Span programs and quantum query algorithms

[arXiv:0904.2759]

Equivalent models for quantum algorithms

- (Classically controlled) quantum circuit model (with faults)
- Adiabatic quantum computing
- Anyonic models
- Quantum Turing machine
- Quantum walks
- Cluster states

Consequences

- ⇒ Universality of circuit model
- ⇒ Implementations
- ⇒ New algorithms (e.g., approximating Turaev-Viro, adiabatic optimization)
- ⇒ QMA-complete problems

Equivalent models for quantum algorithms

- (Classically controlled) quantum circuit model (with faults)
- Adiabatic quantum computing
- Anyonic models
- Quantum Turing machine
- Quantum walks
- Cluster states

Consequences

- ⇒ Universality of circuit model
- ⇒ Implementations
- ⇒ New algorithms (e.g., approximating Turaev-Viro, adiabatic optimization)
- ⇒ QMA-complete problems

Equivalent models for quantum query algorithms

(on input $x \in \{0, 1\}^n$)

Discrete-query model

$$O_x|j,b,\alpha\rangle = |j,x_j \oplus b,\alpha\rangle$$

Continuous-query model

Driving Hamiltonian (independent of *x*) and Oracle Hamiltonian

$$H_x = \sum_{j=1}^n x_j |j\rangle\langle j| \otimes \mathbf{1}$$

[CGMSY '09]

Model:

Complexity measure:

Quantum algorithms

 \approx

Black-box query complexity

Span programs

Witness size

[KW '93]

[RŠ '08]

Quantum query complexity Q(f)

- Time complexity = number of elementary gates
- Query complexity = number of input bits that must be looked at
 - e.g., Search:
 - classical query complexity (AKA "decision-tree complexity") of OR_n is $\Theta(n)$ for both deterministic & randomized algorithms
 - quantum query complexity is $Q(OR_n)=\Theta(\sqrt{n})$, by Grover search

• Most quantum algorithms are based on good qu. query algorithms

• *Provable* lower bounds

Two methods to lower-bound Q(f)

- Polynomial method: $Q(f) = \Omega(\widetilde{\operatorname{deg}}(f))$
 - for total functions $Q(f) \leq D(f) = O(\widetilde{\deg}(f)^6)$
- Adversary method: "How much can be learned from a single query?"

$$\operatorname{Adv}(f) = \max_{\substack{\text{adversary matrices } \Gamma : \\ \Gamma \geq 0}} \frac{\|\Gamma\|}{\max_{j \in [n]} \|\Gamma_j\|}$$

• Incomparable lower bounds:

	$\widetilde{\deg}$	$\overline{\mathrm{Adv}}$	
Element Distinctness:	n ^{2/3}	n ^{1/3}	

Ambainis formula: $\leq 2^d$ 2.5^d (n=4^d)

$$Q(f) = \Omega(\widetilde{\operatorname{deg}}(f))$$

Adversary bound
$$Q(f) = \Omega(Adv(f))$$

$$\operatorname{Adv}(f) = \max_{\substack{\text{adversary matrices } \Gamma : \\ \Gamma \geq 0}} \frac{\|\Gamma\|}{\max_{j \in [n]} \|\Gamma_j\|}$$

• General adversary bound [Høyer, Lee, Špalek '07] $Q(f) = \Omega(\mathrm{Adv}^{\pm}(f))$

$$Q(f) = \Omega(\mathrm{Adv}^{\pm}(f))$$

$$Adv^{\pm}(f) = \max_{\text{adversary matrices } \Gamma} \frac{\|\Gamma\|}{\max_{j \in [n]} \|\Gamma_j\|}$$

$$\frac{\widetilde{\deg}}{\operatorname{deg}} \qquad \frac{\operatorname{Adv}}{\operatorname{n}^{1/3}} \qquad \frac{\operatorname{Adv}^{\pm}}{\operatorname{??}} \qquad \frac{Q}{\operatorname{n}^{2/3}}$$
 Element Distinctness: $\operatorname{n}^{2/3}$ $\operatorname{n}^{1/3}$ $\operatorname{??}$ $\operatorname{n}^{2/3}$

Ambainis formula: **≤**2^d 2.5^{d} 2.513^d (n=4d)

AND-OR formulaevaluation algorithms

• Theorem ([FGG '07]): A balanced binary AND-OR formula can be evaluated with $N^{\frac{1}{2}+o(1)}$ queries.

