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What is quantum simulation?

“Simulating a quantum system with a controllable laboratory
system underlying the same mathematical model".

(Gerritsma et. al arxiv:0909.0674v1)

@ Lab system has fixed, finite capabilities in terms of
Initialization, evolution, measurement

o Want to compute (1)|A|1)) for some target state 1)), some

N\

target observable A
@ Initialize lab system in some state

@ Control laboratory system to produce the state which
represents |1)

@ Measure some set of observables (e.g qubit states 0,1) to
obtain information about A
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What is quantum simulation?

“Simulating a quantum system with a controllable laboratory

system underlying the same mathematical model".
(Gerritsma et. al arxiv:0909.0674v1)

@ Lab system has fixed, finite capabilities in terms of
Initialization, evolution, measurement

o Want to compute (1)|A|1)) for some target state 1)), some

N\

target observable A
@ Initialize lab system in some state

@ Control laboratory system to produce the state which
represents |1)

@ Measure some set of observables (e.g qubit states 0,1) to
obtain information about A

@ Lab system = universal quantum computer: quantum
simulation algorithms

@ If [ab system = target system: we call that experiment!
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Techniques: phase estimation

: : : Ul) = e™[0)
H S1) = [H)1Y)

S = =) + i)

|S1> |52> |S3>

_ 1 it
52) = \/§[|0>W> +e 1))

53) = Z[(L+e79)[0) + (1 - e ) 1)]jo)

Measure high qubit:
Prob(0) = |1 + e '?|?/2 = 1 + cos ¢
Prob(1) = |1 — e '?|?/2 =1 — cos ¢




Techniques: phase estimation
From phase estimation to energy measurement

Suppose that we can estimate arccos({c,)/2) = ¢ to fixed
precision. Let U be the time evolution operator of a system for

time t: X
U=exp(—itH/h) &= tE/R

suppose the energy scale is such that E/h < 1 so that we can
write E /h as a binary fraction:
E> Es Es Eig

E/h=0.E0E4EgE16- - = > + 1 —|—§—|-1—6—|-.--

then choose t = 272" so that:

¢ = N2m + mEpn /2 + ... (1)

and we can repeat this calculation to estimate E one bit at a time.

v
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Techniques: phase kickback

Action of V is

> H — —— Vla, b) = [a, b & V(a))
VA Implemented by classical circuit
w> — Consider V(0) =0, V(1) =1

|

|

| |
|s1> |Ss2>

51) = (]00) — 101)) + 5(]10) — [11))
—[52) = a(|00) — [01)) + 5(|11) — [10))

15 (p %)@

Here phase kickback has been used to apply the diagonal unitary
e'™ to the wavefunction. The cost is the classical cost of
computing V.
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Techniques: phase kickback

Action of V' is
i i Vl|a, b) = |a,b& V(a))
------ 0000001> ——— FT — On n state qubits and m
V| ancillae.
b —— V:{0,1}" — {0, 1}™
o o
2m_1 2m_1
S =1x) 3 27y [52) = [x) 3 ™2y @ V(x))
y=0 y=0
2m_1
_ e—i27rV(x)/2m|X> Z e27riy/2m‘y>
y=0

Again phase kickback has been used to apply the diagonal unitary
e~ ™V/2" to the wavefunction.
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Statics and dynamics

Common steps

@ Define mapping of system state to qubit state |v))

Statics (Kitaev, Abrams and LLoyd PRL 83 5162 (1999))

@ Define circuit for time evolution operator exp(—iHt/h)

@ Prepare eigenstate [1))

© Phase estimate energy.

Dynamics (Wiesner, quant-ph/9603028, Zalka, Proc. Roy. Soc. A

454, 313, 1998)

©@ Time evolution operator is
exp—i(T + V)ot/h ~exp—iTdt/hexp—iVit/h
© 7 is diagonal in p basis. V is diagonal in X basis

© Can efficiently transform between p and X using QFT.

