F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Optimal control of imperfect qubits

F.K. Wilhelm¹ F. Motzoi¹ J.M. Gambetta¹ B. Khani¹ P. Rebentrost¹² I. Serban¹³ Thomas Schulte-Herbrüggen⁴

¹University of Waterloo, Canada

²Harvard University, USA

³Leiden University, Netherlands

⁴Munich University of Technology, Germany

KITP @ UCSB 2009

F.K. Wilhelm al.

Research group

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

CIFAR: Jay Gambetta

PD: Seth Merkel

PhD: Felix Motzoi

MSc: Pierre-Luc Dallaire-Demers

MSc: Botan Khani

CIFAR:Bill Coish

PD: Mohammad Ansari

PhD: Peter Groszkowski

PhD: Farzad Qassemi Maloomeh

MSc: Cheng Shen

Contents

Optimal control

FK Wilhelm al

Control theory

Control theory and the GRAPE algorithm The challenge of finding the right pulse Control theory

2 Leakage elimination

3 Fock state preparation

4 Optimal control of open systems

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Quantum computing and quantum gates

- N-qubit quantum computer universal ⇔ any U ∈ U (2^N).
- Building blocks: Single qubit rotations + entangling two-qubit gate
- Need error rate below some threshold p

F.K. Wilhelm al.

From device to gate

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Qubit candidate device

 \downarrow known properties

Hamiltonian H(t)

Schrödinger equation

Quantum gate *U*_{Gate}

\downarrow fabrication parameters

$$H(t) = H_0 + H_{control}(t) +$$

$$H_{\rm dec} + H_{\rm junk}$$

↓ optimized controls

Approximate quantum map

$${\it F} \simeq {\it U}_{
m gate} \otimes ar{\it U}_{
m gate}$$

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Basic problem setting

• Our physical system gives us a Hamiltonian

$$H(t) = H_{\rm d} + \sum_j u_j(t) H_j$$

with *drift H*_d, controls *u_j* and *control Hamiltonians H_j*.
Our goal: Build a *propagator*

$$U_{\text{gate}} = U(t, 0) = \mathcal{T} \exp\left(-\frac{i}{\hbar} \int_{0}^{t} dt' H(t')\right)$$

using physical $u_i(t)$.

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Rotating wave and area theorem.

Spin in static z plus rotating xy field

$$H(t) = -\gamma \vec{B}(t) \cdot \vec{\sigma} = \frac{1}{2} \begin{pmatrix} E & \lambda(t)e^{i\omega t} \\ \lambda(t)e^{-i\omega t} & -E \end{pmatrix}$$

in co-rotating frame

$$H'(t) = \frac{1}{2} \begin{pmatrix} E - \omega & \lambda(t) \\ \lambda(t) & -(E - \omega) \end{pmatrix}$$

On resonance: $E - \omega = 0 [H'(t), H'(t')] = 0$, thus

$$\mathcal{T} \exp\left(-\frac{i}{\hbar} \int_0^t dt' H(t')\right) = \exp\left(-\frac{i}{\hbar} \int_0^t dt' H(t')\right) = \\ = \cos\phi(t) - i\sigma_x \sin\phi(t) \qquad \phi(t) = \frac{1}{\hbar} \int_0^t dt' \lambda(t')$$

Area theorem

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Beyond the area theorem

The area theorem does in general not hold for $[H'(t), H'(t')] \neq 0$

- out of resonance
- for non-rotating wave Hamiltonians and strong driving (non-RWA) i.e. high pulses → fast gates
- for multi-qubit systems

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

There are ingenious NMR solutions based on 50 years of quantum control

... do we have to do it again?

Analogous situation: Steering / parallel parking

Complex control sequences

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Established discipline in applied math / engineering

- Applied to quantum systems for state transfers e.g. in quantum chemistry (Rabitz ...)
- Developed for NMR by N. Khaneja (Harvard), S.J. Glaser, T. Schulte-Herbrüggen ... (TUM)

Control theory

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Take any *dynamical system* with variables x_i and controls u_j with EOM

 $\dot{x} = f(x, u, t)$

Optimize a *performance index* at final time t_f , $\phi(x(t_f), u(t_f))$ using

$$J = \phi(x(t_f), u(t_f)) + \int_{t_i}^{t_f} dt \lambda^T(t) (\dot{x} - f(x, u, t))$$

with initial conditions $x(t_i)$.

