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M etamaterials

Artificial materialsthat exhibit eledromagnetic responses
generally not found in nature

Metamaterials exhibit qualitatively new response functions that
are not observed in the cnstituent materials themselves and
result, for instance, from the inclusion of artificially fabricated,
extrinsic, low dimensional inhomogeneities

Examples:
Artificial dieledrics
FSS Eledromagnetic bandgap structures
Negative index (neg eps, mu) materials

M etamaterials may lead to new physics and engineaing concepts

Dr. Richard Ziolkowski, Univ Arizona (KITP Quantum Optics 7/10/02)
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Compact DNG metamaterials having negative index of refraction
have been designed, fabricated and tested experimentally

negative index of refraction

» HFSSand FDTD simulators have been used to design
several DNG (e < 0and p < 0) metamaterials(MTMYs)

> Extraction formula have been derived to determinethe
MTM'’s effedive permittivity and permeability

» Several potential applications have been studied:
Efficient Eledrically Small Antennas (EESAS)

» Experimental results confirm therealization of DNG MTMs
that are matched to free spaceand have a
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(e<0,u<0)

» DNG Drude MTM s have been characterized
with an FDTD simulator and confirm

+ paraxial beam focusing

+» negative angles of refraction for power flow

» The propagation characteristics of wavesin DNG media
confirm the posshbility of a negative index of refraction

» Negative angles of refraction exist for DNG media

» Demonstrate phase and phase front compensators

Metamaterialslead to a vaiety of novel eledromagnetic dfects

A&
IRY

“4 p
R

Dr. Richard Ziolkowski, Univ Arizona (KITP Quantum Optics 7/10/02)




Double Negative Metamaterial Physics, Design, and Experiments

EM Properties of aggregates of atoms/ moleaules are typically
charaderized by their eledric and magnetic dipole moments

P=%p/V

= =& XE
E e=¢,(1+X)
X = eledric
susceptibility
SRR
‘8
The Debye and Lorentz linear polarization models
produce well-known material responses
Debye Model
O Pr+TE Py =¢TExa Ex
Lorentz Model
OF P+ T 0 Pr+wi P = eguh xa Eu
. ,{2; Xo
P”w _ . W Ao . E w
(W) —u,'2+ijE+u,ﬁ €0 bip(w)
Drude Model
0f Pr+Tp 0y Pr = eyuw) By
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Several metamaterial models have been studied. They
produce a variety of novel electromagnetic responses.

Time Derivative Debye Model

'-;).f P( + FE Pf = € FE‘ Xev E( +egX )’Uf Ee

Time-Derivative Lorentz Model

2 : 2 2 :
f),f_ P+ FE Oy Py + wh P = ¢ Wh Xao Er+egwy X3 o Ey

Two Time-Derivative Lorentz Model
2 . 2 2
f),f_ P+ TE O Pp+ Wy P = W) Xa E,
: A2
+egwy xp O By + €9 x4 Of By

These models have been implemented and tested

with our 1D, 2D, and 3D FDTD simulators fﬁ‘%
o
M aterial responses are incorporated into our
FDTD M axwell equation solver through
equivalent polarization and magnetization models
[] Reaursive Convolution Method
D=¢*E
[] Auxiliary Differential Equation Method
A(@,)D=B(d,) E
[] Polarization / Magnetization Method
A(@,) P=B(3,) E
P & M equations are solved self-consistently i
with M axwell equations TR

Dr. Richard Ziolkowski, Univ Arizona (KITP Quantum Optics 7/10/02)
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The matched DNG medium was simulated
with a lossy Drude model
Lossy Drude |M‘1'11_N tivity
L2
w
fw) = e |1 - —F— ]
w(w +1ile))
Lossy Drude permeability
(2 ]
w
(w) = pp {1 — ——P1
plw) = pg w(m+:i1"‘m)J
Matching conditions
uL)pp \“.L)pyn
rﬁ = Fm
r _
mw) g
Z(\.b‘) — \J . — J— — Z” l&,,\&go
€(w) €0 fﬂ?f
The 1D time domain equations solved with the
FDTD simulator for the matched DNG medium
were straight-forward
r I
WEy = — (—0-Hy — J,)
€0
Opdy +TJp = g By
1
O Hy = ”— (—0,E; — Kg)
()
0Ky +T Ky = g wy Hy
Note: K | o ( LL17Z.ex ( L i LOTI i
&8 LLIC ( 1 ( 18 el ( le1 {
Note: Ma 12 15 & EVE | el I I's and K's
i FDTD cells nn OIT LTI e
e
B