© Use phase kickback to apply T and V operators.
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Two recent experiments

Calculation of ground state energy of H, in photonic quantum

computer

“Towards quantum chemistry on a quantum computer’ B.P.
Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P.
Almeida, |. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M.
Barbieri, A. Aspuru-Guzik, A.G. White. arxiv:0905.0887v3 To

appear in Nature Chemistry

v

Quantum Simulation of zitterbewegung in a trapped ion

“Quantum simulation of the Dirac equation” R. Gerritsma, G.
Kirchmair, F. Zahringer, E. Solano, R. Blatt, C. F. Roos .
arxiv:0909.0674v1
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Quantum chemistry

Hme!l = ?_e + ?_Z =+ \A/ZZ(qu)
+ \A/ee("ij) + \A/eZ(Rpi)

Born-Oppenheimer:

I’_‘IeleC — ?-e_|_ \A/ee(r,'j)—l— \A/eZ(Rpi)/

For two separated H, each will be in the 1s state: |¢)) = |1s)|1s’).
Make one-particle orbitals that are eigenstates of spatial parity:

g) = [1s) +]15")  |u) = |1s) — |15') (2)

Now the two electrons can occupy 2 spin states in 2 orbitals, giving
6 two electron basis states, antisymmetrized to respect exchange.
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Minimal basis H>

Symmetry, symmetry, symmetry!

Spatial symmetry: which basis elements are parity invariant?

v
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Minimal basis H>

Symmetry, symmetry, symmetry!

Spatial symmetry: which basis elements are parity invariant?
Two g's or two u's:

ms=0 [b1)=|glgl|=2""(glgl)—lgleg)
Pe) =uTul|=2"2(utul)—|ulul))

v
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Minimal basis H,

Symmetry, symmetry, symmetry!

Spatial symmetry: which basis elements are parity invariant?
Two g's or two u's:

ms=0 [b1)=|glgl|=2""(glgl)—lgleg)
Pe) =uTul|=2"2(utul)—|ulul))

Remaining states are antisymmetric under parity:
me=1 |03)=|gTul|=2""%(glul)—|uTgT))
me=0 |&3)=|gTul|=2""%(lgTul)—|uTgl))

b =lglul|=2""2(glul)—|uTgl))
me=—1 [03)=|glul|=2""%(glul)—|ulgl))

Subspaces do not mix: two 2 X 2 matrix eigenvalue problems.
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a) H2 potential energy surfaces D) 1 photon per bit
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Figure: First quantum chemistry experiment executed on a prototype quantum
computer. Two entangled photons are generated by parametric down
conversion and processed using quantum optics. The simultaneous detection of
the photons reveals the molecular energy of the hydrogen molecule eigenstates
encoded on one of the two photons by means of the quantum phase estimation
algorithm. Left: The experimental setup is a quantum optical information
processor. Center: Scheme for the experimental setup and quantum algorithm.
Right: Potential energy curves for the different states of molecular hydrogen in
the minimal STO-3G basis set. The quantum computer setup is able to obtain
more than 20 binary digits of precision, and therefore, the answer lies visually
on top of the numerical result obtained by a classical computer.
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A roadmap for quantum simulation?

Vintage quantum chemistry

Electronic wave functions

I. A general method of calculation for the stationary
states of any molecular system

By 8. F. Boys, Theoretical Chemisiry Department, University of Cambridge*
(Communicated by Sir Alfred Egerton, F.R.8.— Received 31 August 1949)

Year Calculation Citation Qubits
1933 H, H. M. James, A. S. Coolidge, J. Chem. Phys, 1, 825, (1933) 1
1950 Be S. F. Boys, Proc. Roy. Soc. of London. Series A, bf 201, 125 (1950) 3,4
1952 He G. R. Taylor, R. G. Parr, Proc. U. S. Natl. Acad. Sci, (38), 154, (1952) 2
1955 He H. Shull, P.-O. Lowdin, J. Chem. Phys, 23, 1565 (1955) 2,3
1956 BH, H,O S. F. Boys, G. B. Cook, C. M. Reeves, I. Shavitt, Nature 178, 1207, (1956) 5,7
1957 LiH, BeH™ J. Miller et al., J. Chem. Phys, 27, 1385 (1957) 3—5
1960 Be R. E. Watson, Phys. Rev. 119, 170, (1960) 6
1960 CH» J. M. Foster, S. F. Boys, Rev. Mod. Phys. 32, 305 (1960) 19
1963 Hy S. Hagstrom, H. Shull, Rev. Mod. Phys. 35, 624, (1963). 3—6
1966 HeH, Lir C. F. Bender, E. R. Davidson, J. Phys. Chem. 70, 2675 (1966), 3
1967 H> O R. Mcweeny, K. A. Ohno, Proc. Roy. Soc. A255, 367 (1967) 10
1968 Be C. F. Bunge, Phys. Rev. 168, 92, (1968). 11
1970 H> O R. P. Hosteny et al. Chem. Phys. Lett. 7, 325, (1970) 23
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Suppose one has the solution to the electronic structure problem:
energy as a function of nuclear coordinates. Imagine moving the
nuclei around adiabatically on that potential energy surface.
Semiclassical methods do well if curvature of surface small
compared to wavepacket localization (E. Heller, Time-dependent
approach to semiclassical dynamics, J. Chem. Phys. 1975 vol. 62
(4) pp. 1544-1555). Figure by D. Harrington, BMC '09
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Quantum lattice gases