Basic idea

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

From Rockets to Propagators

Control problem for a quantum gate:

$$\begin{aligned} x &\mapsto & U(t) \quad U(t_i) = \hat{1} \\ f &\mapsto & -i(H_d + \sum_i u_i(t)H_i)U \\ \phi &= & \left\| U_{\text{gate}} - U(t_f) \right\|^2 = 2N - 2\text{ReTr}(U_{\text{gate}}^{\dagger}U(t_f)) \end{aligned}$$

- So we need to maximize $\operatorname{Tr}(U_{\text{gate}}^{\dagger}U(t_f))$.
- Problem: Fixes global phase, too
- Solution: Maximize $\Phi = |\text{Tr}(U_{\text{gate}}^{\dagger}U(t_f))|^2$ instead.

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Numerical solution

Numerical solution: Minimize *J* directly. Problem: Computationally hard optimization, numerical gradients $\frac{\partial \phi}{\partial u_i}$ time-consuming (\approx hours on supercomputer).

A.O. Niskanen, J.J. Vartiainen and M.M. Salomaa, PRL 90, 197901 (2003).

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open system

Summary

In the discretized grid, how does Φ change when the control is changed in one point?

Challenge

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Gradient Ascent Pulse Engineering (GRAPE) I

Rewrite performance index

$$= |\operatorname{Tr}(U_{\text{gate}}^{\dagger}U(t_{f}))|^{2} = |\operatorname{Tr}(U^{\dagger}(t_{j}, t_{N})U_{\text{gate}})^{\dagger}U(t_{j}, t_{1})|^{2}$$
$$= |\operatorname{Tr}(U_{j+1}^{\dagger} \dots U_{N}^{\dagger}U_{\text{gate}})^{\dagger}U_{j} \dots U_{1}|^{2}$$

Trotterized time-step propagators

$$U_{i} = \exp\left(-i\Delta t \left(H_{d} + \sum u_{k}(t_{i})H_{k}\right)\right)$$
(1)

Using

Φ

$$\frac{d}{dx}e^{A+Bx}\Big|_{x=0} = e^A \int_0^1 d\tau e^{-A\tau} B e^{A\tau}$$
(2)

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Gradient Ascent Pulse Engineering (GRAPE) II

we can derive $\frac{\partial \Phi}{\partial u_k}$ analytically $\frac{\partial \Phi}{\partial u_k(t_j)} = \delta t \operatorname{Re} \left[\left(\operatorname{Tr} U_{j+1}^{\dagger} \dots U_N^{\dagger} U_{\text{gate}} H_k U_j \dots U_1 \right) \right. \\ \left(\operatorname{Tr} U_1^{\dagger} \dots U_j^{\dagger} U_{\text{gate}} U_N \dots U_{j+1} \right) \right]$

N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S.J. Glaser, Journal of magnetic resonance **172**, 296 (2005).

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open system

Summary

Nuclear/electron spin:

Particle motion

 \equiv Spin 1/2

Phase qubit:

Leakage

Optical lattice:

- Harmonic oscillator is not a qubit (only classical states accessible)
- Decoherence / complexity-optimized qubits often have weak nonlinearity: Almost HOs

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Spectral limitation

- Strategies aim at *never* occupying leakage state
- Rabi pulse at ω_{01} , duration *T*, bandwidth \simeq Rabi frequency $\simeq \pi/T$
- Resonance frequency ω_{01} , leakage frequency ω_{12}
- Need to constrain $|\omega_{01} \omega_{12}| \ll \pi/T$: Speed limit

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Qubits with good control and long T_1 , T_2 :

Phase qubit: Leakage error at short pulses.