Unbalanced AND-OR

 x_1

 x_2

AND

 x_3

OR

AND

Balanced, More gates

AND

 $\varphi(x)$

- **Theorem** ([ACRŠZ '07, R '09]):
 - An "approximately balanced" AND-OR formula can be evaluated with O(√N) queries (optimal!).
 - A general AND-OR formula can be evaluated with $N^{\frac{1}{2}+o(1)}$ queries.

• **Theorem** ([RŠ '08]): A balanced formula φ over a gate set including all three-bit gates can be evaluated in O(Adv(φ)) queries (optimal!).

 x_6

 x_7

AND

 x_8

 x_5

AND

(Running time is poly-logarithmically slower in each case, after preprocessing.)

Span programs [Karchmer, Wigderson '93]

→ Many optimal algorithms: for f any \leq 3-bit function (e.g., AND, OR, PARITY, MAJ₃), and \sim 70 of \sim 200 different 4-bit functions...

quantum query span program complexity complexity measure

Open problems:

How can we find more good span programs?

pevalSPC[m]

What is the connection to the adversary bounds?

#	Size	Adv	Adv^{\pm}	Status	Comments
7128	10	2.50000	2.51353	2.77394	sorted input bits [Amb06a], $(x_1 \wedge ((x_2 \wedge$
863	5	2.00000	2.07136	2.22833	$(x_3) \lor (\overline{x_3} \land \overline{x_4}))) \lor (\overline{x_1} \land ((\overline{x_2} \land \overline{x_3}) \lor (x_3 \land x_4)))$ monotone two adjacent 1s, $(x_1 \land x_2) \lor (x_4 \land (x_1 \lor x_3))$
427	5	2.18398	2.20814	2.22833	$#975(x_1 \wedge x_2, x_3, x_4)$
27	5	$\sqrt{5}$	_	\checkmark Lemma 4.12	$x_1 \wedge \#975(x_2, x_3, x_4)$
393	6	$4/\sqrt{3}$	_	✓ opt. NAND	$(x_1 \wedge x_2 \wedge x_3) \vee (\overline{x_1} \wedge \overline{x_2} \wedge x_4)$
383	7	2.30278	2.34406	$\sqrt{4+\sqrt{3}}$	$(x_1 \wedge x_2 \wedge x_3) \vee ((x_1 \vee x_2 \vee x_3) \wedge x_4)$
126	7	$\sqrt{11/2}$	_	\checkmark Lemma 4.12	$x_1 \land \neg \text{EQUAL}_3(x_2, x_3, x_4)$
24	7	$\sqrt{11/2}$	_	\checkmark Lemma 4.12	$x_1 \wedge \mathrm{EQUAL}_3(x_2, x_3, x_4)$
303	6	2.35829	_	$1+\sqrt{2}$	$((x_1 \vee x_2) \wedge x_3) \vee ((\overline{x_1} \vee x_2) \wedge x_4), \text{ span}$
					program size 5
495	6	$1+\sqrt{2}$	_	✓ opt. NAND	$#975(x_1, x_2, x_3 \wedge x_4)$
989	6	$1+\sqrt{2}$	_	\checkmark opt. gadget	$(x_1 \wedge x_2 \wedge x_3) \vee (\overline{x_1} \wedge (\overline{x_2} \vee x_4))$
965	7	2.41531	2.42653	2.59234	$(x_1 \wedge x_2 \wedge x_3) \vee (x_4 \wedge \overline{x_3}) \vee (\overline{x_4} \wedge \overline{x_2})$

Open problems:

- How can we find more good span programs?
- What is the connection to the adversary bounds?
- Are span programs useful for developing other qu. algorithms?