Propagation Collision
IR
IR,

e | XIS, n out
X,X KKK o— 3.
OXIOX] X, -

Space — @ —@0Db
r—1 T r+1

“— @ —>— @ —> — 0 —>
vl —1,t) Yple—1,t) Yz, t) Yplxt) vple+1,1) Yple+1,1)
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A General Quantum Lattice-Gas Model

r—1 T r+ 1
— @ —> — @ —> — @0 —>
bp(e —1,t) vplz—1t) vz, t) ¢pgzt) ople+1¢) Prlr+11)

Time Evolution Implemented By:

(et ) =2 (5 5] (e 30)
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A General Quantum Lattice-Gas Model

r—1 T r+ 1
— @ —> — @ —> — @0 —>
bp(e —1,t) vplz—1t) vz, t) ¢pgzt) ople+1¢) Prlr+11)

Time Evolution Implemented By:
Yi(x,t+1)\  [a b\ (vi(x+1,t)
Yr(x,t+1)) P\b a Yr(x —1,t)

@ pis a phase

Peter J. Love Quantum Simulation



A General Quantum Lattice-Gas Model

r—1 T r+ 1
— @ —> — @ —> — @0 —>
bp(e —1,t) vplz—1t) vz, t) ¢pgzt) ople+1¢) Prlr+11)

Time Evolution Implemented By:
bilx, t+1)\ _ fa b\ (Yu(x+1,1)
Yr(x,t+ 1) P\b a Yr(x —1,t)
@ pis a phase

) (Z S) is unitary, has determinant 1, and STS =1
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A General Quantum Lattice-Gas Model

r—1 T r+ 1
— @ —> — @ —> — @0 —>
bp(e —1,t) vplz—1t) vz, t) ¢pgzt) ople+1¢) Prlr+11)

Time Evolution Implemented By:
bilx, t+1)\ _ fa b\ (Yu(x+1,1)
Yr(x,t+ 1) P\b a Yr(x —1,t)
@ pis a phase

) (Z S) is unitary, has determinant 1, and STS =1

a’— b2 =1
|a]* + |b]* = 1
ab+ ba=0
Re(ab) = 0
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Model Comparisons
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Model Comparisons

@ Meyer's model (J. Stat. Phys 85,551; Phys. Rev. E 55, 5261;
Int. J. Mod. Phys. C 8, 1997):

p=1

a = cosf

b=1isin®

m = tan6

’¢tota/‘2 — ’¢L‘2 + WRP
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Model Comparisons

@ Meyer's model (J. Stat. Phys 85,551; Phys. Rev. E 55, 5261;
Int. J. Mod. Phys. C 8, 1997):

o p=1

@ a =cosft

e b=1isinf

e m=-tand

o |Yeotar]® = L] + ¢RI

@ Boghosian and Taylor’'s model (Int. J. Mod. Phys. C 8, 705
and Phys. Rev. E 57, 54):

|2
@ p=2¢2
[+ a:cos%
o b=isin&

2

) m:tang

° |¢tota/‘2 — |¢L — wR|2
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Dispersion Relation

In the general model:

w = arccos (a(cos (£k))) — arg [p]
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Dispersion Relation

In the general model:
w = arccos (a(cos (£k))) — arg [p]

For Meyer’'s parameterization taking the limit where kK < w < 1,
this reduces to:

W2 = K2 1 2

Compare this to the relativistic energy equation:

E? = (pc)? + (mc?)?
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Dispersion Relation

In the general model:
w = arccos (a(cos (£k))) — arg [p]

For Meyer’'s parameterization taking the limit where kK < w < 1,

this reduces to:
W2 = K21 2

Compare this to the relativistic energy equation:
E2 = (pc)? + (mc?)?

