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Classical theory due to Sommerfeld &
Brillouin® provided the first proof that an

electromagnetic signal could not propagate
faster than the vacuum speed of light ¢ in a
causal dielectric (the Lorentz model).
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"A. Sommerfeld, Ann. Phys., Lpz. 44, 177-202 (1914).
L. Brillouin, Ann. Phys., Lpz. 44, 203-240 (1914).



Sommerfeld’s Relativistic Causality Theorem:
[A. Sommerfeld, Ann. Phys. Lpz. 44, 177-202 (1914)]
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where
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Sommerfeld’s Theorem: If f(t)=0 for all

t<0 and if O{ign()-§ - -= a5
@ -~ ;5 o >0 for all 9<1 where 6 =ct/Az,
then A(zt)=0 for all Az>0 when 0<1.

[Oughstun & Sherman, J. Opt. Soc. Am. B
5, 817-849 (1988)]

This luminal arrival of the signal front tells
you that any information that may be
present in the signal will follow at some
later space-time point 6>1,
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Phase Velocity [Lord Rayleigh, Proc. London
Math. Soc. IX, 21-26, (1877)]:

The phase velocity describes the rate at which
the phase fronts of the wave propagate through
the dispersive medium.

Group Velocity [W. R. Hamilton, Proc. Royal Irish
Academy 1, 341-349 (1839)]:

The group velocity describes the rate at which a
group of waves propagates as a whole through
the dispersive medium [M. Born and E. Wollf,
Principles of Optics, 7" expanded edition,
(Cambridge U. Press, Cambridge, 1999) §1.3.4].

Signal Velocity [L. Brillouin, Ann. Phys. Lpz. 44,
204-240 (1914); L. Brillouin, Wave Propagation
and Group Velocity (Academic, New York, 1960)]:
A group of waves has originally been defined by
Rayleigh “as moving beats...following each other
in a regular pattern. A signal is a short isolated
succession of wavelets, with the system at rest
before the signal arrived and also after it has
passed...In general, the signal velocity will differ
from the group velocity, especially if the phase
velocity is strongly frequency dependent and if
the absorption cannot be ignored.”

Brillouin defined the signal velocity for a unit
step function signal as the space-time point at
which the path of steepest descent (passing
through all of the relevant saddle points) crosses
the simple pole singularity at the carrier
frequency of the signal.



A Simple Wave Group

[M. Born & E. Woll, Principles of Optics,

7" expanded edition (Cambridge U.
Press, Cambridge, 1999)]
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where k=k+§5k & a’=a’+55a’. The wave

group then travels with the group
velocity v, = 00/ok



The Group Velocity is a physically valid
velocity measure when it is used In
connection with the original structure for
which it was introduced: a Wave Group.

In that situation, the group velocity
describes the velocity of a point (e.g. the
peak amplitude point, or the zero
amplitude point, etc.) in the infinite wave
group. This can then take on any value
since it does not describe either energy or
Information transfer.

Profound difficulties arise whenever one
attempts to extend this concept of the
group velocity to a single ultrashort pulse
(superluminal pulse velocities, negative
pulse velocities, complex pulse velocities).

In order to overcome these difficulties,
Brillouin introduced the concept of the
Signal Velocity.



Deformed Contour of Integration taken
along the Paths of Steepest Descent
through all of the Relevant Saddle Points
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L. Brillouin, Ann. Phys. Lpz. 44, 203-240 (1914).
P. Debye, Math. Ann. 67, 535-558 (1909).



Comparison of the (Inverse) Relative Phase,
Group, & Sgnal Velocities in a single resonance
Lorentz model dielectric. Notice that Brillouin’s
signal velocity peaks to ¢ near the material
resonance frequency.

Fic. 19, Key: =w=s=, ¢/phase wvelocity = ¢/W; wsws, glgroup velocity = ¢/U;
. cfsignal velocity == /5.

L. Brillouin, Ann. Phys., Lpz. 44, 203-240 (1914).



Modified Sgnal Velocity due to Bagrwald'.
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Poynting’'s Theorem: Energy Density & Evolved

Heat in a Dispersive, Absorptive Medium

[Yu. S. Barash & V. L. Ginzburg, Usp. Fiz. Nauk.
118, 523-530 (1976); Sov. Phys. Usp. 19, 263-270
(1976))]

Poynting’s Theorem [J. H. Poynting, Phil. Trans.
175, 343 (1884)]

i = G Rk

where
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is the Poynting vector, and where J=J .+, is the
total current density. In general, one may define

the scalar quantities Ue and U,; associated with
the electric and magnetic fields, respectively, by
the relations
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with sum U’ =U;+U,, which have the dimensions
of energy per unit volume.



Differential Form of Poynting’'s Theorem

U’

V-S=
ot

_J-E

Which is interpreted as a statement of the
conservation of energy in the electromagnetic
system.

“A theory is not an absolute truth but a self-
consistent analytical formulation of the relations
governing a group of natural phenomena.” J. A.
Stratton, Electromagnetic Theory (McGraw-Hill, New
York, 1941) §2.19.

In the simplest case of a nonmagnetic and
nondispersive medium, the constitutive relations

are D=¢E,B=uH, J. =0E, where & U, O are
scalar constants, then

wemﬂiWEDJga%{FWHB
47| 2 4|2

which are identified as the electric and magnetic
energy densities. The total electromagnetic energy
density is then given by

Ll e >
U=U,+U, =|—I|=|gE +uH



For isotropic, locally linear, temporally dispersive
media one has the multipole expansion [J. D.
Jackson, Classical Electrodynamics, 2™ ed. (Wiley,
New York, 1975) §6.7]

D(r,?) = g, E(r,t) + ||4x||P(r,t) — 47|V - Q(r,1) +

The electric energy density of the coupled field-
medium system is then given by

V-Q

ot

dt+-

H—H ¢,E-E+ jE CLn jE

so that a portion of the electric field energy resides
in the dispersive medium where it is either
reactively stored or dissipated.

For a nonmagnetic medium with frequency
dependent dielectric permittivity &)= ¢.()+ig ()
and electrical conductivity o(w)=o0,(w)+io,(®), the
relation

aUe’EH HE oD
ot 4 ot

is replaced by




where U, now represents just the electric energy
density both in the field and reactively stored in the

dispersive medium and where 0 represents the
evolved heat or dissipation in the medium.
Comparison of these two relations shows that

W, , U

‘K
ot ot .

from which it follows that U, =U; only in the
absence of all loss mechanisms. With this
separation, Poynting’s theorem becomes

%(U6+Um)+Q -V-S-J _-E

All that now remains is to obtain separate

expressions for U, anda O.

In general, the electric displacement vector and the
conduction current in an isotropic, locally linear,
temporally dispersive media may be represented by
the series expansions

D(r,t)—z m 9"E(r,?) L(rp)= ia(n) 9"E(r,?)

n=0 at n=0 atn



where

m — D 17 5 (n)
" = p” J;) g(t)t'dr, o

(—n_l')” J: o(t)t"dt

are proportional to the n" order moments of the
dielectric permittivity and electric conductivity
functions, respectively, where

D(r,7) = L E(r—1")E(r,t")dt", J (r,1)= L o(t— 1t )E(r,t")dt’

Substitution of these two expressions then yields
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aalje OR? + (||1/47Z'||8 + o' )a;iz
-
(||1/47r||e + 0! )aatE
—([1/4l|e™ + a@))(aa—E:T +
In general, one then has that
U (r,1) = ;‘ 41n 0 B (r,0)+ -
O(r,1) = B (r,1) + %HM B aE;(t"’t) n

with
o + B = el +||47r||0

and so on for higher-order coefficients.

