Span programs and
quantum query algorithms

Ben Reichardt
|QC, U Waterloo

[arXiv:0904.2759]



Equivalent models for
quantum algorithms

e (Classically controlled) quantum
circuit model (with faults)

e Adiabatic quantum computing
e Anyonic models

e Quantum Turing machine

¢ Quantum walks

e Cluster states

Consequences

= Universality of circuit model
= Implementations

= New algorithms (e.g.,
approximating Turaev-Viro,
adiabatic optimization)

=~ QMA-complete problems



Equivalent models for Equivalent models for

quantum algorithms quantum query algorithms
e (Classically controlled) quantum (on input z € {0,1}")
circuit model (Wlth faults) ° Discrete_query model
e Adiabatic quantum computing
e Anyonic models 01 1 qtg:y 1 ng:y 1

e Quantum Turing machine

¢ Quantum walks Oz|j,b, ) = |j,z; Db, )

* Cluster states e Continuous-query model

Consequences Driving Hamiltonian
(independent of x) and

Oracle Han}ziltonian

. Hy =) ajlifil ®1

= New algorithms (e.g., =1
approximating Turaev-Viro,
adiabatic optimization)

= Universality of circuit model

= Implementations

[CGMSY “09]

=~ QMA-complete problems



Quantum algorithms Span programs [KW "93]
Model: ( U E R
Complexity -~
measure: Black-box _ Witness size [RS "08]
query complexity




Quantum query complexity Q(f)

* Time complexity = number of elementary gates

e Query complexity = number of input bits that must be looked at

e e.g. Search:

e classical query complexity (AKA “decision-tree complexity”) of
ORy is ©(n) for both deterministic & randomized algorithms

e quantum query complexity is Q(OR,)=0O(vn), by Grover search

e Most quantum algorithms are based on good qu. query algorithms

e Provable lower bounds



Two methods to lower-bound Q(f)

e Polynomial method: Q(f) = Q(deg(f))
e for total functions Q(f) < D(f) = O(agg/(f)fj)

e Adversary method: “How much can be learned from a single query?”

Adv(f) — max HFH
adversary matrices I': maxX;ecin] HF] H
I'>0

e Incomparable lower bounds:

aéé Adv

Element Distinctness: n%/3 n!/3

Ambainis formula: <?2d 2.5d (n=44)



Polynomial method Q(f) = Q(a\eé(f )

Adversary bound Q(f) = Q(Adv(f))
I'
Adv(f) = max ITN
adversaryprélgtrlces I': MaX;e(n] HFJ H

e General adversary bound [Hoyer, Lee, Spalek'07]  Q(f) = Q(Adv™(f))

Advi(f) = max I

adversary matrices I' mane[n] HF] H

Eéé Ad\i Advf Q )

Element Distinctness: n/3 n'/3 ?? n%/3

Ambainis formula: <?2d 2.5d 2.513d ?? (n=44)



AND-OR formula- >_/>
evaluation algorithms

®* Theorem ([FGG '07]): A balanced binary AND-
OR formula can be evaluated with N*to()
queries.

Unbalanced
AND-OR

® Theorem ([RS ’08]): A balanced formula

¢ over a gate set including all three-bit

e An “approximately balanced” AND-OR gates can be evaluated in O(Adv(¢))
formula can be evaluated with O(VN)

e Theorem ([ACRSZ ’07, R ’09]):

queries (optimall!).
queries (optimal!).

e A general AND-OR formula can be
evaluated with N*%+() queries.

(Running time is poly-logarithmically slower in each case, after preprocessing.)



Span programs [Karchmer, Wigderson “93]

e Theorem ([R, Spalek ‘08]): Let f:{0,1}" — {0,1} J \

Define f* : {O,l}”k — {0,1} by / ‘ \

f f f ¢ klevels
Let P be a span program computing f. / ‘ /
Fr 7
Then /
Q(f") = O(wsize(P)") :
quantuwm query span program

complexity complexity measure

= Many optimal algorithms: for f any <3-bit function (e.g., AND, OR,
PARITY, MAJ3), and ~70 of ~200 different 4-bit functions...



Open problems:

* How can we find more good span programs?