Dr. Richard Ziolkowski, Univ Arizona (KITP Quantum Optics 7/10/02)



Double Negative Metamaterial Physics, Design, and Experiments

Real part of lossy Drude mode for different plasma frequencies

Am plitude
g

— 10} GHz
G— 266.5 GHZ
$—5 500 GHz —
*—# 1000 GHZ

-40.0

w20
Relative frequency { & /u,) e
R
f, = 30 GHz Cot

Wave propertiesin DNG media are “unusual”

] Wave propagation and power flow is causal

] The medium is right-handed with respect to the diredion
of propagation

1 The medium is left-handed with resped to the diredion
the wave vedor diredion

E E
k k
H DOP, Poynting's Vector H DOP, Poynting's Vector
Normal DNG fo&f
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Ziolkowski and Heyman have determined
the correct, causal square root choice and
confirmed it with FDTD simulations

Zr(w) > 0
Analytical and FDTD simulation problem geometries
Plane wave source
—e ® ® >
z=-z, z=0 z=+
P
2TDLM slab, DNG slab IR

Dr. Richard Ziolkowski, Univ Arizona (KITP Quantum Optics 7/10/02)
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Response for Neg €, Neg 1, and Matched DNG media
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Several EM quantities were monitored

form of Poynting’s theorem in a dispersive m
7_..{2_@1; § . flz dy = _..'rl,:' [G{JE - ();E + E‘ : (){16
+pupH - 0 H + poH - 9y M) dV

- 1 =0 1 o5
— gy S-nxdE = O fy {§€|E|2 + 5;.:.|H|2 dV = Uk
[ |
nEDTD = ! In Eulz,w)]
' iky (2 — 21) l[E:f.'(Zl-.W':')
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FDTD modeling of wave propagaion in DNG media confirms
causal behavior and negative index of refraction
£
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The two time derivative Lorentz model
produces a causal metamaterial response

Two Time-Derivative Lorentz Model
52 : 2 2
f)lf Py +Tg0 Py + wy Py = ¢ Wy Xev E;
, .
+egwo X3 0 Ex + €9 xy Of By

2 . 2
Wi Xex + Wy Xg — W7 Xy

Pr(w) = . .
z(W) —w? + julp + wﬁ

€0 Bz (w)

This implies the limiting properties
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Susceptibility of 2TDLM material was designed to
producethe desired superluminal medium response

Soeceptibilily
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FDTD simulations of plane wave propagaion through a matched
2TDLM metamaterial confirmsthe superluminal behavior
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FDTD simulations of plane wave propagaion through a
matched 2TDLM metamaterial slab confirmsthe
causal superluminal transmisson of information
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Double negative (DNG) media (¢ < 0 and g <0 )
can be realized with metamaterial constructs

e “Perfect Lens Effect”
Pendry, PRL Oct. 2000,

e Waves are not focused in general DNG medium
but rather beams are produced

Ziolkowski and Heyman., PRE, October 2001
e Direction of Power Flow

Positive: Valanju, Walser. Valanju, PRL, May 2002

Negative: Caloz, Xhang, Itoh, JAP, December 2001

Negative: Kong, Wu, Zhang, Microwave Opt. Tech.

Lett., April 2002
Negative: Ziolkowski and Heyman, PRE, October 2001
/°~a:n..«‘:‘

General result:
Beams are formed in the DING slab rather than foci

NOTLE: Slab solution is independent of square root choice
NOTLE: Correct propagating and evanescent spectra
NOTE: Foci appear only for one special case:

€= —€) fh=—py n=—1

Then £ = ky = +1 and a perfect foci appear for

Zf1 = |zo| (i slab Zfo = 2d — |zg| (beyond slab
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General lossy, dispersive DNG slab:
Beams are formed rather than foci

Paraxial result

2
ki .
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Analytical and FDTD simulation problem geometries
Cylindrical source
—e ® ® >
z=-z, z=0 z=+
P
2TDLM dab, DNG slab TR