As a consequence, one cannot, in general, express
the electric energy density U, and the dissipation

(evolved heat) 0 separately in terms of the dielectric
permittivity and electric conductivity of a dispersive
medium.



In order to unambiguously determine these
quantities, it is necessary to employ a specific
physical model of the dispersive medium, e.g., the
equation of motion at the microscope level.

For example, for a multiple resonance Lorentz
model dielectric the equation of motion for each
electronic resonance is

d’r.
5+ 20, J+wr——qu
dt? Todt

6

With the macroscopic polarization vector given by
P= —2 Nq.r,
j

one obtains

dr ﬂ 1 21 2
Z e|:2dt(dt) +26j(dt) Ty dt( )}

J

The last term appearing on the right-hand side of
Poynting’'s theorem

oE oP
E— 4l E -
H H(u M ek 2l at)



is then seen to be the sum of a perfect time-

differential and the term in 5j which corresponds
to the dissipation mechanism. The total energy
density is then given by the sum

u=U,+U,,

where

" ar
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is the energy density stored in the field alone, and
where

1 dr.\ Sl \2
U, Ezzije[(d;j +a)j(rj) }
is the energy density stored in the multiple-

resonance Lorentz medium.

With these identifications, the differential form of
Poynting’s theorem becomes

dr. dU
V-S+22N.me6.(’) v
= 7 dt dt



Integration over a closed region V with surface 0V
followed by application of the divergence theorem
then yields the integral form of Poynting's theorem
for a Lorentz model dielectric

seida+ 23 [[[ N[22

~
Rate of Energy Loss in V by Leakage acrooss 0V and
by Dissipation in the Medium contained in V

=-§HJVW3':

Rate of C};zrlnge of the
Total Electromagnetic
Energy stored in V




Energy Transport Velocity

L. Brillouin, Wave Propagation & Group Velocity
(Academic Press, New York, 1960).

R. Loudon, J. Phys. A 3, 233-245 (1970).

K .Oughstun & S. Shen, J. Opt. Soc. Am. B &, 2395-
2398 (1988).

For a time-harmonic field with angular frequency @
travelling in a multiple resonance Lorentz model
dielectric, the phasor solution of the equation of
motion for the j™ harmonically bound electron is

q,/m
r = o E
/ a)z—a)]2.+2i6ja)

loc

The time-average electromagnetic energy density
stored in the multiple resonance Lorentz medium
is then given by (with the replacement E,. — E)

180 2
L))
Ly

41

bf(co2 + a)f)

(a)2 - cof.)2 +460°

(Upe) =

where b; =(|4n/e,)N;q;/m, is the square of the
plasma frequency for the j" resonance structure

with number density ;.



The time-average energy density stored in the
monochromatic plane wave electromagnetic field is
given by

With use of the identity

n’ (®)+n’ (w)+1]E]

() (e E@) 5 b — o))
w(@)=ni(@)== g(wz_wi)zm;wz

the total time-average electromagnetic energy
density stored in both the field and the medium is
found to be given by

(U)=(U,)+(U,,)

S P A RCACEDY

2
I (a)2 — wf) + 45?0)2
where the summation extends over all the medium
resonance frequencies.

2 2
bja)




The time-average value of the magnitude of the
Poynting vector for the monochromatic plane wave
field is given by

1
2uU,c

2
C

4w

n,(@)|E[

(sf) =

The time-average velocity of energy transport for a
monochromatic plane wave propagating through a
multiple resonance Lorentz model dielectric is then
given by the ratio of these two time-averaged
quantities

(U) " () + 1 b w’

n,(w)4 (a)2 — cof)2 + 46?0)2

In the case of a single resonance Lorentz model
dielectric, this expression reduces to Loudon’s
result

C

ET () + on, ()5,

Both of these expressions yield relativistically
causal results, i.e. 0<vy<c,



Energy Transport Velocity in a Double Resonance

Lorentz Model Dielectric
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Fig. 2.2a,b. Frequency dispersion of the relative time-average energy-transpori velocity vg/c in
a double-resonance Lorentz medium. The medium parameters in part (a) are: wy = 1 x 10'%/5,
b =5 = 107%5%, 8, = 0.0 » 105, wy = 4 » 10"5/s, b = 20 x 10735, &, =028 = 10"%/s. The

medium parameters in part (b) are the same except that @, = 7 = 10Y%/5,



Fourier-Laplace Integral Representation of the
Propagated Plane Wave Pulse (z = 0)

A(z,t):%TD{iexp( iw)J'CG(w— a)c)exp[i(lz(a)z— cb)]d (}J

Temporal Spectrum of A(zt) satisfiesthe
Helmholtz Equation

(D2+ Izz(w)),&(z, w)=0
Initial/Boundary Vaue at the Planez= 0
A0,t) = u(t)sin(wt + )

where ¢y = {0,772} for sine (cosine) wave carrier.
Initial Pulse Envelope Spectrum

00

l(w) = I_oo u(t) exp(i ot )dt
Complex Wavenumber

k(w) = (we)n( o)



Single Resonance Lorentz Model

Dielectric
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Double Resonance Lorentz Model Dielectric
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Group Velocity Description

Quasimonochromatic or Slowly - Varying
Envelope Approximation: Introduced by Born
& Wolf in the context of Partial Coherence
Theory. Initial Pulse Envelope Spectrum

lhj(w‘ wc) IS Sharply peaked about the Pulse
Carrier Frequency.

g
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\

Taylor Series Expansion of the Complex
Wavenumber about the Carrier Freguency

K(w) = Z %Iz(j)(wc)( - @)



Linear Dispersion Approximation
Complex Wavenumber

k(w) = k() +k'(@)( o= )
Propagated Pulse

Alzt) = D{iu(t— IZ’(wC)z)exp[i(IZ(wc)z— agt)]}

Pulse Phase Propagates with the Phase Vel ocity

V. = wc . wc
" K@) Ble)

Pulse Envel ope Propagates undistorted in shape
with the Group Vel ocity

1 1
V., = —

k(@) Alw)

where ﬁ(w):D{k(w)} is the Plane Wave
Propagation Factor.




Quadratic Dispersion Approximation
Complex Wavenumber

k() = K(,)+ Ko )o-0)+ = K(0,) (0-o)
— 2 —
Group Group Velocity
Velocity Dispersion (GVD)
Propagated Pulse
A(Zt) = R —— 1 exp[ .)z- a)t+37r/4)]
\[an”(wc) ]
. -
oo kl t/_t
[ u(t)exp —i( (a)i)z+ ) dt’ |
s 2k” (o, )z

Pulse Envelope Propagates distorted in shape at
the Group Velocity. Propagated Pulse Structure
depends upon the parameter” T = \Zﬂ‘z"(wc)z%
which corresponds to the Principal Fresnel
Zone in the Analogous Jit Diffraction Problem.
"J. Jones, Am. J. Phys. 42, 43-46 (1974).




