
Quantum simulation: statics and dynamics

Peter J. Love

Department of Physics and Astronomy
Haverford College, Haverford PA 19041

October 14, 2009

Peter J. Love Quantum Simulation



Introduction

What is quantum simulation?

Techniques: phase estimation

Techniques: phase kickback

Experiment 1: Ground state energy of H2 in a minimal basis

Quantum lattice gas methods

Experiment 2: Simulating zitterbewegung in trapped ions

Peter J. Love Quantum Simulation



Introduction

What is quantum simulation?

Techniques: phase estimation

Techniques: phase kickback

Experiment 1: Ground state energy of H2 in a minimal basis

Quantum lattice gas methods

Experiment 2: Simulating zitterbewegung in trapped ions

Peter J. Love Quantum Simulation



What is quantum simulation?

“Simulating a quantum system with a controllable laboratory
system underlying the same mathematical model”.
(Gerritsma et. al arxiv:0909.0674v1)

Lab system has fixed, finite capabilities in terms of
initialization, evolution, measurement

Want to compute 〈ψ|Â|ψ〉 for some target state |ψ〉, some
target observable Â

Initialize lab system in some state

Control laboratory system to produce the state which
represents |ψ〉
Measure some set of observables (e.g qubit states 0,1) to
obtain information about Â

Lab system = universal quantum computer: quantum
simulation algorithms

If lab system = target system: we call that experiment!

Peter J. Love Quantum Simulation



What is quantum simulation?

“Simulating a quantum system with a controllable laboratory
system underlying the same mathematical model”.
(Gerritsma et. al arxiv:0909.0674v1)

Lab system has fixed, finite capabilities in terms of
initialization, evolution, measurement
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Techniques: phase estimation

U|ψ〉 = e−iφ|ψ〉
|S1〉 = |+〉|ψ〉

=
1√
2

[
|0〉|ψ〉+ |1〉|ψ〉

]

|S2〉 =
1√
2

[|0〉|ψ〉+ e−iφ|1〉|ψ〉]

|S3〉 =
1

2
[(1 + e−iφ)|0〉+ (1− e−iφ)|1〉]|ψ〉

Measure high qubit:

Prob(0) = |1 + e−iφ|2/2 = 1 + cosφ

Prob(1) = |1− e−iφ|2/2 = 1− cosφ
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Techniques: phase estimation

From phase estimation to energy measurement

Suppose that we can estimate arccos(〈σz〉/2) = φ to fixed
precision. Let U be the time evolution operator of a system for
time t:

U = exp(−itĤ/~) φ = tE/~

suppose the energy scale is such that E/~ < 1 so that we can
write E/~ as a binary fraction:

E/~ = 0.E2E4E8E16 · · · =
E2

2
+

E4

4
+

E8

8
+

E16

16
+ . . .

then choose t = 2π2n so that:

φ = N2π + πE2n/2 + . . . (1)

and we can repeat this calculation to estimate E one bit at a time.
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Techniques: phase kickback

Action of V is
V |a, b〉 = |a, b ⊕ V (a)〉
Implemented by classical circuit
Consider V (0) = 0, V (1) = 1

|S1〉 = α(|00〉 − |01〉) + β(|10〉 − |11〉)
7→|S2〉 = α(|00〉 − |01〉) + β(|11〉 − |10〉)

= |−〉
(

1 0
0 −1

)
|ψ〉

Here phase kickback has been used to apply the diagonal unitary
e iπV to the wavefunction. The cost is the classical cost of
computing V .
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Techniques: phase kickback

Action of V is
V |a, b〉 = |a, b ⊕ V (a)〉
On n state qubits and m
ancillae.
V : {0, 1}n 7→ {0, 1}m

|S1〉 = |x〉
2m−1∑
y=0

e2πiy/2m |y〉 7→ |S2〉 = |x〉
2m−1∑
y=0

e2πiy/2m |y ⊕ V (x)〉

= e−i2πV (x)/2m |x〉
2m−1∑
y=0

e2πiy/2m |y〉

Again phase kickback has been used to apply the diagonal unitary
e−iπV /2m

to the wavefunction.
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Statics and dynamics

Common steps

1 Define mapping of system state to qubit state |ψ〉

Statics (Kitaev, Abrams and LLoyd PRL 83 5162 (1999))