Dr. Richard Ziolkowski, Univ Arizona (KITP Quantum Optics 7/10/02)
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FDTD simulations of cylindrical wave interaction with
lossy Drude DNG dab with g(wy) )/eg = (6 )/Ho = —
show no foci

Electric field intensity at one time over FDTD simulation space

FDTD simulations of cylindrical wave interaction with
lossy Drude DNG dab with g(wy)/gg = p(td)/1Hy = —6
show the predicted beam formation

Electric field intensity at one time over FDTD simulation space

Dr. Richard Ziolkowski, Univ Arizona (KITP Quantum Optics 7/10/02)
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DNG dab solution requires a negative angle of
refraction for both phase and Poynting’svedor,
but phase and Poynting' sdiredions are opposite

A / \ y
Regular medium DNG Medium

/y/ > / >
Freespace

J/ Free space

»

Normal interface DNG interface

Snell'sLaw: 8, ,,,=sin1(6,,./n)
/e,ﬁs
Negative angle of refraction for power flow follows
immediately from M axwell’ s equations
k,=+ (P ep—k2)v? k,=- (P ep—k2)v?
z4y A Z 4
ran\ S War
>x S >x
2\
Normal DPS medium DNG medium .
Y
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Super-prism effed requireslocal modifications of the
wave vedor —index surface

»EBG produces|ocal curvature
T variationsin theindex surface

»Poynting’ svedor isperpendicular
toindex surface

»Negative angle of refraction isrealized

»Are the CLS-CLL metamaterial effects
\ the same??
Index surface »Material extraction indicates smpler DNG
k vedors properties

Svedors

LY

0
‘K
e Superprism effect (negative index of refraction) associated with /‘ 5
EBGs (electromagnetic bandgaps) “Rgineers®

Electric field intensity at one time over FDTD simulation space

Dr. Richard Ziolkowski, Univ Arizona (KITP Quantum Optics 7/10/02)
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Source

Plane =

Geometry
of larger
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problem
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models a
finite (wg=A)
Gaussian
beam
interacting
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Electric
Field
Intensity

At atime
when a 20

degree
angle of

incidence ‘,,
3-cycle é
Gaussan
T
"

beam

is
interacting
with a
n=-la
30GHz,
Low Loss
DNG slab
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Electric
Field
Intengity

Latein
time
for a

20degree
angle of
incidence,
Ccw

Gaussian
beam
interacting
with a
n=-1la
30GHz,
Low Loss
DNG slab

Ty es

g

Source =2
Plane

Geometry
of smaller
FDTD
problem
that

models a
finite (wg=A)
Gaussian
beam

interacting
withan=-6
DNG Drude
MTM Slab
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Electric
Field
Intensity

Earlyin
time
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angle of
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Electric
Field
Intensity

At adightly
later time
when a 20
degree

angle of
incidence
3-cycle
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beam

is gill

{
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30GHz
Low Loss
DNG slab

féi}’?

R

Electric
Field
Intensity

At atime
when a 20
degree
angle of

I ncidence,
3-cycle
Gaussan
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Electric
Field
Intengity

Latein
time

for a
20degree
angle of
incidence,
CwW
Gaussian
beam
interacting
with a
n=-6a
30GHz,
Low Loss
DNG slab
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K
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A DNG dab channelsthe dedromagnetic field energy
into a paraxial beam

DPS Sab DNG Slab

Distribution of |EJ? at the same time for a CW source fﬁ?ﬁ
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Matched DNG medium could lead to
phase cmpensation techniques and devices

Matched media: Z =Z, so thereareno refledions

Negative Phase: A DNG dab combined with a device
that produces a positive phase shift,
could lead to azero phase point at the
output of the ammbined device-dab

&p,\s

"ginee!

K

a®

phase front compensation

DNG dlabs can be used to achieve

DNG Slab DPS Sab

“

fé&z’?&
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The phase fronts convergein the DNG dab

Distribution of |[EJ]? at a singletimeinstant
early in the FDTD simulation f“‘Ai’?

