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Quantum computing and
quantum gates

• N-qubit quantum
computer universal⇔
any U ∈ U

(
2N).

• Building blocks: Single
qubit rotations +
entangling two-qubit
gate

• Need error rate below
some threshold p
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From device to gate

Qubit candidate device

↓ known properties

Hamiltonian H(t)

↓ Schrödinger equation

Quantum gate UGate

↓ fabrication parameters

H(t) = H0 + Hcontrol(t) +

Hdec + Hjunk

↓ optimized controls
Approximate quantum map

F ' Ugate ⊗ Ūgate
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Basic problem setting

• Our physical system gives us a Hamiltonian

H(t) = Hd +
∑

j

uj(t)Hj

with drift Hd, controls uj and control Hamiltonians Hj .
• Our goal: Build a propagator

Ugate = U(t ,0) = T exp
(
− i

~

∫ t

0
dt ′H(t ′)

)
using physical uj(t).
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Rotating wave and area
theorem.

Spin in static z plus rotating xy field

H(t) = −γ~B(t) · ~σ =
1
2

(
E λ(t)eiωt

λ(t)e−iωt −E

)
in co-rotating frame

H ′(t) =
1
2

(
E − ω λ(t)
λ(t) −(E − ω)

)
On resonance: E − ω = 0 [H ′(t),H ′(t ′)] = 0, thus

T exp
(
− i

~

∫ t

0
dt ′H(t ′)

)
= exp

(
− i

~

∫ t

0
dt ′H(t ′)

)
=

= cosφ(t)− iσx sinφ(t) φ(t) =
1
~

∫ t

0
dt ′λ(t ′)

Area theorem
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Beyond the area theorem

The area theorem does in general not hold for
[H ′(t),H ′(t ′)] 6= 0
• out of resonance
• for non-rotating wave Hamiltonians and strong driving

(non-RWA) i.e. high pulses→ fast gates
• for multi-qubit systems
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Complex control sequences

There are ingenious NMR
solutions based on 50 years of
quantum control
... do we have to do it again?

Analogous situation:
Steering / parallel parking
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Control theory

• Established discipline in
applied math /
engineering

• Applied to quantum
systems for state
transfers e.g. in
quantum chemistry
(Rabitz ...)

• Developed for NMR by
N. Khaneja (Harvard),
S.J. Glaser, T.
Schulte-Herbrüggen
. . . (TUM)
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Basic idea

Take any dynamical system with
variables xi and controls uj with
EOM

ẋ = f (x ,u, t)

Optimize a performance index at
final time tf , φ(x(tf ),u(tf )) using

J = φ(x(tf ),u(tf )) +∫ tf

ti
dtλT (t)(ẋ − f (x ,u, t))

with initial conditions x(ti).
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From Rockets to Propagators

• Control problem for a quantum gate:

x 7→ U(t) U(ti) = 1̂

f 7→ −i(Hd +
∑

i

ui(t)Hi)U

φ =
∥∥Ugate − U(tf )

∥∥2
= 2N − 2ReTr(U†gateU(tf ))

• So we need to maximize Tr(U†gateU(tf )).
• Problem: Fixes global phase, too
• Solution: Maximize Φ = |Tr(U†gateU(tf ))|2 instead.
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Numerical solution

Numerical solution: Minimize J directly.
Problem: Computationally hard optimization, numerical
gradients ∂φ

∂ui
time-consuming (≈ hours on supercomputer).