Answers:

• **Theorem 1:** For any boolean function f,

$$\inf_{P \text{ computing } f} \text{wsize}(P) = \text{Adv}^{\pm}(f)$$

• **Theorem 2:** For any span program P computing f,

$$Q(f) = O\left(\text{wsize}(P) \frac{\log \text{wsize}(P)}{\log \log \text{wsize}(P)}\right)$$

The general adversary bound is nearly tight

• Corollary: For any $f: \{0,1\}^n \to \{0,1\}$ $Q(f) = \Omega(\mathrm{Adv}^{\pm}(f)) \quad \text{[HLŠ '07]}$ and $Q(f) = O\left(\mathrm{Adv}^{\pm}(f) \frac{\log \mathrm{Adv}^{\pm}(f)}{\log \log \mathrm{Adv}^{\pm}(f)}\right)$

 Nearly tight characterization of quantum query complexity; the general adversary bound is always (almost) optimal

Adv
$$\overline{\deg}$$
 Adv^{\pm} Q

Element Distinctness: $n^{1/3}$ $n^{2/3}$ $\geq n^{2/3}/\log n$ $n^{2/3}$

Ambainis formula: 2.5^d $\leq 2^d$ 2.513^d 2.513^d $(n=4^d)$

• Simpler, "greedier" semi-definite program than [Barnum, Saks, Szegedy '03]

• Theorem 1:
$$\inf_{P \text{ computing } f} \text{wsize}(P) = \text{Adv}^{\pm}(f) = O(Q(f))$$

• Theorem 2: If P computes f, $Q(f) = O\left(\text{wsize}(P) \frac{\log \text{wsize}(P)}{\log \log \text{wsize}(P)}\right)$

Span programs are equivalent to quantum computers! (up to a log factor)

Model:

Complexity measure:

Quantum algorithms query complexity

~

Span programs witness size

Also, leads to new quantum algorithms for evaluating formulas, exact formula for the composition of the general adversary bound...

- **Definition: Span program** P on n bits
 - target vector $|t\rangle$ in vector space V

- P "computes" $f_P: \{0,1\}^n \to \{0,1\}$ $f_P(x) = 1 \iff |t\rangle \in \operatorname{Span} \cup_j V_{j,x_j}$
- Example: $V=C^2$

$$V_{1,0} = V_{2,0} = 0$$
 $V_{1,1} \implies f_P = AND_2$
 $V_{2,1}$

(Very simple! No qubits, ancillas or Hamiltonians...)

Example

• $f_P = f_{P'} = AND_2$ but P' seems better...

Span programs in coordinates

• Span program P: target $|t\rangle$

 $\Pi(x)$ = projection onto available columns of A

Then

$$f_P(x) = 1 \iff |t\rangle \in \text{Range}(A\Pi(x))$$

• Def.: If f(x) = 1, let $\operatorname{wsize}(P, x) = \min_{|w\rangle: A\Pi(x)|w\rangle = |t\rangle} ||w\rangle||^2$

(intuition: want a short witness)

$$f_P(x) = 1 \implies |t\rangle \in \text{Range}(A\Pi(x))$$

$$\operatorname{wsize}(P,x) = \min_{|w\rangle: A\Pi(x)|w\rangle = |t\rangle} ||w\rangle|^2 \qquad \text{(intuition: want a short witness)}$$

$$f_P(x) = 0 \implies |t\rangle \notin \text{Range}(A\Pi(x))$$

 $\iff \exists |w'\rangle \text{ orthogonal to } \text{Range}(A\Pi(x)) \text{ with } \langle t|w'\rangle \neq 0$

$$wsize(P, x) = \min_{\substack{|w'\rangle:\langle t|w'\rangle=1\\\langle w'|\Pi(x)A=0}} ||A^{\dagger}|w'\rangle||^{2}$$