1 Define circuit for time evolution operator exp(−i Ĥt/~)

2 Prepare eigenstate |ψ〉
3 Phase estimate energy.

Dynamics (Wiesner, quant-ph/9603028, Zalka, Proc. Roy. Soc. A
454, 313, 1998)

1 Time evolution operator is
exp−i(T + V )δt/~ ' exp−iT δt/~ exp−iV δt/~

2 T is diagonal in p̂ basis. V is diagonal in x̂ basis

3 Can efficiently transform between p̂ and x̂ using QFT.

4 Use phase kickback to apply T and V operators.
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Two recent experiments

Calculation of ground state energy of H2 in photonic quantum
computer

“Towards quantum chemistry on a quantum computer” B.P.
Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P.
Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M.
Barbieri, A. Aspuru-Guzik, A.G. White. arxiv:0905.0887v3 To
appear in Nature Chemistry

Quantum Simulation of zitterbewegung in a trapped ion

“Quantum simulation of the Dirac equation” R. Gerritsma, G.
Kirchmair, F. Zahringer, E. Solano, R. Blatt, C. F. Roos .
arxiv:0909.0674v1
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Quantum chemistry

Hamiltonian

Ĥmol = T̂e + T̂Z + V̂ZZ (Lpq)

+ V̂ee(rij) + V̂eZ (Rpi )

Born-Oppenheimer:

Ĥelec = T̂e +V̂ee(rij)+V̂eZ (Rpi )

Basis Sets

For two separated H, each will be in the 1s state: |ψ〉 = |1s〉|1s ′〉.
Make one-particle orbitals that are eigenstates of spatial parity:

|g〉 = |1s〉+ |1s ′〉 |u〉 = |1s〉 − |1s ′〉 (2)

Now the two electrons can occupy 2 spin states in 2 orbitals, giving
6 two electron basis states, antisymmetrized to respect exchange.
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Minimal basis H2

Symmetry, symmetry, symmetry!

Spatial symmetry: which basis elements are parity invariant?

Two g ’s or two u’s:

ms = 0 |Φ1〉 = |g ↑ g ↓ | = 2−1/2(|g ↑ g ↓〉 − |g ↓ g ↑〉)
|Φ6〉 = |u ↑ u ↓ | = 2−1/2(|u ↑ u ↓〉 − |u ↓ u ↑〉)

Remaining states are antisymmetric under parity:

ms = 1 |Φ3〉 = |g ↑ u ↑ | = 2−1/2(|g ↑ u ↑〉 − |u ↑ g ↑〉)

ms = 0 |Φ3〉 = |g ↑ u ↓ | = 2−1/2(|g ↑ u ↓〉 − |u ↑ g ↓〉)
|Φ4〉 = |g ↓ u ↑ | = 2−1/2(|g ↓ u ↑〉 − |u ↑ g ↓〉)

ms = −1 |Φ3〉 = |g ↑ u ↑ | = 2−1/2(|g ↓ u ↓〉 − |u ↓ g ↓〉)
Subspaces do not mix: two 2× 2 matrix eigenvalue problems.
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Figure: First quantum chemistry experiment executed on a prototype quantum
computer. Two entangled photons are generated by parametric down
conversion and processed using quantum optics. The simultaneous detection of
the photons reveals the molecular energy of the hydrogen molecule eigenstates
encoded on one of the two photons by means of the quantum phase estimation
algorithm. Left: The experimental setup is a quantum optical information
processor. Center: Scheme for the experimental setup and quantum algorithm.
Right: Potential energy curves for the different states of molecular hydrogen in
the minimal STO-3G basis set. The quantum computer setup is able to obtain
more than 20 binary digits of precision, and therefore, the answer lies visually
on top of the numerical result obtained by a classical computer.
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A roadmap for quantum simulation?