A.O. Niskanen, J.J. Vartiainen and M.M. Salomaa, PRL 90, 197901
(2003).
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Challenge

In the discretized grid, how does Φ change when the control
is changed in one point?
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Gradient Ascent Pulse
Engineering (GRAPE) I

Rewrite performance index

Φ = |Tr(U†gateU(tf ))|2 =
∣∣∣Tr(U†(tj , tN)Ugate)†U(tj , t1)

∣∣∣2
=

∣∣∣∣Tr
(

U†j+1 . . .U
†
NUgate

)†
Uj . . .U1

∣∣∣∣2
Trotterized time-step propagators

Ui = exp
(
−i∆t

(
Hd +

∑
uk (ti)Hk

))
(1)

Using
d
dx

eA+Bx
∣∣∣∣
x=0

= eA
∫ 1

0
dτe−AτBeAτ (2)
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Gradient Ascent Pulse
Engineering (GRAPE) II

we can derive ∂Φ
∂uk

analytically

∂Φ

∂uk (tj)
= δtRe

[(
TrU†j+1 . . .U

†
NUgateHkUj . . .U1

)
(

TrU†1 . . .U
†
j UgateUN . . .Uj+1

)]
N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S.J. Glaser,
Journal of magnetic resonance 172, 296 (2005).
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Leakage
Nuclear/electron spin:

Particle

Spin 1/2

Spin 1/2

motion

Phase qubit:

Optical lattice:

• Harmonic oscillator is
not a qubit (only
classical states
accessible)

• Decoherence /
complexity-optimized
qubits often have weak
nonlinearity: Almost
HOs
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Spectral limitation

• Strategies aim at never
occupying leakage state

• Rabi pulse at ω01,
duration T , bandwidth '
Rabi frequency ' π/T

• Resonance frequency
ω01, leakage frequency
ω12

• Need to constrain
|ω01 − ω12| � π/T :
Speed limit

12

ω

ωω
S

01
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Experimental problem

Qubits with good control and long T1, T2:

Phase qubit: Leakage error
at short pulses.
E. Lucero et al., PRL 2008

Transmon: Leakage limits
randomized benchmarking
quality.
J. Chow et al., PRL 2009
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Weak nonlinearities

Phase qubit, transmon,
vibrational qubits

δω = ω01 − ω12 ' 0.1ω01

Drive resonantly on ω01

Fast gate→ large bandwidth→ leakage to the higher level

Hamiltonian

H =

 0 λ(t) cosω01t 0
λ(t) cosω01t ω01

√
2λ(t) cosω01t

0
√

2λ(t) cosω01t ω01 + ω21
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Weak nonlinearities

Phase qubit, transmon,
vibrational qubits

δω = ω01 − ω12 ' 0.1ω01

Drive resonantly on ω01

Fast gate→ large λ→ leakage to the higher level

RWA Hamiltonian

H ′ =

 0 λ(t) 0
λ(t) 0

√
2λ(t)

0
√

2λ(t) −δω
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Solution

Minimize the Rabi time.
Optimal time: tgδf = 1 + ε Ugate = eiφ1

 0 1 0
1 0 0
0 0 eiφ2



Working transition: R(π/4)R(π/2)R(π/4) = R(π)
Leakage transition: R(π/4)R(−π/2)R(π/4) = 1̂.
P. Rebentrost and FKW, PRB 2009
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Two quadrature solution

• Turn all knobs at the same time, use I-Q-mixer
• In- and out of phase components
λ1(t) cosωt + λ2(t) sinωt

• Rotating frame, z = λ1 + iλ2

H ′ =

 0 z(t) 0
z∗(t) 0

√
2z(t)

0
√

2z∗(t) −δω


• Control both real and imaginary parts of z

Of course, it will be better, but how much?
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Numerical sulution

• λ2 ∝ λ̇1 !!
• Requires detuning or phase ramping
• Phase ramping: rotate λ1, λ2 into λ̃1, λ̃2
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DRAG — why the derivative?

Toggling frame H ′(t) = V (t)H(t)V †(t) + i V̇V †

V (t) = exp (−iλ1Y3/δω) Y3 =

 0 −i 0
i 0 −i

√
2

0 i
√

2 0


• λi(0) = λi(tg) = 0: Gates are qubit gates

• Heff = Hdiag + λ1σ̂x +
[
λ2 + λ̇1

δω

]
Y3 +

λ2
1√

2δω
(|0〉〈2|+ h.c.)