Complex Wavenumber

k()= f(®) +io(0) = (o)

Linear Dispersion Approximation

B (w) = o)+ B/ (00— o,)

Pulse Phase Propagates at the Phase Velocity
Vp(@) = ——

while the Pulse Envelope Shape Propagates
Undistorted at the Group Velocity

1
- p(w)/90

Vo(@)
Quadratic Dispersion Approximation

)= Blo) + (o) (0-0,)+3 B0, (0-0,)

Phase Velocity ~ Group Velocity Group Velocity
Dispersion

Pulse Propagates with the Group Velocity
with Shape Proportional to the Fresnel
Transform of the Initial Pulse Shape.
Dependent upon the size of the Initial Pulse



width T in comparison to the “Temporal

” 72
Fresnel Zone” size | 5‘27?[3 (WC)AZ‘ (J. Jones,
Am. J. Phys. 42, 43-46, 1974).

Real & Imaginary Parts of the Complex Wavenumber (r/m)
T rrrre T L 2 r-v]q T T rrrrrrg T '__"""l T ™

) "

10"® 10" 7/ N\ 10" 10"
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Quite unfortunately, this Taylor series
approximation of the wavenumber does not
improve with the inclusion of higher-order
terms (Xiao & Oughstun, J. Opt. Soc. Am. B
16, 1773-1785, 1999).



Energy Transport Velocity (R. Loudon, J.
Phys. A, 3, 233-245 1970)
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Complex Wavenumber (r/m)

Quadratic Dispersion Approximation
of the Complex Wavenumber
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Phase, Group, & Energy” Velocities

In a Multiple Resonance Lorentz Medium
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‘Oughstun & Shen, J. Opt. Soc. Am. B 5, 2395-

2398 (1988).



Initial & Propagated Pulse Spectra
Input Single Cycle Rectangular Envelope Pulse
T = 3.89fs
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Propagated Single Cycle Pulse
0<z/z, <1.0
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Propagated Wave due to an Input
38.9fs Rectangular Envelope Pulse

ozt  Quadratic Dispersion Approximation
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Higher-Order Dispersion
Approximations

Anderson, Askne, & Lisak, Physical Review A 12,
1546 (1975). “the evolution of slowly varying
wave pulses in strongly dispersive and absorptive
media Is studied by a recursive method. It Is
shown that the resulting envel ope function may be
obtained by including correction terms of
arbitrary dispersive and absorptive orders.”

Butcher & Cotter, The Elements of Nonlinear
Optics, ch. 2 (Cambridge, 1990): " to describe
pulse propagation in dispersive media in general
we must retain the second-order dispersion, and
for ultrashort pulses or those with a wide
frequency spectrum it may sometimes be
necessary to also include higher-order terms.”



Akhamanov, Vysloukh, & Chirkin, Optics of
femtosecond Laser Pulses, chs. 1-2 (American
Institute of Physics, 1992): “ one can analyze how
the dispersion of a medium affects a propagating
pulse for any higher-order approximation of the
dispersion theory. Naturally, the higher-order
approximations make the quantitative picture of
dispersive spreading more precise although its
basic features obtained for the second- and third-
order approximations remain unchanged.”

Unfortunately, these assertions, although
physically appealing, are not valid in the short
pulse regime.

Xiao & Oughstun, Journal of the Optical Society
of America B 16, 1773 (1999). “With the
exception of a small neighborhood about some
characteristic frequency of the initial pulse, the



Inclusion of higher-order terms in the Taylor
series approximation of the complex wavenumber
In a causally dispersive, attenuative medium
beyond the quadratic approximation is practically
meaningless from both the physical and
mathematical points of view.

n, (w)

w (rad/sec)

n; (w)




INnitial Conclusions

« Any Study of the Velocity of an
Ultrawideband Pulse in a Dispersive
Material must give careful consideration
to the Material Dispersion (including the
Attenuation) over the Entire Frequency
Domain.

e The Accuracy of the Group Velocity
Approximation improves in the small
propagation distance limit as Az - 0.

 Conclusions regarding Ultrawideband
Pulse Dynamics (including any Pulse
Velocity Measures) that are based upon
the Quadratic or Higher-Order Dispersion
Approximations should be viewed with
Extreme Skepticism for Propagation
Distances exceeding a single absorption

depth in the dispersive material Az>Zz;,
where z =07'w.) is evaluated at some

characteristic frequency of the input pulse
(e.g. the input pulse carrier frequency).



A Brief Poetic Interlude

There was a young chap named
Devaney

Whose arguments went faster than
electromagnetic energy

He published a paper in May

In an extremely noncausal way

With errata published the previous
February



Slowly-Varying Envelopes, Ultrawideband
Signals & Ultrashort Pulses

When iIs a pulsed field slowly-varying so
that the group velocity approximation is
applicable?

When is a signal ultrawideband?

When iIs a pulse ultrashort?

Notice that an ultrashort pulse must also
be ultrawideband, but not vice-versa.

Replace the last two terms with the single
designation of “rapidly-varying”. The
relevant question is then: What marks the
transition between slowly-varying and
rapidly-varying?

Definition: A field is said to be rapidly-
varying If any change in the field
amplitude occurs on the order of or faster
than the characteristic relaxation time of
the dispersive material. If the field I1s not
rapidly-varying, then it iIs said to be
slowly-varying.



For a single resonance Lorentz model
dielectric with damping constant o0 (in
radians/second), the associated relaxation
time is T, ~Yd. Precursor fields will then
dominate the dynamical field evolution as
the propagation distance Az (typically)

exceeds an absorption depth % EC”_l(wc) N
the dispersive material, evaluated at some

characteristic frequency @ of the pulse, if
the inequality

>0

~

|6(Awb)
ot

Is satisfied. The field iIs then said to be
rapidly-varying.

o _(AA) |
If the opposite inequality ot IS
satisfied, then the field Is said to be
slowly-varying. The precursor fields will
then have a negligible impact on the
dynamical field evolution.

<0




Asymptotic Description
Fourier-Laplace Integral Representation of the
Propagated Plane Wave Pulse (2 20)

A(z,1) = %9{{1 exp(—i l//)JCﬁ(a) - o, )exp|(z/ c)(p(w,e)]dw}

Complex Phase Function

0(,0) = i(c/2)| k() — @t | = iw[n(w) - 6]

Dimensionless Space-Time Parameter 0 = c¢t/z.
Taylor Series Expansion about the Saddle
Points of the Complex Phase Function

¢I(wsp’9) =0

General Saddle Point Equation

dn(w)
dw
First-Order Saddle Point: 9" =0, ¢” #0

Second-Order Saddle Point: ¢ =¢” =0, ¢ #0

elc...

)]

+n(w)=0



Asymptotic Representation for a Multiple
Resonance Lorentz Model Dielectric

A(z,t) ~ Aj(z,t) + A (z,t)+ Ay (z,t) + A(z,1)

C

Sommerfeld Middle Brillouin Pole
Precursor Precursors Precursor Contributions
as 7 —> oo,

Physical Significance of the Saddle Points

54)(@,9) = i(k(w)z - o)

f(p'(w,e) - i(alg (@), _ r]

oI0)

=0 at the saddle points of ¢

t | 9k(w)/ow o ’

P

The Group Velocity is Real-Valued at the
Saddle Points of the Complex Phase Function.



Power Series & Asymptotic Expansions
For a Power Series Expansion of a function f(z)

)= Y,

the approximation to f(z) at a fixed value of z
improves as N —> oo,
For an Asymptotic Expansion of a function f(z)

f(z) =8,(2) + Ry, (2)

N
where Sy(2) = jz::;afl//f (2) with {Wj(Z)} being an
asymptotic sequence of functions as z = oo, SO
that (%+1(Z)/%(Z))Zj>oo, and where
Ry..(2) = O{WN+1(Z)} as z — oo 1s the Remainder

Term after N terms, the approximation to f(z) by
Sy(z) improves for fixed N as z — oo, The first or

dominant term in the asymptotic expansion of
f(z) gives the Asymptotic Approximation of f(z).



