological"

Probing the single-particle SSH spectrum

Single-particle spectrum

Chiral symmetry 🖌

- 1 excitation $|\uparrow\rangle$
- = quasi-particle

Spin excitations are hard-core bosons...

Note: initially SSH introduced for non-interacting fermions...

Spin ½ " = "bosons

Carusotto PRA 2016 Fleischhauer PRA 2013

Atom cannot carry 2 excitations \Rightarrow Spin excitations = hard-core bosons

On-site interaction $U \rightarrow \infty$

$$H_{\rm B} = \sum_{i \in A, j \in B} J_{ij} (b_i^{\dagger} b_j + b_i b_j^{\dagger}) \text{ with } (b_i^{\dagger})^2 = 0$$

Spectrum of the many-body SSH model with hard-core bosons

Adiabatic preparation of the many-body ground state (14 sites)

Exact diagonalization

Robustess of the g.s. degeneracy w.r. chiral symmetry breaking

A symmetry protected topological "phase" for bosons (1/2 filling)

Degeneracy from symmetries for **many-body states**:

- part. / hole symmetry
- part. nb. conservation

Gap = 0

phase 2

J/J'

Classification of topological phases according to \hat{S} of \hat{H}

Symmetry	d = 0	d = 1	<i>d</i> = 2	<i>d</i> = 3
$U(1) \rtimes Z_2^T$	Z	Z ₂	Z ₂	Z ₂ ²
Z'2	Z ₁	Z ₂	Z ₁	Z ₂
<i>U</i> (1)	Z	Z ₁	Z	Z ₁
<i>SO</i> (3)	Z ₁	Z ₂	Z	Z ₁
$SO(3) \times Z_2'$	Z ₁	Z_2^2	Z ₂	Z_2^3
Zn	Zn	Z ₁	Zn	Z ₁
$Z_2^T \times D_2 = I$	D_{2h} Z_2^2	Z ₂ ⁴	Z ₂ ⁶	Z ⁹

Only possible topological order in 1d!

Outline

1. Topological matter with resonant dip.-dip. Interactions the "coherent" arXiv:1810.13286

2. Resonant dipole interaction and quantum optics the dissipative

Pellegrino, PRL **113**, 133602 (2014) Jenkins, PRL **116**, 183601 (2016) Schilder, PRA **93**, 063835 (2016) Jenkins, PRA **94**, 023842 (2016) Jennewein, PRL **116**, 233601 (2016) Jennewein, PRA **94**, 053828 (2016) Schilder, PRA **96**, 013825 (2017) Jennewein, PRA **97**, 053816 (2018)

Resonant dipole-dipole interaction as exchange interaction

Quantum: exchange interaction

$$\hat{H} = V_{\rm dd} \left(\hat{\sigma}_A^+ \hat{\sigma}_B^- + \hat{\sigma}_A^- \hat{\sigma}_B^+ \right)$$

$$V_{\rm dd} = -\frac{3\hbar\Gamma}{4} e^{ikr} \left[\left(\frac{1}{(kr)^3} - \frac{i}{(kr)^2} \right) \left(3\cos^2\theta - 1 \right) + \frac{\sin^2\theta}{kr} \right]$$

Near-field vs. far-field = coherent vs. collective dissipation

$$V_{\rm dd} = -\frac{3\hbar\Gamma}{4} e^{ikr} \left[\left(\frac{1}{(kr)^3} - \frac{i}{(kr)^2} \right) (3\cos^2\theta - 1) + \frac{\sin^2\theta}{kr} \right]$$
$$kr \ll 1$$
$$kr \gtrsim 1$$
$$kr \gtrsim 1$$
$$V_{\rm dd} \sim \frac{\hbar\Gamma}{(kr)^3} \gg \hbar\Gamma$$
$$V_{\rm dd} \sim \frac{\hbar\Gamma}{kr} \sim \hbar\Gamma$$

⇒ "**coherent**" interaction

 \Rightarrow **Dissipative** spin models

Light scattering in dense media and dipole-dipole interactions

Interactions \Rightarrow **collective response**

Dense:
$$r \lesssim \frac{\lambda}{2\pi}$$
 or $C = n/k^3 \gtrsim 1$ ($n \gtrsim 10^{14}$ at.cm⁻³) $\Rightarrow V_{\rm dd} \gtrsim \hbar\Gamma$

Model: Lax PRA (1970), Ruostekoski PRA (1999)

$$\mathbf{E}_j = \mathbf{E}_0 + \sum_{l \neq j} \mathbf{E}_{l \rightarrow j}$$
 Local field

 $\mathbf{d}_j = \epsilon_0 \alpha \mathbf{E}_j$ (low intensity) \Rightarrow coupled dipoles

Diagonalization \Rightarrow eigen-modes $E_{\alpha} - i\frac{\Gamma_{\alpha}}{2}$: $D_{\alpha} = \frac{\Omega_{\alpha}}{\Delta - E_{\alpha} - i\frac{\Gamma_{\alpha}}{2}}$

Observing resonant dip.-dip. interactions: incoherent scattering

On-going work: structure the atomic response

Enhance the collective response + no averaging over random positions

Atomic mirrors

Optimized clocks VV

Ruostekoski, PRA (2012) Bettles, PRL (2016) Shahmoon, PRL (2017) Perczel, arXiv:1703.04849

Ritsch EPL 2016

Techniques: extend SLM control to « sub- λ structuring »

One idea: ~420 nm ♣

Merge staggered bi-layers

Optical dipoles, many body physics & quantum optics

A driven, dissipative (collective...) many-body system

Phase diagram?? (OK mean-field + small part. nb.)

Lesanovsky&Olmos...

Dynamics: collective quantum jumps??

+ Use scattered light as a probe

A "new" quantum optics platform?

Open questions

Rydberg: role of exp. imperfections and dephasing ("bad" dissipation) Limits preparation of MB ground state Limits duration of interaction driven dynamics + role of complex atomic structure

⇒ Model of dissipation?? Use dissipation to prepare MB states??

Optical dipoles ("good" dissipation):