{} {x1} {x1} {x2} {x2} {x3} {x3} {xa} {xa} (%1, X2, X3, X} {X1} {%2} {%3})

1 0 0 0 0 0 0 0 0 w3 0 0 0
no W1 1 1 1 1 1 1 1 0 0 0 o |,

0o 1 1 1 -1 i -i i i 0 0 0 0

0 i1 -i i i 1 1 1 -1 0 0 0 0

w2 0 0 0 0 0 0 0 0 0 1 1 1

pevalSPC [m]

e What is the connection to the adversary bounds?

# Size Adv Adv™ Status Comments
7128 10 2.50000 2.51353 2.77394 sorted input bits [Amb06al, (x1 A ((z2 A
z3)V (T3AT1)))V (T1A(T2AT3)V (33 /24)))
863 5 2.00000 2.07136 2.22833 monotone two adjacent 1s, (x1 Ax2)V (x4 A
(x1 V x3))
427 5) 2.18398 2.20814 2.22833 #975(z1 A\ X2, T3,24)
27 5 NG — v Lemma 4.12 1 A #975(x2, T3, x4)
393 6 4/V3 - v opt. NAND  (zy Axo Ax3)V (T ATz A xy)
383 7 2.30278 2.34406 443 (w1 Axo Ax3) V (w1 Vas Va3) Azy)
126 7 11/2 - v'Lemma 4.12 23 A “EQUAL;(z2, x3,24)
24 7 11/2 — v Lemma 4.12  x7 A EQUAL; (22, 3, 24)
303 6 2.35829 - 1++2 ((z1 V 22) A z3) V ((TT V 22) A 24), span
program size 5
495 6 14++2 —~ v opt. NAND  #975(x1, 22, 23 A T4)
989 6 142 - v oopt. gadget  (x1 Aza Ax3)V (TT A (T3 V 24))

965 7 2.41531 242653  2.59234 (z1 A g Axs) V (24 AT3) V (T4 A T2)



Open problems:

* How can we find more good span programs?
e What is the connection to the adversary bounds?

e Are span programs useful for developing other qu. algorithms?

Answers:

e Theorem 1: For any boolean function f,

inf wsize(P) = Advi(f)

P computing f

e Theorem 2: For any span program P computing f,

log wsize(P)
log log wsize(P)

Q(f) = O wsize()



The general adversary bound is nearly tight

e Corollary: Forany f:{0,1}" — {0,1}
Q(f) = QAdvE(S)) [HLS 07]

B N log Advi(f)
and Q(f) = O aav* ()2 )

e Nearly tight characterization of quantum query complexity; the general
adversary bound is always (almost) optimal

Adv c/lgé Adv™ @
Element Distinctness: n'/3 n?3 >n?3/log n n23
Ambainis formula: 2.5d <2d 2.513d 2.513¢ (n=44)

e Simpler, “greedier” semi-definite program than [Barnum, Saks, Szegedy ’03]



e Theorem 1: inf wsize(P) = Advi(f) = 0(Q(f))

P computing f

1 ize( P
e Theorem 2: If P computes f, Q(f) =O (Wsize(P) og wsize(P) )

log log wsize(P)

Span programs are equivalent to quantum computers!

(up to a log factor)

Complexity . . .
query complexity witness size

measure:

Model: {Quantum algorithmsJ N { Span programs J

Also, leads to new quantum algorithms for evaluating formulas,
exact formula for the composition of the general adversary bound...



* Definition: Span program I’ on n bits
e target vector |t) in vector space V

 subspaces Vipo Vi1 V2o Va2
I | | | | | | I

e P “computes” fp:{0,1}" — {0,1}
fp(xz) =1 <= |t) € SpanU; V} .

e Example: V=C2
7)

Vl,l — fP p— AND2
Vio=Vz0=0 Vaq

e (Very simple! No qubits, ancillas or Hamiltonians...)



Vio=V20=0 V2,1,

e fp = fp = ANDy but P’ seems better...

wsize(P, 11) > wsize(P', 11)



Span programs in coordinates

e Span program P: target |t)

A= | lvio) - lviom) |vi1) - |viim) Vn,0,1) = [Vn,0,m) |Vn,1,1) - [Vn1,m)

[I(x) = projection onto available columns of A

Then
fr(x) =1 < |t) € Range(All(x))

o Def.:If f(x) =1, let wsize(P,z) = min w)||?
S |w>¢AH($)|w>=|t>H| |

(intuition: want a short witness)



fp(x) =1 = |t) € Range(All(x))

wsize(P,x) = min w) ||
B2) |w>:AH($)\w>=It>m L

(intuition: want a short witness)
fr(x) =0 = |t) ¢ Range(All(x))
<= 3 |w’) orthogonal to Range(AIl(z)) with (t|w’) # 0
wsize(P, x) = min || AT|w’)|?
1