N. H. Abel (1828): “Divergent series are the
invention of the devil, and it is a shame to
base on them any demonstration
whatsoever. By using them, one may draw
any conclusion he pleases and that is why
these series have produced so many
fallacies and so many paradoxes...”

Royal Palace, Oslo, Norway.



Single Resonance Lorentz Model Dielectric
Oughstun & Sherman, J. Opt. Soc. Am. B 5, 817-
849 (1988)

Solhaug, Oughstun, Stamnes & Smith, J. Eur. Opt.
Soc. A, Pure & Applied Optics 7, 575-602 (1998)

6=1.0

The pair of distant saddle points at infinity are
dominant

X(w,,.0=1)=0>X(0

SPdi 9

0=1]

SP+ 9

& W ) 8=10

Iﬂ"-ﬂ‘ﬁ




where

= R{0(.0)

X(w,0)
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0 = 0, ~ 1.33425

The upper near saddle point and the pair of
distant saddle points are of equal dominance

o 0= 3(o, )

e = q, = 133425
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0 =1.501

The upper near saddle point is the dominant
saddle point and is just about to coalesce with
the lower near saddle point, forming a second-

order saddle point at 6 = 6, = 1.502.

a= 150

(1.ox18%)

—

—— o) (id"

-Loxid®)

— e e




0=1.65

The pair of near saddle points have moved off
of the imaginary axis and into the lower half of

the complex w-plane and are the dominant

saddle points and remain so for all 6 > 0,

X(coSPn+ ,9) > X(coSPd+ ,9)

a8=l65s

(Lox1o™)

—————— (0%

Lox™)




0=5.0

As the space-time parameter 06—, the near

saddle points approach the inner branch
points while the distant saddle points
approach the outer branch points.

w” (x10%s )

1

%/ ’::H\ﬂ..&

\
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Distant Saddle Point Dynamics
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Near Saddle Point Dynamics (1 <0 < 6,)

™

X

Near Saddle Point Dynamics (0 = 0,)

w”
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Near Saddle Point Dynamics (0 > 0,)

Brillouin Precursor Evolution
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Dispersive Signal Evolution (Oughstun &
Sherman, Electromagnetic Pulse Propagation
in Causal Dielectrics, Springer-Verlag, 1994).

Case 1 0, <Wg at 5 absorption depths into a
single resonance Lorentz model dielectric

14

0.15 T T L] 1 ¥
W, =0,/2
0.1F
Brillouin
Precursor
0.05+
. Sommerfeld
EL Precursor /\
- i - /\f\{\nf\nnnnnf\nnnn
(W) UVVUUVVVVVVUVV
S . "
o Main Signal
-0.05 - 7
| | | |
Py Azjc  (Az/c)By, (Az/c)6,
(Az/c)6,
L 1 1 1 1 1 L 1
4 6 7 8 9 10 11 12 13
x10"®
t(s)
where

O = 0y(2+ b /0 + 56, /307)



Case II @O, > WOgx at 5 absorption depths into a
single resonance Lorentz model dielectric

0.04 T T T T 1
Sommerfeld @, =2.50,
0.03F j Precursor k
Brillouin
0021 Precursor i
- 001 = |: -
s Y
= . ' .,nm.ummanlmmHH i
N . (T ’l :Hl_;!'|H_![11!||![|9_r"!1;l:
SE | | |
-0.01 | Prepulse Main
Signal
0.02 l ! l -
' (Az/c)6., (Az/c)6, (Az/c)e,
0.03 | | (Az/c)8, .
Az/c
-0.045 5 ; é é 1l0 1
x10™

t(s)



Signal & Energy Velocities in a Single
Resonance Lorentz Model Dielectric

]
%o.s @
:
0.5
; o
o)
gom o V. /c i
2 o
203 ]
0.2} .
01F J
% ' 5 (0 10 15
\/coé - &2 \/mf -6’ SB x10'®
@, (r/s)

The signal velocity is the velocity at which
information is transmitted through a
dispersive material. It is always less than or
equal to the speed of light ¢ in vacuum and is
bounded above by the energy transport
velocity.



Signal & Energy Velocities

Vaje

Presignal Velocity
vafe Branch

o)

0.4

Main Signal

G Velocity Branch
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Oughstun, Wyns, & Foty, “ Numerical Determination
of the Sgnal Velocity in Dispersive Pulse
Propagation,” J. Opt. Soc. Am A 6, 1430 (1989).
Sherman & Oughstun, “ Energy-Velocity Description
of Pulse Propagation in Absorbing, Dispersive
Dielectrics,” J. Opt. Soc. Am. B 12, 229 (1995).



Multiple Resonance Lorentz Model

Dielectrics

Shen & Oughstun, J. Opt. Soc. Am. B 5, 2395-
2398 (1988)

Laurens & Oughstun, Ultra-Wideband, Short-
Pulse Electromagnetics 4, E. Heyman et al,
eds,, pp.243-264 (Plenum, New York, 1999)

Double Resonance Dielectric

I = 10x 108/ sec 0y, =7.0%10'6 sec
m{ e} bg? = 5.0 % 109 1 sec?  by? = 20.0 % 1072/ gec?
By=01x10"/5ec 8, =0.28x 1015/ 5ec

LH
' |

+

x

Sk, _
-5, _ ] Re{cw}
SF,

5 X

| 1

=
L
I




Each additional resonance line introduces
two pairs of saddle points whose

dynamical evolution in the complex -

plane is bounded above by the nearest
upper resonance structure. Whether or
not these saddle points introduce a new
precursor field is dependent upon the
value of the local maximum in the energy
velocity in that transmission band.

Theorem (Shen & Oughstun, 1988): Let

o™ denote the real frequency value in the
j™ transmission band at which the energy
velocity attains its’ local maximum value

(max)

VE(G),- ) in that transmission band. If the

(max)

inequality ve(@™)<v:(0) is satisfied, where
v(0)=¢/n(0)=¢/6,, then the middle precursor

field component A1) will  be
asymptotically negligible in comparison to
the Sommerfeld and Brillouin precursors
over the entire space-time evolution of the
field. However, if the opposite inequality



Vv, (a);max)) >v.(0)

is satisfied, then the middle precursor field

component A(zt) can become the
asymptotically dominant contribution to the
propagated field over some finite space-
time interval in the field evolution.

b B 00 e gy =D 0
e d0w W ee? B = 3000w Y et

Bpedim om0 0% V., /e




Impulse Response of a Double resonance
Lorentz Model Dielectric (Shen & Oughstun
1988)
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Triply-Distilled H,O (Laurens & Oughstun
1999)

Logy, {n,(w)}
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Impulse Response for Triply-Distilled H,O
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in & linear, causally dispersive medium
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The uniform asymptotic description of the propagation of sn fnpet rectangle-moduluted harmeon-
ke signal of fixed amgular frequency o, and initisl pulse width T into the half-space 2 >0 that & oc-
capled by o simgle-resonance Lorente sedium is presented, The asymptotic description is develoged
by representing the inpet rectasguler pulse ss the difference between two Heaviside-anit-sep-
flanciion-modulated sigrals thai &re separsied in time by the isdtis] polse widih T. This representa-
tion clearly shows thet the revoltnt pulse distortion in the dispersive mediam is primarily dus 1o
the Somemerfeld and Brillowin precussor felds that are sssocisied with ibe lzading and imiling edges
of the imput pulse. The dynamical palie evolution with increasing propagation distance 2 >0 i
eomplesely desoribed for both kang and very short initial pulse widika T In both cases it i shown
that the palse distortion beoomes severe when the propagstion distance 2 is soch that the precufsar
ficlds associaied with the trailing edpe of the pulse mterfere with the precursor fields associated with
the leading edge. Fimally, the ssympiotic theary clearly shews that the main body of the pulse prop-