E. Lucero et al., PRL 2008

Experimental problem

Transmon: Leakage limits randomized benchmarking quality.

J. Chow et al., PRL 2009

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Weak nonlinearities

Phase qubit, transmon, vibrational qubits

 $\delta \omega = \omega_{01} - \omega_{12} \simeq 0.1 \omega_{01}$

Drive resonantly on ω_{01}

Fast gate \rightarrow large bandwidth \rightarrow leakage to the higher level

Hamiltonian

$$H = \begin{pmatrix} 0 & \lambda(t) \cos \omega_{01} t & 0 \\ \lambda(t) \cos \omega_{01} t & \omega_{01} & \sqrt{2}\lambda(t) \cos \omega_{01} t \\ 0 & \sqrt{2}\lambda(t) \cos \omega_{01} t & \omega_{01} + \omega_{21} \end{pmatrix}$$

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Weak nonlinearities

Phase qubit, transmon, vibrational qubits

 $\delta \omega = \omega_{01} - \omega_{12} \simeq 0.1 \omega_{01}$

Drive resonantly on ω_{01}

Fast gate \rightarrow large $\lambda \rightarrow$ leakage to the higher level

RWA Hamiltonian

$$H' = \left(\begin{array}{ccc} 0 & \lambda(t) & 0 \\ \lambda(t) & 0 & \sqrt{2}\lambda(t) \\ 0 & \sqrt{2}\lambda(t) & -\delta\omega \end{array} \right)$$

FK Wilhelm al.

Control theory

Leakage elimination

Minimize the Rabi time. Optimal time: $t_a \delta f = 1 + \epsilon$

Working transition: $R(\pi/4)R(\pi/2)R(\pi/4) = R(\pi)$ Leakage transition: $R(\pi/4)R(-\pi/2)R(\pi/4) = \hat{1}$. P. Rebentrost and FKW, PRB 2009

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Two quadrature solution

- Turn all knobs at the same time, use I-Q-mixer
- In- and out of phase components $\lambda_1(t) \cos \omega t + \lambda_2(t) \sin \omega t$
- Rotating frame, $z = \lambda_1 + i\lambda_2$

$$\mathcal{H}'=\left(egin{array}{ccc} 0 & z(t) & 0 \ z^*(t) & 0 & \sqrt{2}z(t) \ 0 & \sqrt{2}z^*(t) & -\delta\omega \end{array}
ight)$$

• Control both real *and* imaginary parts of *z* Of course, it will be better, but how much?

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Numerical sulution

- $\lambda_2 \propto \dot{\lambda}_1 \parallel$
- Requires detuning or phase ramping
- Phase ramping: rotate λ_1 , λ_2 into $\tilde{\lambda}_1$, $\tilde{\lambda}_2$

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

DRAG — why the derivative?

.

Toggling frame
$$H'(t) = V(t)H(t)V^{\dagger}(t) + iVV^{\dagger}$$

 $V(t) = \exp(-i\lambda_1 Y_3/\delta\omega) \quad Y_3 = \begin{pmatrix} 0 & -i & 0\\ i & 0 & -i\sqrt{2}\\ 0 & i\sqrt{2} & 0 \end{pmatrix}$

•
$$\lambda_i(0) = \lambda_i(t_g) = 0$$
: Gates are qubit gates

- $H_{\text{eff}} = H_{\text{diag}} + \lambda_1 \hat{\sigma}_x + \left[\lambda_2 + \frac{\dot{\lambda}_1}{\delta\omega}\right] Y_3 + \frac{\lambda_1^2}{\sqrt{2}\delta\omega} (|0\rangle\langle 2| + \text{h.c.})$
- Eliminate leakage by $\lambda_2 = -\dot{\lambda}_1/\delta\omega$
- remove higher order terms by higher order corrections
 Derivative Removal by Adiabatic Gate

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

traditional thinking: Limit bandwidth

• DRAG: Preserve adiabaticity + move on closed loop

Physical picture

FK Wilhelm al.