[w): (tw’)=
(w'|T1(x)A=0

(intuition: if |¢) is close to the span of available
columns of A, then wsize should be large)

= e —

' Definition: wsize(P) = max wsize(P, x)

S =




Example: Search (OR)

* Define a span program P as follows:
* Vector space V=C

e Target vector |t) = n!/*

V1,0 Vi1 V2,0 \%3 V0 Vi1
A= ( 0 1 0 1 0 1 >
- fP — ORn
wsize(P,0") = v/n W'y = 1/nt/4
wsize(P,10...0) = v/n w) = (0,n'/*,0,...,0)

= wsize(P) = /n



[w): ATl(z)|w)=(t)

~

e Why is this the right definition?
1. Negating a span program leaves wsize invariant
2. Composing span programs: wsize is multiplicative
frog = fPo fo wsize(P o Q) = wsize(P)wsize(Q)

3. Leads to quantum algorithms Q(fp) = O(wsize(P)) (Theorem 3)



Proof of Theorem 1

e Theorem 1: For any boolean function f, P.ifnf_f wsize(P) € Adv™(f)



Example: AND




Consider span programs where the rows of A correspond to {x : f(x) = 0}

target is all
1s vector

n

1

Vio

e f71(0)




Consider span programs where the rows of A correspond to {x : f(x) = 0}

(1)

—_

1

...and in the row corresponding to x,
the columns available for input x are all zero

(Such span programs are said to be in “canonical form” [Kw’93].)

This form guarantees that f(z) =0 = fp(z) =0

(lw") = |z) itself is the witness)




n

\ 1 ) — (Vg1 |— — 00— —0— —(Van|— x=10...
in the xth row, the columns available for input x are all 0; hence
f(:lf) =0 = fp(ZC) =0

Now considera y € f~*(1)

We want to find vectors |vy1),. .., |vyn)
suchthat Vzec f71(0), 1= Z (Va5 |vy;)
35 FYj

The witness size is max Z v I
J



—

VlO Vl,l VnO Vn,l

1 1 I 1 I b ' '
(1)

) N o o s Fe=10,
inf wsize(P) < inf T ’
P:fp=f (P) < {lvag)}: e Zj:mv il

i (@) 2 ) 200,y (Vi 0s)=1
- min mgxz<x,j|X|ﬂf,j>

X>0:

V(@) EA D iy, (@1 X]Y.5) =1 ’

= Adv™(f)

(Cholesky decomposition)

(SDP duality) L]



Proof of Theorem 2

log wsize(P) )

e Theorem 2: For any span program P, Q(fp) = O (WSize(P ) log log wsize(P)

1. 2. 3.
Correspondence Eigenvalue-zero Quantum algorithm
between P and eigenvectors imply an for detecting
bipartite graphs “effective” spectral eigenvectors of

Gp(x) gap around zero structured graphs



e Theorem: Let G be a weighted bipartite graph.

output
vertex

input vertices

N 7




e Theorem: Let G be a weighted bipartite graph. For an input x, add weight-one
@ z1 =1 dangling edges to vertices in U; V} 7

1,0 to define graphs G(x), G'(x).
1,1
output
vertex
n,0
n,1
Qzr,=0

input vertices

N 7

G/




e Theorem: Let G be a weighted bipartite graph. For an input x, add weight-one
@ r1 =1 dangling edges to verticesin U; V; z
} 1,0 to define graphs G(x), G'(x).

Letf:{0,1}" —{0,1},0 > 0.

1,1 Assume that for all x,
output

vertex

_, G(x) has an eigenvalue-zero
flz)=1= eigenvector|y) with

} o [l > > o)1)

G’(x) has an eigenvalue-zero

n1 flz) =0= eigenvector [¢) with
@ ([t)|* > dllJ) )
Hf—/
. input \;ertices Then Q(f) = O(min{ |]abs(5AG)|| | %1 loig% 1 }) |
el 08108 5
output inputs
( 0 t) A )
0 1-—TII(x)
Ao = [0
KAT 1 —TII(x) 0 )