I JUNE 1990

Uniform asymptotic description of ultrashort rectangular optical pulse propagation

Depariment of Computer Science aad Electeical Engineering, Univernity of Fermont, Burlingron, Fermani 03403

Rocketdyne Diision, M5 FA40, Rockwel] Intermariona! Corporarion, 8633 Canoga Avense, Canoga Park, Califernia 9150

agates with the signal velocity bn the dispersive medium

1. INTRODUCTION

The classical theory of aptical pulse propagation in a
locally linear, homogeneous, isotropic, causally dispersive
meediwm, as described by the Loreniz imsded, b-q'mn'
with the seminal analysis of Sommerfeld" and Brillowin®
and continuing up to the modern asymplotic analysis of
Oughstun and Sherman,* ™" bas provided & complete,
rigorous description of the dynamical field evolution for
the twe canomical problems of the inpul-anil-step-
function-modulsied signal of fized carmer [requency
and the input Sfunction palse. This analysis has focased
on the complete precursor feld evolotion and the precase
definition of the signal arrival and has bked to o new physi-
cal description of dispersive pulse propagation’ in terms
of the energy velocity amd amemuation of time-harmonic
waves that supplants the previous groap-velooity descrip-
tioa” "' in the manare dispersion regime and reduces (o i1
in the absence of ahsorption. The sccurscy of this und-
form asympiotic description in the mature dispersion re-
gime has been completely werified through precise numer-
teal simulations of both the Sommerfeld and Brllsain
precursor field evolution'' and the signal arrival'? in a
single-resanance Lorentz medivm, The mature disper-
slon regime has been Found'? 10 include all propagation
distances z that are greater than one nhsorption depth in
the medinm at the signal frequency, When this condition
prevails, esch quasimenochromatic compoment of the
fiedd propagates with its own characteristic velocity,
which remains constant as the propagation continues. Al
ench space-time paint #=erf2 the ed field &
then dominated by a single real frequency wy that is the

4l

frequency of the lime-harmonie feld with the least at-
tenmation that has an energy velocity'™™ equal to 2 /1, as
described in Ref. 7.

The analysia af the present paper applies this modern
msympbedic description o obtaim & rigorows, uniformly
valid description of rectangular pulse propagation in 8
single-resonance Lorentz mediom in the mature disper-
siom regime. This approach does not rely upon any quasi-
monochromatic of slowly varving envelope approxima-
tion, a3 may be found in other descriptions, ™" and so
yields a canonscal description of pube dspersion phe-
nomena that is completely valid for rapid rise-time pulses.
of arbilrary time duration. In addition, this approach
does nod depend wpon any nth-order dispersion approgi-
mation that is central 1o other approaches, ™ 30 that it
rigorously maintains the complete causality relations™
that are critical o the proper analysis of lnear dispersive
pulse dynamics. It is only fair to point out that these oth-
er approaches ane, in a broad sense, mare general in that
they are typically applicable to inhomogensous media.
However, what they gain in more general applicability
they lose in complete rigor when considering the effects
of dispersion of ultrashorn pulse dynamics. For conven-
ence, the nolation employed in Befs. 3 and 6 is wsed
throughoul Lhis paper.

The integral representation of the propagated plane-
wave pulss in the half-space =0 is given by*

=L la o il 0
Alzn=— [ Flwe du , i1

where

Fiad= [ flewe'=de 1

L] #1190 The Amenican Physical Society



Ufs,t,0)

1 Y @,
Ula,t, )
0 @
1 i I I I
1 1+ T @gp+IT "+ET
|
Afs, 1)
i
0 \J"I— ]
1 ] I [}
1 By 8, 8, + T
——— r — ]

FIG. 12. Construction of the dynamical structure of the pro-
pagated field A(z,t)=Ulz,1,0)—U(z,1,T) in the below reso-
nance signal frequency range 0 <w, <awy when (¢/2)T > 8. —1.
When this situation prevails the interference between the pre-
cursor fields of the leading and trailing edges of the pulse is
minimal and the resultant pulse distortion is also minimal.
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FIG. 13. Construction of the dynamical structure of the pro-
pagated field A(z,t)=U(z,1,0)—Ulz,,T) in the below reso-
nance  signal frequency range O<wm <ay when
8. —1>(e/2)T > 0gp—1. When this situation prevails the in-
terference between the precursor fields of the leading and trail-
ing edges of the pulse is moderate and the resultant pulse distor-
tion is also moderate.
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FIG. 14. Construction of the dynamical structure of the pro-
pagated field A(z,1)=U(z,1,0)—Ul(z,,T) in the below reso-
nance signal frequency range 0 <, <@y, when (¢ /z)T <8¢ —1.
When this situation prevails the interference between the pre-
cursor fields of the leading and trailing edges of the pulse is
nearly complete and the resultant pulse distortion is severe.
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FIG. 15. Construction of the dynamical structure of the pro-
pagated field 4 (z,¢)=Ul(z,1,0)— Uz, T) for a near resonance
signal frequency w.€[wg®;] when (c/z)T <85 —1. When
this situation prevails the interference between the precursor
fields of the leading and trailing edges of the pulse is nearly
complete and the resultant pulse distortion is severe.
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FIG. 16. Construction of the dynamical structure of the propagated field A (2,00 = Uiz, ,0)— Uiz, T in the high signal frequency
range o, > awy > iy when @, — 1 <e /21T <8,;— 1, When this situstion prevails the interference berween the precursor fickds of the
leading and trailing edges of the pulse is moderate o severe and the resultant pulse distortion is becoming severe,
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Gaussian Pulse Propagation in a Dispersive, Absorbing Dielectric

Kurt E. Oughstun
College of Engineering & Mathematics, University of Vermont, Burlington, Vermont 05405
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The modified asymptotic description of dispersive Gaussian pulse propagation, which is uniformly
valid in the initial pulse envelope width, is shown to reduce to the energy velocity description when
the propagation distance becomes sufficiently large in a Lorentz model dielectric. This then resolves
the apparent controversy between the modern asymptotic description upon which the energy velocity
description is based and the classical group velocity description of Gaussian pulse propagation and

related experimental results.

PACS numbers:-42.25.Bs

The effects of frequency dispersion and absorption on
the dynamical evolution of an electromagnetic pulse as
it propagates through a homogeneous, isotropic, linear
dielectric are properly described by asymptotic methods
of analysis as originally investigated by Sommerfeld [1]
and Brillouin {2] in 1914 using the method of steepest
descents and improved upon and corrected by Oughstun
and Sherman [3-5] using modern asymptotic expansion
techniques [5]. This analysis clearly shows that after the
pulse has propagated a sufficiently large distance into
the medium its dynamics settle into a mature dispersion
regime [5,6] in which the propagated field becomes
locally quasimonochromatic with fixed local frequency,
wavelength, and attenuation in each region of space
that travels with its own characteristic velocity. The
theory provides asymptotic expressions for the local wave
properties at any given space-time point in the field
domain. A physical explanation of these local wave
properties was provided by Sherman and Oughstun [7]
in 1981 with its entire proof just recently given [8].
In 1982, Chu and Wong [9] published experimental
results for picosecond laser pulses propagating through
thin samples of a linear dispersive dielectric whose
peak absorption never exceeded 6 absorption lengths
that were purported to disprove the energy velocity
description while verifying the group velocity description.
When combined with the Gaussian pulse results [10]
of the modern asymptotic theory, the recently published
modified asymptotic description [11,12] of Gaussian pulse
propagation is found to provide the basis for a complete
explanation of this apparent discrepancy.