Control theory

Leakage elimination

Performance of DRAG + GRAPE

Gauss-DRAG. softbox-DRAG

Top: $T_1 = 40 \mu s$ Bottom: Error vs. T_1

F. Motzoi, J.M. Gambetta, P. Rebentrost, FKW, PRL 2009

F.K. Wilhelm al.

It works!

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

 $T_1 \simeq 1.2 \mu s$, J.M. Chow *et al.*, arXiv:0908.1955

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

- Nanomechanicals
- Large Josephson junctions
- Ion traps
- Light in nonlinear media
 Hamiltonian (Duffing)

$$H=\hbar\omega_0\left(a^{\dagger}a+rac{1}{2}
ight)+rac{\hbar\delta}{12}(a+a^{\dagger})^4.$$

Weakly nonlinear oscillators

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Fock-State preparation

Minimal time for preparation

- Power law $t_{\min} \propto \delta^{-\alpha}$ with $\alpha_{01} = 0.73 \pm 0.029$ and $\alpha_{12} = 0.90 \pm 0.031$
- Qualitative difference to simple Landau-Zener limt $t_g \propto 1/\delta$

B. Khani, J.M. Gambetta, F. Motzoi, FKW, Physics Scripta, in press; arXiv:0909.4788

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Finding controls in hostile environments

- Phase error rate 1/T₂ increased by echo.
- Based on knowing that *H*_{decohernce}(*t*) is slow
- Error rate depends on how $H_{\text{control}}(t)$ is chosen
- Usually found by manual construction or NMR tricks
- · Control theory: Find controls systematically

F.K. Wilhelm al.

Slow fluctuators

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

 $\hat{H}_{S} = E_{1}(t)\hat{\sigma}_{z} + \Delta\hat{\sigma}_{x} + E_{2}\hat{\tau}_{z} + \Lambda\hat{\sigma}_{z}X(t)$ $\langle X(t)X(0) \rangle_{\omega} \propto 1/\omega$

Simplified materials noise model

Classical limit = telegraph noise:

Optimal control

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

D. Vion et al., Nature 2002.

Optimum working point

Change of precession frequency

No transition

$$1/T_1 \to \infty$$

$$1/T_2 = S(0)$$

Low-frequency noise power (high)

No change of precession

$$\partial |B|/\partial B_z = O(B_z/B)$$

Environment coupling needs transition $1/T_1 = S(B)$ $1/T_2 = 1/(2T_1)$

High-frequency noise (low)

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Open system control problem

Decoherence time scales $T_{1/2}$: Fastest = best ?

- Long correlation time switching: Nonmarkovian qubit dynamics
- Use master equation for qubit+fluctuator system ρ_{q+fl}
- Trace out fluctuator *after* solving $\rho_q = \text{Tr}_{\text{fl}}\rho_{q+fl}$
- E. Paladino et al., PRL 2001

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Set up optimal control problem for quantum map

$$F\left(
ho_{\mathrm{q}}(\mathbf{0})
ight)=
ho_{\mathrm{q}}(t_{g})$$
 $F_{\mathrm{target}}=U\otimes ar{U}.$

- lower time limit π/Δ
- increasing error at long times, oscillations
- no error at no bath coupling

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

- T₁-limited
- Rabi pulse performs well at magic times $n\pi/\Delta$
- Cancelling counter-rotating terms at short times

Pulse shapes

Optimal control

F.K. Wilhelm al.

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

- Use Δ (X-field) to take a spin between states
- Anharmonic short Rabi burst: cancels counter-rotating term

P. Rebentrost, I. Serban, T. Schulte-Herbrüggen, FKW, PRL 2009

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

Gauging irreducible decoherence

- low κ static error perfect correction
- large κ motional narrowing
- $\kappa \simeq \Delta$ cannot be corrected

F.K. Wilhelm al.

Control 101

The challenge of finding the right pulse Control theory

Leakage elimination

Fock state preparation

Optimal control of open systems

Summary

- Pulse shaping as new resource for improving qubits
- Removal of leakage errors by DRAG
- Optimized optimal working point

Summary