Vintage quantum chemistry

Year Calculation Citation Qubits
1933 H2 H. M. James, A. S. Coolidge, J. Chem. Phys, 1, 825, (1933) 1
1950 Be S. F. Boys, Proc. Roy. Soc. of London. Series A, bf 201, 125 (1950) 3, 4
1952 He G. R. Taylor, R. G. Parr, Proc. U. S. Natl. Acad. Sci, (38), 154, (1952) 2
1955 He H. Shull, P.-O. Lowdin, J. Chem. Phys, 23, 1565 (1955) 2, 3
1956 BH, H2O S. F. Boys, G. B. Cook, C. M. Reeves, I. Shavitt, Nature 178, 1207, (1956) 5, 7

1957 LiH, BeH+ J. Miller et al., J. Chem. Phys, 27, 1385 (1957) 3− 5
1960 Be R. E. Watson, Phys. Rev. 119, 170, (1960) 6
1960 CH2 J. M. Foster, S. F. Boys, Rev. Mod. Phys. 32, 305 (1960) 19
1963 H2 S. Hagstrom, H. Shull, Rev. Mod. Phys. 35, 624, (1963). 3− 6
1966 HeH, Li2 C. F. Bender, E. R. Davidson, J. Phys. Chem. 70, 2675 (1966), 3
1967 H2O R. Mcweeny, K. A. Ohno, Proc. Roy. Soc. A255, 367 (1967) 10
1968 Be C. F. Bunge, Phys. Rev. 168, 92, (1968). 11
1970 H2O R. P. Hosteny et al. Chem. Phys. Lett. 7, 325, (1970) 23
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Dynamics

Suppose one has the solution to the electronic structure problem:
energy as a function of nuclear coordinates. Imagine moving the
nuclei around adiabatically on that potential energy surface.
Semiclassical methods do well if curvature of surface small
compared to wavepacket localization (E. Heller, Time-dependent
approach to semiclassical dynamics, J. Chem. Phys. 1975 vol. 62
(4) pp. 1544-1555). Figure by D. Harrington, BMC ’09
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Quantum lattice gases

Propagation Collision

Space

Time
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A General Quantum Lattice-Gas Model

Time Evolution Implemented By:(
ψL(x , t + 1)
ψR(x , t + 1)

)
= p

(
a b
b a

)(
ψL(x + 1, t)
ψR(x − 1, t)

)

p is a phase(
a b
b a

)
is unitary, has determinant 1, and S†S = 1

a2 − b2 = 1
|a|2 + |b|2 = 1
ab + ba = 0
Re(ab) = 0
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Model Comparisons

Meyer’s model (J. Stat. Phys 85,551; Phys. Rev. E 55, 5261;
Int. J. Mod. Phys. C 8, 1997):

p = 1
a = cos θ
b = i sin θ
m = tan θ
|ψtotal |2 = |ψL|2 + |ψR |2

Boghosian and Taylor’s model (Int. J. Mod. Phys. C 8, 705
and Phys. Rev. E 57, 54):

p = e i φ
2

a = cos φ
2

b = i sin φ
2

m = tan φ
2|ψtotal |2 = |ψL − ψR |2
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Dispersion Relation

In the general model:

ω = arccos (a(cos (±k)))− arg [p]

For Meyer’s parameterization taking the limit where k < ω � 1,
this reduces to:

ω2 = k2 + θ2

Compare this to the relativistic energy equation:

E 2 = (pc)2 + (mc2)2

In the Boghosian-Taylor parameterization, if we take the limit
ω � φ, k � φ, dispersion relation reduces to:

ω =
k2

2 tan φ
2

=
k2

2m
,
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Dispersion Relation
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Figure: Dispersion of the Boghosian-Taylor model and the theoretical
dispersion of nonrelativistic Quantum Mechanics with a focus on the
small ω, small k limit.
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Validating method for SHM

(a) (b) (c)

Figure: The dashed (blue) line represents the potential. The solid (red)
line represents the analytic solution. The triangles (green) represent the
lattice gas solution. The times are at t = 0 fs, t = 69.10 fs, and
t = 274.26 fs. In the case of t = 138.21 fs, only a subset of the lattice
solutions were plotted for clarity. Figure by Andrew O’Hara, HC ’09
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Scattering in Morse potential in QLGA

Peter - show a movie here!
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Experiment 2: Dirac dynamics in trapped Ions

1-D Dirac equation

i~∂tψ = (cp̂σx + mc2σz)ψ (3)

Phenomena: Klein paradox, zitterbewegung (“trembling motion”),
negative energy eigenstates.