Consider an input Gaussian envelope modulated har-
monic wave of constant applied carrier frequency o, > 0
and initial full pulse width 27 > 0 that is centered about

the time #, > O at the plane z = 0, given by
flr) = u(t)sin(wet + )
= exp[_<[ T 0) }sin(a)(\r + i), (1

2210 0031-9007/96/77(11)/2210(4)$10.00

[S0031-9007(96)01070-8]

which is propagating in the positive z direction through a
linear dielectric whose frequency dispersion is described
by the single resonance Lorentz model with complex
index of refraction
b2 1/2
) , (2)

={1 -
n(w) ( w? — wi +2idw

which occupies the source-free half space z = 0. Here
wy is the undamped resonance frequency, b is the plasma
frequency, and & is the phenomenological damping con-
stant of the dispersive, lossy dielectric. The integral rep-
resentation of the propagated plane wave pulse in the half
space z = 0 is given by

Men) = 5= [ F@exp| £ 6(0.0) |do. @)

where 0 = ct/z is a dimensionless space-time parameter,
¢(0,0) = iw[n(w) - 6] )

is the classical complex phase function, and where f(w)
is the temporal Fourier spectrum of the initial pulse
f(t) = A(0, ) at the input plane at z = 0. The spectral
amplitude A(z, ) of A(z, 1) satisfies the scalar Helmholtz
equation [V? + k*(w)]A(z, @) = 0, with complex wave
number k(w) = wn(w)/c.

From Egs. (1) and (3). the classical integral representa-
tion of the propagated Gaussian envelope pulse is found as

|
Az, 1) = ———m{i/ i(w — a)(.)exp[i ¢(w,0'):|dw}.
2 c c
()]
for £ = 0, with the initial pulse spectrum

i(w) = W'/ZTCXPI:”% wz}exr)[—i(wc-to + )], (6

where 8/ = 6 — cty/z. The contour of integration C
appearing here may be taken as any contour in the
complex w plane that is homotopic to the real frequency

© 1996 The American Physical Society
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axis. Since this spectrum is an entire function of w, the
propagated field has the asymptotic representation [10]

Az, 1) ~ As(z, 1) + Agl(z, 1), (7
as 7 — x, with

. 1/2‘}‘ ilwsp, — w.)
Aj(wf) = aj<——~2ﬂ_:) .l{l [_¢(2)(wSP"’9/)]1/2

X exp[f ¢><wsp,,e')]} (8)

for j = S,B. Here as = 2 and wsp, = a);p“(ﬁ’) denotes
the distant first-order saddle point location of ¢(w, ') in
the right half of the complex « plane for all 8’ > 1, while
ag = 1for1 < @' < 6, and ag = 2 for §; < 6’ where
wsp, = wsp,(#') denotes the near first-order saddle point
location of ¢(w,@’) in the right half of the complex
w plane. Here 6, = 6y + 28%b2/6ywi (3w — 482)
denotes the space-time point at which the two near first-
order saddle points coalesce into a single second-order
saddle point, where 6y = n(0) = (1 + b/ wd)'/? de-
notes the space-time point at which the upper near saddle
point crosses the origin [3—-5]. The nonuniform behavior
exhibited in Egs. (7) and (8) in any small neighborhood
of the space-time point 8’ = 6, may be corrected using
uniform asymptotic expansion techniques [4,5]. The
asymptotic contribution due to the near saddle points
is referred to as a generalized Brillouin precursor field,
while that due to the distant saddle points is referred to as
a generalized Sommerfeld precursor field [10,11].

Because of the initial Gaussian envelope spectrum (6),
the asymptotic description of each pulse component
Ag(z.t) and Ag(z,t) contains a Gaussian amplitude fac-
tor of the form exp{—(T/2)[N(wsp,) — w.J}.j = S.B.
In addition, each pulse component contains an exponen-
tial attenuation factor that is given by the product of the
propagation distance z with the attenuation that is char-
acteristic of the real phase behavior N{¢(wsp,)} at the
relevant saddle point, and the instantaneous oscillation
frequency of each pulse component in the mature dis-
persion regime is approximately given by N{wsp,} in the
ultrashort pulse limit as 7 — 0. Consequently, for a be-
low resonance carrier frequency w,. € (0, wp) the instan-
taneous oscillation frequency of the generalized Brillouin
precursor Ag(z, 1) crosses . as it chirps upward towards
wy. while for an above resonance carrier frequency w, €
(w), =) the instantaneous oscillation frequency of the gen-
eralized Sommerfeld precursor As(z, 1) crosses w, as it
chirps downwards towards w, in each case the Gaussian
amplitude factor peaking to unity when MW{wsp (0')} =
w.. For an intra-absorption band carrier frequency w,. €
(wy. wy) the carrier tfrequency is never attained by either
pulse component.

If the input signal frequency w. is within the ab-
sorption band of the medium, so that wy = w, = wy,
then both pulse components Ag(z, 1) and Ag(z, 1) will be
present in roughly equal proportion; the Brillion precursor
component Ag(z, ) becomes more pronounced as w. is

decreased from w| to wp and dominates the propagated
field evolution as w, is decreased below the medium
resonance frequency, whereas the Sommerfield precursor
component As(z,?) becomes more pronounced as w, is
increased from wy to w; and dominates the propagated
field evolution as w, is increased above w,. The numeri-
cally determined dynamical field evolution, due to an
input ultrashort Gaussian pulse with initial pulse width
2T = 0.2 fsec and carrier frequency o, =575 X
10'® sec™! that is near the upper end of the absorption
band of a single resonance Lorentz medium with parame-
ters wy =4 X 10'® sec™!, b2 =20 X 10> sec™?, and
5 = 0.28 X 10'® sec™!, is illustrated in Fig. 1. This case
is of particular interest since the group velocity at this sig-
nal frequency is very nearly equal to the speed of light ¢
in vacuum. The generalized Sommerfeld precursor pulse
component is seen to first emerge in the propagated field
structure as the propagation distance increases into the
mature dispersion regime, its peak amplitude propagating
with a velocity just below c¢; notice that the smallest
propagation distance considered is nearly 21 absorption
depths into the medium at this intra-absorption band
carrier frequency. As the propagation distance increases,
the generalized Brillouin precursor pulse component
emerges, its peak amplitude propagating with a velocity
that approaches the value ¢/6p = ¢/n(0) from above.
The propagated field due to an input ultrashort Gaussian
pulse then separates into two distinct pulse components
that propagate with different peak velocities, the faster
pulse component being the high-frequency generalized
Sommerfeld precursor whose instantaneous oscillation
frequency w,(#) chirps downward towards w;, followed
by the slower, low-frequency generalized Brillouin
precursor whose instantaneous oscillation frequency
wp(#) chirps upward towards wg. Each feature of this
dynamical field evolution is properly described by the
energy velocity description of Refs. {7,8].