(intuition: if $|t\rangle$ is *close* to the span of available columns of A, then wsize should be *large*)

Definition: $wsize(P) = \max_{x} wsize(P, x)$

Example: Search (OR)

- Define a span program P as follows:
 - Vector space V = **C**
 - Target vector $|t\rangle = n^{1/4}$

$$A = \begin{pmatrix} V_{1,0} & V_{1,1} & V_{2,0} & V_{2,1} & V_{n,0} & V_{n,1} \\ 0 & 1 & 0 & 1 & \cdots & 0 & 1 \end{pmatrix}$$

$$\Rightarrow f_P = OR_n$$

$$wsize(P, 0^n) = \sqrt{n} \qquad |w'\rangle = 1/n^{1/4}$$

$$wsize(P, 10...0) = \sqrt{n} \qquad |w\rangle = (0, n^{1/4}, 0, ..., 0) \qquad ...$$

$$\Rightarrow$$
 wsize $(P) = \sqrt{n}$

$$f_P(x) = 1 \implies \text{wsize}(P, x) = \min_{|w\rangle: A\Pi(x)|w\rangle = |t\rangle} ||w\rangle|^2$$

$$f_P(x) = 0 \implies \text{wsize}(P, x) = \min_{\substack{|w'\rangle: \langle t|w'\rangle = 1\\ \langle w'|\Pi(x)A = 0}} ||A^{\dagger}|w'\rangle||^2$$

Definition:
$$wsize(P) = \max_{x} wsize(P, x)$$

- Why is this the right definition?
 - 1. Negating a span program leaves wsize invariant
 - 2. Composing span programs: wsize is multiplicative

$$f_{P \circ Q} = f_P \circ f_Q \quad \text{wsize}(P \circ Q) = \text{wsize}(P) \text{wsize}(Q)$$

3. Leads to quantum algorithms $Q(f_P) = \tilde{O}(\text{wsize}(P))$ (Theorem 3)

Proof of Theorem 1

• **Theorem 1:** For any boolean function f, $\inf_{P: f_P = f} \text{wsize}(P) \leq \text{Adv}^{\pm}(f)$

Example: AND

$$|t\rangle = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & & & 0 \\ 0 & 1 & & & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & & 1 \end{pmatrix}$$

$$\rightarrow f_P = AND_n$$

Consider span programs where the *rows* of A correspond to $\{x : f(x) = 0\}$

target is all 1s vector	$V_{1,0}$	$V_{1,1}$		V n,0	$V_{n,1}$	-
$ t angle = \left(egin{array}{c} 1 \\ 1 \\ dots \\ 1 \end{array} ight)$			A			$\left.\begin{array}{c} \\ \end{array}\right\} f^{-1}(0)$

Consider span programs where the *rows* of A correspond to $\{x : f(x) = 0\}$

$$|t\rangle = \begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix} \begin{pmatrix} 1\\\cdots\\-0 \end{pmatrix} \qquad \begin{pmatrix} 1\\\cdots\\0\\-0 \end{pmatrix} \qquad \begin{pmatrix} 1\\\cdots\\0\\-0 \end{pmatrix} \qquad \begin{pmatrix} 1\\\cdots\\0\\-0\\\cdots \end{pmatrix} \qquad \begin{pmatrix} 1\\\cdots\\0\\x=10\ldots 0 \end{pmatrix}$$

...and in the row corresponding to x, the columns available for input x are all zero

(Such span programs are said to be in "canonical form" [KW'93].)