“
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The phasefrontsdiverge in the DPS dab

Distribution of |E|? at a single time instant fﬂg
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The phasefrontsare planar near their exit from the
DNG-DPS dab combination => 0° phase-shift delay line

L LU

R T

Distribution of |E[? at a single time instant

fter steady stateisachieved ;“‘AX

“ p
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Compact metamaterials having negative index of refraction
have been designed, fabricated and tested experimentally

» All structures constructed with Rogers Corporation
5880Duroid (g, =2.2, p, = 1.0, tan d = 0.0009)
31 mil ( 100mil =2.54mm ) thick,
125mil polyethylene spacers

» S-parameters measured with a freespace measurement
system at X-band frequencies

»Experimental results confirm therealization of DNG MTMs
that are matched to free space

» Very goa agreement between numerical and
experimental results s
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Eledric dipole metamaterial Unit element
5 layers E
31x 24 elements H
k

M agnetic dipole metamaterial _
Unit element

34 x 4 elements E
I:: l_k.
H

N

/’"m.«r\*“

Thefirst experimentsonly measured the orthoganal
structure's components sparately

Dipoles Only Split rings only

fé&%’?
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Seoond series of measurements were performed to
confirm the HFSSsimulation results srowing the
DNG medium effedsfor the planar structure

CLSs, SRRs, &
composite planar structure

Freespace

measurement system

The S,, experimental data showsthe predicted
refledion bandsfor the dedric and magnetic dipole
metamaterials

zZ0

rk This is the measured data with

the Thru data divided out.

-40
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NormHData
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Eledric dipole Capacitively
metamaterial E L oaded Strip
(CLS)
k Unit element
H

M agnetic dipole

metamaterial Split Ring
E Resonator
(SRR)
k I : Unit element
: fé&z“%

“ p
gineet®

Integrated eledric and magnetic dipole design
produces a matched metamaterial

oo

E
Planar design — etched duroid
k
Coupling between electric
H and magnetic dipoles f;fi
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HFSS/ FDTD Simulation Region

Side View &
Zz

PEC symmetry plane

PEC svmmetry plane

PMC svmmetry plane
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The composite planar MTM S-parameters were
calculated with Ansoft’'sHFSS
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fromthe HFSS Sparameter cdculations

The effedive permittivity and permeability were extraded
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in two frequency regions ( and nealy three)

The composite planar MTM exhibits matching to freespace
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The S,, experimental data showsthe predicted broad
transmission band for the matched DNG medium

S12, Composite planar structure
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Effedive permittivity and permeability parameters are commonly
extraded from S-parameter (cdculated/measured) values using
the Nicolson, Ross and Welir approach
kO:Q
Vi=$1+8; c
Vo=51-51
—— _In(Z)
grl'lr T
x = 1tWV, jkod
V1tV
Y=% M _1+T
172 g 1-T
Z =exp(kd) =X % X2-1 14T In(2)
r=y+yY2-1 K :F jk,d
e _1-T'In(2) e
CTIRT jkod !K’?
/e"ﬂhuo‘\;‘
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The effedive permittivity and permeability parameters were
extraded from the S-parameter values using a modified version

of the Nicolson, Ross and Weir approach

_v,-r
exp(kd) = v rv,
[ = 2 1-V,
1-V, exp(kd)
woen ool
- - @-vpa+n T
1-exp(kd) -rv, H;
M, _1-exp(kd)1-V, n= \/E\//J_r
g, 1+exp(kd)1+V,
2 Enhanced
gr = I’lr T SJ.l
s o 1 a-wa+n jk,d result when
o jkd  1-TV, S.~0
11 M.%}%
§ A %
omeats®
A simplified MTM was designed to isolate the dectric
and magnetic elements and the wrresponding effects
Side View
PEC symmetry plane
v
|
o _PE: ;'u_un:h}_' p;ue_ B
Top View
PMC symmetry plane
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CLS-only MTM
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The effedive material responses raise interesting issues
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The effedive index of refradion of the simplified MTM is
negative in the frequency region were matching occurs
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The effedive permittivity and permeability of the cmposite planar
MTM were extracted from the HFSS Sparameter calculations
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A negative effedive index of refradion was extraded from the
HFSS Sparameter cdculations and from the FDTD calculations
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FDTD results

Confirmation that negative index of refraction MTMs
have been realized

120

Eledric
Dipole

PEC

M etamaterials and improved antenna performance
Artificial perfect magnetic conductors (PM Cs) — High Z surfaces