As the initial pulse width 27T is increased, the asymp-
totic approximation (7) and (8) of the propagated field
evolution remains qualitatively correct, while its quantita-
tive accuracy decreases at a fixed propagation distance.
This asymptotic description will remain quantitatively
accurate as the pulse width is increased provided that
the propagation distance is allowed to increase, in keep-
ing with the definition of an asymptotic expansion in
Poincare’s sense [13] as z — =. However, since the
medium is attenuative, the usefulness of this description
decreases as 2T increases, since the important features of
the field evolution (particularly when compared to experi-
mental observations) are typically observed at some fixed
observation distance in the medium.

The classical integral representation (5) with the spec-
trum (6) may be rearranged so as to yield the modified
integral representation [12]

1 N z /
Alz.1) = Aﬂi{i[ Uy exp[*(b,w(cu.ﬁ )}dw} (9
27 I c
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FIG. 1. Numcrically determined dynamical field evolution

of an input 0.2 fsec Gaussian pulse with intra-absorption
band carrier frequency @, = 5.75 X [0'% sec™ in a single
resonance Lorentz model dielectric.

for all 7 = 0, where the modified spectral amplitude
function

Uy = 7' Texpl—i(wcto + )] (10)
2212

is independent of the angular frequency w, and where

cT?

4z
is the modified complex phase function. In the ultrashort
pulse limit, as 27 — 0, the modified phase function
reduces to the classical phase function ¢(w,6’) and the
asymptotic behavior of (9) is determined by the behavior
about the saddle points of ¢(w,8’), as in Egs. (7) and (8).
Hence, if the classical asymptotic description given in
Egs. (7) and (8) is valid (to some specific degree of
accuracy) for some given input pulse width 2T at a given
propagation distance z, then this description will remain
equally valid (to that same degree of accuracy) as the ini-
tial pulse width is increased provided that z is also in-
creased in such a manner that the ratio T? /7 remains fixed.
The saddle point dynamics of the modified phase func-
tion are now dependent upon both the initial pulse width
and the propagation distance, as well as upon the dimen-
sionless space-time parameter #’. These saddle points are
found [12] to remain isolated from each other for all 6’
when T # 0 and are each of first order. Only two of
these saddle points are found [12] to contribute to the
asymptotic behavior of the modified integral representa-
tion (9) as z — =, so that the propagated field has the
same asymptotic representation given in Eq. (7) with
1/2 7
Ai(z,t) = (‘26—) m{i (2)UM
s [~ D (wj, 61]1/2

X exp[% @M(wj,ﬂ')]l» (12)

Dy(w,0") = ¢p(w,0') - (0 = w) (1)

for j = §,B. Here w; denotes the modified distant
(j = S) and near (j = B) saddle-point locations in the
right half of the complex w plane whose dynamics are
described in Ref. [12]. Each pulse component Aj(z.t),
Jj = §, B, contains a Gaussian amplitude factor, the peak
amplitude point of each pulse component propagating at
the classical group velocity evaluated at the instantaneous
oscillation frequency of the field at the space-time point.
The dispersive action of the same Lorentz model dielec-
tric on an input 5 fsec Gaussian pulse, whose carrier fre-
quency w. = 5.625 X 10'¢ sec™! is just below the upper
end of the medium absorption band, produces a superlu-
minal velocity of the peak in the envelope of the propa-
gated field at a sufficiently small propagation distance. as
indicated in Fig. 2 by data point 1. The envelope peak
in the propagated field at this propagation distance (19.96
absorption depths at w,) has the associated instantaneous
frequency w,, = 5.71 X 10'® sec™!, and it propagates
with the classical group velocity v,, = ve(w,,) = 1.16¢.
This same envelope peak slows down to a subluminal ve-
locity as the propagation distance increases (data point 2)
because the instantaneous oscillation frequency of this
peak amplitude point increases as the propagation distance
increases. The envelope peak in the propagated field at
this propagation distance (49.91 absorption depths at w,.)



VOLUME 77, NUMBER 11

PHYSICAL REVIEW LETTERS

9 SEPTEMBER 1996

15
10
s |
-
/v 8
1
0 — — (xlo"su")
o 2 @
-5 }
|
-10 }
[
-15
FIG. 2. Inverse relative velocity of propagation of the peak

amplitude point of the propagated field due to an input Gaussian
pulse (data points 1,2 and a, b). The solid curve describes the
frequency dependence of the inverse relative group velocity
c/v (wp,) evaluated at the instantaneous oscillation frequency
w,, of the peak amplitude point of the propagated pulse
component A;(z,t). while the dashed curve in the figure
describes the frequency dependence of the inverse relative
energy velocity ¢/vg(w,,) of a monochromatic field of angular
frequency w, .

has shifted to the higher instantaneous oscillation fre-
quency w,, = 5.83 X 10'® sec™!, and it now propagates
with the classical group velocity v, = vg(w,,) = 0.65c.
Thus, as the propagation distance increases, the instanta-
neous oscillation frequency evolves out of the absorption
band and the pulse dynamics evolve toward the energy
velocity description which is valid in the mature disper-
sion regime. _
Negative velocity motions of the amplitude peak are
obtained from the modified asymptotic description [12]
tor an input 10 fsec Gaussian pulse with applied car-
rier frequency w. = 5.25 X 10'® sec™!, as indicated by
data points ¢ and b in Fig. 2. At the smaliest propaga-
tion distance considered (58.05 absorption depths at w,)
the envelope peak of the propagated pulse has the asso-
ciated instantaneous oscillation frequency w,, = 5.29 X
10'® sec™! > w, and propagates with the classical group
velocity v, = velw,,) = —2.86¢. As the propagation
distance is increased to 145.13 absorption depths, the in-
stantaneous oscillation frequency at the envelope peak
has shifted to the higher frequency value w,, = 5.35 X
10'% sec™' and the envelope peak now propagates with
the classical group velocity v,, = v (w,,) = —4.45c¢.
The modified asymptotic description then shows that,
as the propagation distance increases, the low-frequency
components that are present in the input pulse spectrum
are attenuated at a larger rate than are the high-frequency

components, so that the propagated pulse spectrum be-
comes dominated by an increasingly higher frequency
component, and the peak in the envelope of the propa-
gated pulse propagates with the group velocity at this
frequency value. Again, as the propagation distance in-
creases into the mature dispersion regime, the pulse dy-
namics evolve toward the energy velocity description;
however, the overall field amplitude also rapidly attenu-
ates to zero in this case.

Because of the small propagation distance of at most
6 absorption depths in their laboratory arrangement, the
experimental results of Chu and Wong [9] are restricted
to the small propagation distance limit below the mature
dispersion regime. The modified asymptotic description
[12] bridges the gap between these two regimes, being
in agreement with the experiment results [9] at small
propagation distances, while reducing to the classical
asymptotic description at sufficiently large propagation
distances in the dispersive, lossy medium. Moreover,
the modified asymptotic description provides, for the first
time, a mathematically rigorous derivation of the correct
group velocity description of Gaussian pulse propagation
in a dispersive, lossy medium and clearly shows how that
description evolves into the energy velocity description
as the propagation distance increases into the mature
dispersion regime.
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OPTICS

Light faster than light?

Rolf Landauer

A rotating lighthouse beacon
impinges on a distant wall. The
resulting spot can move along the
wall faster than the velocity of light.
That is not a violation of relativity;
one spot is not the source of the
next spot. Measurements by
Steinberg, Kwiat and Chiao® of pulse
propagation through an optical film,
which reflects most of the incident
light, show that the few transmitted
photons arrive earlier than the
velocity of light would allow, based
on the simplest notions of their time
of impingement on the filter. But as
in the case of the moving beacon,
that velocity is presumed not to
represent the retardation between a
cause and its effect.