Summary Main corollaries

| The general adversary bound is
| @ (almost) optimal for every total or

 Theorem 1: For any boolean function f, _ .
partial function

. o L :l:
P coni;r)llfting fWSlze(P) = Adv (f) | f: {O, 1}” — {0’ 1}p01y(10g n)

@ Span programs are (almost)
equivalent to quantum query
* Theorem 2: For any span program P, algorithms

log wsize( P
Q) = 0wl P B )

Optimal quantum algorithm for
@ evaluating balanced formulas over
any finite gate set




e Theorem 1: inf wsize(P) = Advi(f) = 0(Q(f))

P computing f

1 ize( P
e Theorem 2: If P computes f, Q(f) =O (WSiZG(P) og wsize(P) )

log log wsize(P)

p
e Thm. [RS ‘08]:

Q(ff) = O(wsize(P)")
e Thm. [HLS 07, R ’09]:

Adv* (f*) = O(Adv™(f)*
o (f%) = O(Adv=(/)")

Using Theorem 2, implies optimal qu. algorithm for
evaluating balanced formulas over any finite gate set



Classical Quantum
Ly L2 -+ IN
O(n O(+/n
o ” LI
[Grover ’96]
Balanced AND-OR

X1 To T3 L4 I Te T7 xs

O(n0753...) O(v/n)

[Snir ’85]
[Saks,Wigderson '86]
[Santha "95]

Q(nO.SI) Q(\/n)’ \/n.zO(\/Iog n)
[Heiman,Wigderson '91] [Barnum, Saks ’04] [ACRSZ *07]

[Farhi, Goldstone, Gutmann "07]
[Ambainis, Childs, R, Spalek, Zhang ’07]

(fan-in two case)

General read-once AND-OR

Balanced MA]Js

MAJ MAJ MAJ

0(2.3339), O(2.6549) O(29)

s [Jayram, Kumar, Sivakumar ’03] 5
[RS’08]



OR,, (Search)

Balanced AND-OR

General read-once AND-OR

Balanced MA]Js...

“ Almost-balanced” formula
over an arbitrary finite gate
set

Unbalanced formulas

Classical
O(n)
@(n0.753...)

Q(nO.SI)

()(2.3339), O(2.6549)

277?

Quantum

O(v/n)
O(v/n)

Q(+/n), O(v/n-log n)

[R’09]

O(29)

O(Adv(f))
[R09]
Query complexity

now understood, but
not time-complexity



Recipe for finding optimal quantum query algorithms

.............................................................................

Find a solution to: Adv*(f) = {Xr?iz%} mgxz (2| X, |z) o
v(x’y)eA’zj:mj;éyj <x|Xj|y>:1 g

.
............................................................................

Take the Cholesky decomposition:  {|vaj)} : (vajlvy;) = (2| X;]y)

Use the entries of the vectors to weight the edges of a graph, and run
phase estimation on the quantum walk...

1 n
s ] T S et
i x:f(x)=07=1

But how can we find good solutions to (*)?



Open problems (1)
Functions with non-binary domains? f:{1,2,...,k}" — {0,1}
e Formulas over non-boolean gates? Composition of the adversary bound?
Can the logarithmic overhead be removed?
Is there a good classical algorithm for evaluating span programs?
e QOur results apply to both total and partial functions, though.

Robust evaluation of span programs? See [Hoyer, Mosca, de Wolf "03].



Open problems (2)

e Relationship of span programs to quantum algorithms, under time
complexity, instead of query complexity?

e Time-efficient algorithms can be based on sparse span programs with constant
norm, and small “full witness size” [0904.2759, 0907.1622].

(

Quantum algorithm with
bounded one-sided error

__________________________________________ ("
L Time I \ Span program

- Full witness size O(T)

Two-sided-bounded-error
quantum algorithm

Time O(T)




Open problems (3)

e Relationship of span programs to quantum algorithms, under time
complexity, instead of query complexity?

e Time-efficient algorithms can be based on sparse span programs with constant
norm, and small “full witness size” [0904.2759, 0907.1622].

N\

Quantum algorithm with
bounded one-sided error

. /
, \ /
Two-sided-bounded-error|

quantum algorithm

Time O(T)

* More explicit and time-efficient algorithms.

e So far: Almost-balanced formulas over arbitrary finite gate sets [0907.1622],
arbitrary AND-OR formulas [0907.1623].

e Solve the Adv* dual SDP.
e Find nontrivial rederivations of known algorithms.

e Take advantage of the optimal algorithm’s time-independent, greedy structure?