R=+1

Eledric
Dipole

» Double the field strength

» Increase the bandwidth (Hansen)
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SRR Design with Dimensions
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HFSS calculated S;; values for the SRR MTM with a depth of 1, 2, 3, 4 SRR
elements show complete reflectivity near the design frequency of 10GHz
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HFSS calculated S,; values for the SRR MTM with a depth of 4 SRR
elements show that it acts as a PMC near the design frequency of 10GHz
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CLL Design with Dimensions

One dement
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b 40mils
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HFSS calculated S;; values for the SRR MTM with a depth of 1, 2, 3, 4 CLL
elements show complete reflectivity near the design frequency of 10GHz
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HFSS calculated S;; values for the CLL MTM with a depth of 4 CLL
elements show that it acts as a PMC near the design frequency of 10GHz
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HFSS calculated S;; values for the CLL MTM with a depth of 4 CLL
elements show that it acts as a PMC near the design frequency of 10GHz
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“Final” CLL Metamaterial Structure

»“Preasely cut,
aligned” and
asembled of 161
strips
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The CLL MTM was measured with afree
space measur ement system

e MeasuretheCLL MTM
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orientation
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s with a 9C rotation
e 7 B i

g
e

e HP 8720C network

. . o ‘J:\ analyzer to measurethe
J } \** S-parameters
: j X-band ‘W’"Ci’?
rectangular horn & §
MUT /@A_
gineet™
Measured magnitude of S,, for theCLL MTM dlab
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Measured magnitude of S, for theCLL MTM dlab
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Phase Reference Plane measurement
was achieved with a reference opper plate

» A copper plateis
placel over the
mouth of the
flange of the
transmit antenna
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Measured phase of S, for the CLL MTM slab
and for thereferenceplate
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M easured magnitude of S;, for theCLL MTM dlab in
90’ fixed rotatation demonstrates the expeded anisotropy
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The relationshipsrepresenting the
power r adiated by and the antenna Q
of an eledrically small antennas are well-known

Complex power for a small dipolein freespace
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Can a DNG spherical shell be used to improve the power
radiated by an eledrically small antenna??

We have solved analytically
the problem of an
electrically small

linear dipole antenna
surr ounded
by a spherical shell
of DNG material

o\ & C,

‘:,\c %
Allison Kipple, PhD candidate ;Ef?’

Calculating theradiated power normalized to the small dipole value as a function of
theradiusr,, wefind that there several regions of wherethe
radiated power isenhanced significantly and, corr espondingly, where Q isreduced
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Significant power gain /
with a reasonable 5™ / 1\
bandwidth ispredicted || & /] T\
for athin DNG shell g . / N\
that is closer to the / ~
dipole antenna ="
o Outer DNGZSIOIEerlTsradiuS (m) o
Antenna Q e
(normalized to g U
Freespacevalue) 5 N
isreduced to near R \\
zero wherethe N
large power gain o
ocaurs OQuter DNG shell radius (m ) fa"‘c/;%

@

| a=1/1500= 20E-05m ,r,= N/30=0001m for f,=10GHz and n=-3 |-or. "

An extremely large -
power gain is Lieis ll \\
predicted for a g o i
very close proximity, ||z .., [T\
thin DNG shell, £ e / \
H 4.0E+08
BUT with an o 7 N
extremely narrow boE+00 = =
H 1.8572E-04 1.8576E-04 1.8580E-04 1.8584E-04 1.8588E-04|
bandWIdth Outer DNG shell radius (m )
Antenna Q \ )
(normalized to g
freespacevalue) = e
I E 1.0E-08
isreduced to near = \ /
zerowherethe Z  soe0
large power gain
ocaurs Outer DNG shell radius (m ) j“"&c/;g
I a=A/1500Q r,;=A/300=0.0001 m for f,=10GHz and n=-3 | S

Dr. Richard Ziolkowski, Univ Arizona (KITP Quantum Optics 7/10/02)



Double Negative Metamaterial Physics, Design, and Experiments

Compact metamaterials having negative index of refraction
have been designed, fabricated and tested experimentally

» HFSSand FDTD simulators have been used to design
several DNG (e < 0and p < 0) metamaterials(MTMYs)

> Extraction formula have been derived to determinethe
MTM'’s effedive permittivity and permeability

» Experimental results confirm therealization of DNG MTMs
that are matched to free spaceand have a
negative index of refraction

» Several potential applications have been studied:
Efficient Eledrically Small Antennas (EESAS)
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