This form guarantees that $f(x) = 0 \implies f_P(x) = 0$ $(|w'\rangle = |x\rangle \text{ itself is the witness})$

in the *x*th row, the columns available for input *x* are all 0; hence

$$f(x) = 0 \Rightarrow f_P(x) = 0$$

Now consider a $y \in f^{-1}(1)$

We want to find vectors $|v_{y1}\rangle, \ldots, |v_{yn}\rangle$

such that
$$\forall x \in f^{-1}(0)$$
, $1 = \sum_{j: x_j \neq y_j} \langle v_{xj} | v_{yj} \rangle$

The witness size is $\max_{x} \sum_{j} \||v_{xj}\rangle\|^2$

$$|t\rangle = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ -\langle v_{x1}| - & -0 - & -\langle v_{xn}| - & \langle v$$

$$\implies \inf_{P: f_P = f} \text{wsize}(P) \le \inf_{\substack{\{|v_{xj}\rangle\}:\\ \text{if } f(x) \neq f(y), \sum_{j: x_j \neq y_j} \langle v_{xj} | v_{yj} \rangle = 1}} \max_{x} \sum_{j} \left\| |v_{xj}\rangle \right\|^2$$

$$= \min_{\substack{X\succeq 0:\\\forall (x,y)\in \Delta,\, \sum_{j:x_j\neq y_j}\langle x,j|X|y,j\rangle = 1}} \max_x \sum_j \langle x,j|X|x,j\rangle$$

(Cholesky decomposition)

$$= \mathrm{Adv}^{\pm}(f)$$
 (SDP duality)

Proof of Theorem 2

• Theorem 2: For any span program P, $Q(f_P) = O\left(\text{wsize}(P) \frac{\log \text{wsize}(P)}{\log \log \text{wsize}(P)}\right)$

Correspondence between P and bipartite graphs $G_P(x)$

Eigenvalue-zero
eigenvectors imply an
"effective" spectral
gap around zero

Quantum algorithm for detecting eigenvectors of structured graphs

3.

• **Theorem:** Let G be a weighted bipartite graph.

• **Theorem:** Let G be a weighted bipartite graph.

For an input x, add weight-one dangling edges to vertices in $\bigcup_j V_{j,\overline{x_j}}$ to define graphs G(x), G'(x).

• **Theorem:** Let G be a weighted bipartite graph.

For an input x, add weight-one dangling edges to vertices in $\bigcup_j V_{j,\overline{x_j}}$ to define graphs G(x), G'(x).

Let $f: \{0,1\}^n \to \{0,1\}$, $\delta > 0$.

Assume that for all x,

$$f(x) = 1 \Rightarrow \begin{aligned} G(x) \text{ has an eigenvalue-zero} \\ \text{eigenvector} |\psi\rangle \text{ with} \\ |\langle\psi|\mu\rangle|^2 \geq \delta ||\psi\rangle||^2 \end{aligned}$$

$$f(x) = 0 \Rightarrow \begin{aligned} G'(x) \text{ has an eigenvalue-zero} \\ \text{eigenvector} |\psi\rangle \text{ with} \\ |\langle \psi | t \rangle|^2 &\geq \delta ||\psi\rangle||^2 \end{aligned}$$

Then $Q(f) = O\left(\min\left\{\frac{\|\operatorname{abs}(A_G)\|}{\delta}, \frac{1}{\delta}\frac{\log\frac{1}{\delta}}{\log\log\frac{1}{\delta}}\right\}\right).$

$$A_{G(x)} = \begin{pmatrix} 0 & \begin{vmatrix} |t\rangle & A \\ 0 & \mathbf{1} - \Pi(x) \end{vmatrix} \\ \frac{\langle t|}{A^{\dagger}} & \mathbf{1} - \Pi(x) \end{vmatrix} & 0 \end{pmatrix}$$

input vertices

Summary

• **Theorem 1:** For any boolean function f,

$$\inf_{P \text{ computing } f} \text{wsize}(P) = \text{Adv}^{\pm}(f)$$

• **Theorem 2:** For any span program P,

$$Q(f) = O\left(\text{wsize}(P) \frac{\log \text{wsize}(P)}{\log \log \text{wsize}(P)}\right)$$