In the Boghosian-Taylor parameterization, if we take the limit
w K ¢, k € ¢, dispersion relation reduces to:

k2 k2
W — _

B 2tan% T 2m’
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Dispersion Relation
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Figure: Dispersion of the Boghosian-Taylor model and the theoretical
dispersion of nonrelativistic Quantum Mechanics with a focus on the
small w, small k limit.
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Validating method for SHM

Probability Amplitude Mod Squared
o o =) =) o o
s & S
Energy of Potential (eV)
Probability Amplitude Mod Squared
o ° ° o o
s & S
Energy of Potential (eV)
Probability Amplitude Mod Squared
o o o o o o o
s & S
Energy of Potential (eV)

-5 0 5 -5 ] 5
Position (nm) Position (nm)

(b) (c)

Figure: The dashed (blue) line represents the potential. The solid (red)
line represents the analytic solution. The triangles (green) represent the
lattice gas solution. The timesareat t =0 fs, t = 69.10 fs, and

t = 274.26 fs. In the case of t = 138.21 fs, only a subset of the lattice
solutions were plotted for clarity. Figure by Andrew O'Hara, HC '09
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Scattering in Morse potential in QLGA

Peter - show a movie here!
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Experiment 2: Dirac dynamics in trapped lons

ihOsp = (cpox + mc?o, ) (3)

Phenomena: Klein paradox, zitterbewegung ( “trembling motion™),
negative energy eigenstates.

Zitterbewegung

Rapid oscillations of expectation value of position due to
interference between positive and negative energy solutions.

For electron the zitterbewegung amplitude is Rzg ~ 1071? m, and
the frequency is 102! Hz. That's picometer and zeptosecond
length and time scales. Not observed yet.

A
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Experiment 2: Dirac dynamics in trapped lons: Lamata et.
al. PRL 253005 (2007), Gerritsma et. al arxiv:0909.0674

Calcium ion in a linear Paul (quadrupole) trap

Bispinor states : |0) = |S;/, m =1/2) and |0) = |Ds /5 m=3/2)
Couple with laser at 729 nm
Hamiltonian:

H = (2nAQpoy + Qo) (4)

Jaynes-Cummings + optical Stark shift

Length and timescales

For n =0.06, A = \/h/2mcawax ~ 1 nm, wsy = 27 X 1.36 MHz.
() = 27 x 68kHz and 0 < Q < 27 x 13 kHz

ldentify ¢ = 2nAQ = 0.052A/us ~ 0.5A /s (~ 10~ of

c = 3A/attosecond)

mc? = hS) (about 1071% the mass of an electron)

y
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Results of Gerritsma et. al: arxiv:09090674

(@) 3.0 r——————— "

o

3
78 (A)

o R

1,=0.62 A ]

0 200 40 60 80 100 120 140 160
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] a1
0 50 100 150
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Relativistic Scattering and the Klein Paradox

Three regimes
e 0<Vi<E—m
o E—m<VW,<E+m
o E+-m< Vs

First two cases are the same as for nonrelativistic scattering.
Third case results in the Klein paradox
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Relativistic Scattering: V4

S0
Lattice Site

The above graph shows the 0 < V < E — m scenario of the Klein
paradox. The origin is in the right, back corner. Parameters for the
model were set so the lattice size was 128, 6 = % and k = %. The

initial binomial width was set to 32 spacings, the packet began at
site 32 and the barrier was located at site 64 with a value of 3.
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Relativistic Scattering: V>

Lattice Site

The above graph shows the E — m < V < E + m scenario of the
Klein paradox. The origin is in the right, back corner. Parameters
for the model were set so the lattice size was 128, 6 = 3, and
k = 7. The initial binomial width was set to 32 spacings, the

packet began at site 32 and the barrier was located at site 64 with
a value of 7.
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Relativistic Scattering: V3

Lattice Site

The above graph shows the E + m < V scenario of the Klein
paradox. The origin is in the right, back corner. Parameters for the
model were set so the lattice size was 128, 0 = % and k = %. The
initial binomial width was set to 32 spacings, the packet began at
site 32 and the barrier was located at site 64 with a value of %”.
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Conclusions

@ Can perform interesting simulations of quantum systems on
quantum computers

@ Simplest cases are now within reach of experiment

@ Historical development of classical simulation of quantum
mechanics provides a potential roadmap for experiment

@ Many interesting theoretical questions: state preparation for
molecules (Kitaev, Webb arxiv:0801.0342, Wang, Ashab, Nori
arxiv:0902.1419, Ward, Kassal, Aspuru-Gusik
arxiv:0812.2681), alternatives to Jordan-Wigner, efficient
quantum computation of potential functions....
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