The filter consists of a periodic
array of layers of material with
alternately high and low refractive
index. In the wavelength range from
600 to 800 nanometers, the
reflections arising at the successive
interfaces reinforce constructively,
reflecting about 99 per cent of the
incident light. The electromagnetic
wave decays exponentially through
the thickness of the filter.

Such evanescent waves where the
decay is associated with reflections,
not absorption, also occur in total
internal reflection, when a wave is
incident obliquely on an optically
less dense medium. Evanescent
waves are found in waveguides
below their cut-off frequency. The
reflection of most of the incident
photons, and the accompanying
exponential decay, are reminiscent
of quantum mechanical tunneling,
when a particle is incident on a
barrier that classically would cause
the particle to be turned around. If
the barrier is thin enough, quantum

692

mechanics allows some chance of
transmission. The analogy goes
beyond that sketched here;
quantum tunneling and
electromagnetic evanescent waves
are described by closely related
equations.

The time associated with
quantum barrier penetration has
been discussed for over six decades,
particularly within the past decade.
Many of these analyses follow a
wave packet through the barrier,
comparing the time of an emerging
peak to the arrival time of an
incident peak. It can be argued that
quantum mechanics does not
conserve peaks; an emerging peak is
not necessarily related to the
incident peak in a causative
physical way. To make this
convincing, a particular wave packet
and barrier have been decribed? in
which the incident peak arrives at
the barrier after the transmitted
peak has already left the far side of
the barrier. In that particular
example the small departing peak
clearly arises from the front end of
the incident packet.

The use of an auxiliary degree of
freedom, coupled to the tunneling
process and used as a clock,
represents an alternative theoretical
and experimental approach®. When
incoming peaks cannot be simply
physically identified with emerging
peaks, then there is no reason to
expect the time measured by a clock
to agree with that found by following
peaks.

Steinberg and co-workers® use an
ingenious two-photon interference
method for measuring the delay (see
figure). Two-photon interference
methods* do not, as the name
suggests, cause one photon to
interfere with an independently
generated one, but instead cause
one history for the set of two
photons to interfere with another
history. Typically the two photons
involved are generated together, and
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are essentially clones. If the two
photons arrive simultaneously, with
two different paths, at the half-
silvered mirror, then the history in
which both are reflected, and the
history where both are transmitted,
can be shown to interfere
destructively. Thus, if two photons
arrive simultaneously within the
time resolution of the detectors, but
not close enough in time to cause
the destructive interference just
mentioned, we are more likely to
detect coincident arrival. This
provides a delicate tool for
measuring the relative timing for the
arrival of two photons. Insertion of
the filter causes a change in delay,
which can be measured by
introducing a compensating change
in the length of the alternative
vacuum path. Despite the emphasis
Steinberg and collaborators place on
the quantum nature of this
experiment, that seems to be an
incidental aspect. If, instead of
single photons, we had used large
pulses and measured relative arrival
times through nonlinear optic
effects, we could have measured the
same delay.

In their principal result, a delay
corresponding to a velocity of 1.7c
(where c is the speed of light) is
measured. Such superluminal
velocities have also been measured
in experiments on microwaves®®,
although there the more complex
geometry leads to difficulties in
interpretation. The measured delay
in the new work agrees with
predictions for the delay of the
transmitted peak, relative to the
incident one.

Wave propagation is more
complex than geometrical optics. We
cannot easily assign a portion of the
incident wave to each portion of the
transmitted wave. Therefore, this
experiment is not a demonstration
of a real physical velocity exceeding
c. We can seek an easy explanation
by assuming that the whole
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transmitted wave comes from the
front end of the much larger
incident wave. Nevertheless, this
experiment underlines work that
remains to be done. Could the
experimental details be modified so
that the light pulse emerges from
the evanescent region before the
incident peak has even reached that
region? Measurements of an
interaction time of a transmitted
photon with its evanescent region,
via a physical clock, are needed.

But even at a fundamental
theoretical level, the easy
explanation suggested is
unsatisfying. Are we quite sure that
if we signal with photon
polarization, and if we are willing to
lose most of the photons in an
evanescent region, that we have no
chance of a rare superluminal signal
propagation? Our understanding of
this is not all that it deserves to be,
although it does seem unlikely that
the well accepted light velocity
barrier will crumble.
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Watson Research Center, PO Box
218, Yorktown Heights, New York
10598, USA.
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The Pulse Centrovelocity &

Superluminal Pulse Velocities

(Peatross, Glasgow & Ware, Phys. Rev. Lett.
84, 2370-2373, 2000)

The pulse centrovelocity is determined from
the temporal centroid of the Poynting vector
for a plane wave pulse propagating in the +z-
direction

as

_ 27
Vcen ro
o, -,

where <t>zodenotes the temporal centroid of

the initial pulse at £= 4. By the Parseval-
Plancherel theorem
N iqw 0B(zw) , H(z w)dw
1), =T{Ezw} = -i——09
zEJ‘_ Sz, w)dw




Energy Centroid Time Delay
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Group Delay Energy Centroid
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Pulse Reshaping Delay

R, = T{ ﬁ(zo,a))e“’(“’)Az}J - T{ E(z, a))}J

.

Dispersi vely Attenuated Time of the
Initial Pulse Spectrum Initial Centroid

According to Peatross, Glasgow & Ware (Phys.
Rev. Lett. 84, 2370-2373, 2000), this “result
provides a context wherein group velocity is
always meaningful even for broad band
pulses and when the group velocity Iis
superluminal or negative. The result imposes
superluminality on sharply defined pulses.”



Not True for the Delta Function Pulse.
Sherman & Oughstun, Phys. Rev. Lett. 47,
1451-1454, (1981)

Oughstun & Sherman, J. Opt. Soc. Am. B 5,
817-849 (1988)

Sherman & Oughstun, J. Opt. Soc. Am. B
12, 229-247 (1995)

Not True for the Heaviside Step-Function
Envelope Pulse.
Oughstun & Sherman, J. Opt. Soc. Am. B 5,
817-849 (1988)

Not True for the Rectangular Envelope
Pulse of Arbitrarily Short (or Long) Pulse
Duration T > O.

Oughstun & Sherman, Phys. Rev. A 41,
6090-6113, (1990)



RELATIVE CENTROVELOCITY

Ten Cycle Rectangular Envelope Pulse
Below Resonance Carrier Frequency
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RELATIVE CENTROVELOCITY
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Ten Cycle Rectangular Envelope Pulse
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RELATIVE CENTROVELOCITY
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GROUP DELAY AT RESONANCE (RECTANGLE)
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RELATIVE CENTROVELOCITY

Single Cycle Gaussian Envelope Pulse

Intra-Absorption Band Carrier Frequency
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Conclusions

« Superluminal peak velocities in causally
dispersive materials can occur momentarily
(fleetingly) for sufficiently small propagation
distances in the immature dispersion regime
due to pulse envelope reshaping. For input
sighals that vanish for t<t, such
superluminal behavior only occurs after the
passage of the luminal wavefront; i.e. for
t>t, +Az/c.

« As the propagation distance increases into
the mature dispersion regime, the pulse
centrovelocity for an input rapidly-varying
pulse becomes subluminal and approaches
the velocity of the dominant precursor field.

 As tempting as it may seem, pulse reshaping
does not imply either superluminal energy or
superluminal information transfer.

e Gaussian Pulses are the Ultimate Wizard’s
Magic Wand.