Main corollaries

The general adversary bound is (almost) optimal for every total or partial function

$$f: \{0,1\}^n \to \{0,1\}^{\text{poly}(\log n)}$$

- Span programs are (almost) equivalent to quantum query algorithms
- Optimal quantum algorithm for

 3 evaluating balanced formulas over

 any finite gate set

 $\inf_{P \text{ computing } f} \text{wsize}(P) = \text{Adv}^{\pm}(f) = O(Q(f))$ Theorem 1:

• Theorem 2: If P computes f, $Q(f) = O\left(\text{wsize}(P) \frac{\log \text{wsize}(P)}{\log \log \text{wsize}(P)}\right)$

$$Q(f_P^k) = O(\text{wsize}(P)^k)$$

Thm. [RŠ '08]:
$$Q(f_P^k) = O\left(\text{wsize}(P)^k\right)$$
Thm. [HLŠ '07, R '09]:
$$\text{Adv}^{\pm}(f^k) = O\left(\text{Adv}^{\pm}(f)^k\right)$$

Using Theorem 2, implies optimal qu. algorithm for evaluating balanced formulas over any finite gate set

Classical

Quantum

[RŠ '08]

	Classical	Quantum
OR _n (Search)	Θ(n)	Θ(√n)
Balanced AND-OR	Θ(n ^{0.753})	$\Theta(\sqrt{n})$
General read-once AND-OR	$\Omega(n^{0.51})$	Ω(√n), O(√n·log n) [R ′09]
Balanced MAJ ₃	Ω(2.333 ^d), O(2.654 ^d)	$\Theta(2^d)$
"Almost-balanced" formula over an arbitrary finite gate set	???	Θ(Adv±(f)) [R ′09]

Unbalanced formulas

Query complexity now understood, but not time-complexity

Recipe for finding optimal quantum query algorithms

• Find a solution to:
$$\operatorname{Adv}^{\pm}(f) = \min_{\substack{\{X_j \succeq 0\}: \\ \forall (x,y) \in \Delta, \sum_{j: x_j \neq y_j} \langle x | X_j | y \rangle = 1}} \max_{x} \sum_{j} \langle x | X_j | x \rangle$$
 (*)

- Take the Cholesky decomposition: $\{|v_{xj}\rangle\}: \langle v_{xj}|v_{yj}\rangle = \langle x|X_j|y\rangle$
- Use the entries of the vectors to weight the edges of a graph, and run phase estimation on the quantum walk...

$$B_G = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \sum_{x:f(x)=0} \sum_{j=1}^n |x\rangle\langle \overline{x_j}| \otimes \langle v_{xj}| \end{pmatrix}$$

• But how can we find good solutions to (*)?

Open problems (1)

- Functions with non-binary domains? $f: \{1, 2, ..., k\}^n \rightarrow \{0, 1\}$
 - Formulas over non-boolean gates? Composition of the adversary bound?
- Can the logarithmic overhead be removed?
- Is there a good *classical* algorithm for evaluating span programs?
 - Our results apply to both total and *partial* functions, though.
- Robust evaluation of span programs? See [Høyer, Mosca, de Wolf '03].

Open problems (2)

- Relationship of span programs to quantum algorithms, under *time* complexity, instead of query complexity?
 - Time-efficient algorithms can be based on sparse span programs with constant norm, and small "full witness size" [0904.2759, 0907.1622].

Open problems (3)

- Relationship of span programs to quantum algorithms, under *time* complexity, instead of query complexity?
 - Time-efficient algorithms can be based on sparse span programs with constant norm, and small "full witness size" [0904.2759, 0907.1622].

- **★** More explicit and *time-efficient* algorithms.
 - So far: Almost-balanced formulas over arbitrary finite gate sets [0907.1622], arbitrary AND-OR formulas [0907.1623].
 - Solve the Adv[±] dual SDP.
 - Find nontrivial rederivations of known algorithms.
 - Take advantage of the optimal algorithm's time-independent, greedy structure?