• Eliminate leakage by λ2 = −λ̇1/δω

• remove higher order terms by higher order corrections
Derivative Removal by Adiabatic Gate
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Physical picture

• traditional thinking: Limit bandwidth
• DRAG: Preserve adiabaticity + move on closed loop

|2>

|0>

|1>
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Performance of DRAG +
GRAPE

Gaussian, GRAPE,
Gauss-DRAG,
softbox-DRAG

Top: T1 = 40µs
Bottom: Error vs. T1

F. Motzoi, J.M. Gambetta, P. Rebentrost, FKW, PRL 2009
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It works!

T1 ' 1.2µs, J.M. Chow et al., arXiv:0908.1955
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Weakly nonlinear oscillators

• Nanomechanicals
• Large Josephson junctions
• Ion traps
• Light in nonlinear media

Hamiltonian (Duffing)

H = ~ω0

(
a†a +

1
2

)
+

~δ
12
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Fock-State preparation
Minimal time for preparation

0.1 1
1

10

n=0 to n=1
n=1 to n=2

!

M
in

im
um

 T
 ["

o]

Error at fixed time

0.8 1.0 1.2 1.4 1.6
1.0×10-05

1.0×10-04

1.0×10-03

1.0×10-02

n=0 to n=1

T [!o]

E
rr

or

• Power law tmin ∝ δ−α with α01 = 0.73± 0.029 and
α12 = 0.90± 0.031

• Qualitative difference to simple Landau-Zener limt
tg ∝ 1/δ

B. Khani, J.M. Gambetta, F. Motzoi, FKW, Physics Scripta, in press;
arXiv:0909.4788
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Finding controls in hostile
environments

• Phase error rate 1/T2
increased by echo.

• Based on knowing that
Hdecohernce(t) is slow

• Error rate depends on how Hcontrol(t) is chosen
• Usually found by manual construction or NMR tricks
• Control theory: Find controls systematically
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Slow fluctuators

ĤS = E1(t)σ̂z + ∆σ̂x + E2τ̂z + Λσ̂zX (t)
〈X (t)X (0)〉ω ∝ 1/ω
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Simplified materials noise
model

Classical limit = telegraph noise:
F

time

• temporal qubit-fluctuator correlations
• embedding approach: Qubit + fluctuator
• Peaked Lorentzian power spectrum
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Optimum working point

Change of precession frequency

No transition
1/T1 →∞
1/T2 = S(0)
Low-frequency noise power (high)

No change of precession

∂|B|/∂Bz = O(Bz/B)
Environment coupling needs transition
1/T1 = S(B)
1/T2 = 1/(2T1)
High-frequency noise (low)

Initial boost of T2 from 10 ns to 500 ns.
D. Vion et al., Nature 2002.
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Open system control problem

Decoherence time scales T1/2: Fastest = best ?

• Long correlation time switching: Nonmarkovian qubit
dynamics

• Use master equation for qubit+fluctuator system ρq+fl

• Trace out fluctuator after solving ρq = Trflρq+fl

E. Paladino et al., PRL 2001
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openGRAPE
Set up optimal control problem for quantum map

F
(
ρq(0)

)
= ρq(tg) Ftarget = U ⊗ Ū.

• lower time limit π/∆

• increasing error at long times, oscillations
• no error at no bath coupling
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Pulse performance

• T1-limited
• Rabi pulse performs well at magic times nπ/∆

• Cancelling counter-rotating terms at short times
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Pulse shapes

0 1 2 3!3

!2

!1

0

1

2

Time (1/!)

E 1 (!
)

|!> |+>

|0>

|1>

• Use ∆ (X -field) to take a spin between states
• Anharmonic short Rabi burst: cancels counter-rotating

term
P. Rebentrost, I. Serban, T. Schulte-Herbrüggen, FKW, PRL 2009
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Gauging irreducible
decoherence
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• low κ static error — perfect correction
• large κ — motional narrowing
• κ ' ∆ — cannot be corrected
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Summary

• Pulse shaping as new resource for improving qubits
• Removal of leakage errors by DRAG
• Optimized optimal working point
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