Zitterbewegung

Rapid oscillations of expectation value of position due to
interference between positive and negative energy solutions.
For electron the zitterbewegung amplitude is RZB ∼ 10−12 m, and
the frequency is 1021 Hz. That’s picometer and zeptosecond
length and time scales. Not observed yet.
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Experiment 2: Dirac dynamics in trapped Ions: Lamata et.
al. PRL 253005 (2007), Gerritsma et. al arxiv:0909.0674

Calcium ion in a linear Paul (quadrupole) trap

Bispinor states : |0〉 = |S1/2,m = 1/2〉 and |0〉 = |D5/2,m=3/2〉
Couple with laser at 729 nm
Hamiltonian:

H = (2η∆Ω̃p̂σx + ~Ωσz) (4)

Jaynes-Cummings + optical Stark shift

Length and timescales

For η = 0.06, ∆ =
√

~/2mCaωax ' 1 nm, ωax = 2π × 1.36 MHz.
Ω̃ = 2π × 68kHz and 0 < Ω ≤ 2π × 13 kHz
Identify c = 2η∆Ω̃ = 0.052∆/µs ' 0.5Å/µs (' 10−11 of
c = 3Å/attosecond)
mc2 = ~Ω (about 10−16 the mass of an electron)
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Results of Gerritsma et. al: arxiv:09090674

3

›

~

FIG. 1: Expectation values 〈x̂(t)〉 for particles with dif-
ferent masses. The linear curve (!) represents a massless
particle (Ω = 0) moving with the speed of light given by

c = 2ηΩ̃∆ = 0.052 ∆/µs for all curves. The other curves
are for particles with increasing mass moving down from
the linear curve. Their Compton wavelengths are given by
λC := 2ηΩ̃∆/Ω = 5.4∆ ("), 2.5∆ (#), 1.2∆ (•) and 0.6∆
($), respectively. The solid curves represent numerical sim-
ulations. The figure shows Zitterbewegung for the crossover
from the relativistic 2ηΩ̃ # Ω to the nonrelativistic limit
2ηΩ̃ $ Ω. The error bars are obtained from a linear fit as-
suming quantum projection noise. The inset shows fitted Zit-
terbewegung amplitude RZB (!) and frequency ωZB (•) ver-

sus the parameter Ω/ηΩ̃ (which is proportional to the mass).
Error bars 1σ.

momentum 〈p̂〉 = 2.2!/∆ is shown. The corresponding
reconstructed probability distributions are displayed in
Fig. 3b and it can be seen that there is indeed no Zitter-
bewegung or splitting of the wavefunction.

We have implemented a proof-of-principle quantum op-
tical simulation of a tunable relativistic quantum me-
chanical system. We have demonstrated that the simu-
lated one-dimensional Dirac dynamics for a free particle
shows Zitterbewegung and several of its counterintuitive
quantum relativistic features. A natural route for the
near future will be to move theoretically and experimen-
tally towards the simulation of dynamics that are impos-
sible (or difficult) to calculate in real systems, such as
in quantum chemistry [27] or quantized Dirac fields in a
quantum field theory context [1]. We consider this ex-
periment to be an important first step that will pave the
way towards more complex quantum simulations. Fur-
thermore, the mapping between quantum optical systems
and relativistic quantum mechanics may be followed by
further analogies between the Dirac dynamics and the
Jaynes-Cummings model [9, 28, 29] and photonic [10] or
sonic analogies [30].

(a)

(b)

›

FIG. 2: Zitterbewegung for a state with non-zero average mo-
mentum. (a) Initially, Zitterbewegung appears due to inter-
ference of positive and negative energy parts of the state. As
these parts separate, the oscillatory motion fades away. The
solid curve represents a numerical simulation. (b) Measured
(filled areas) and numerically calculated (solid lines) proba-
bility distributions |ψ(x)|2 at the times t = 0, 75 and 150 µs
(as indicated by the arrows in (a)). The probability distribu-
tion corresponding to the state |1〉 is inverted for clarity. The
vertical solid line represents 〈x̂〉 as plotted in (a). The two
dashed lines are the expectation values for the positive and
negative energy parts of the spinor. Error bars 1σ.

Methods

Measurement of 〈x〉 and |ψ(x)|2. In ion trap ex-
periments the only observable that can directly be mea-
sured by fluorescence detection is σz. Additional laser
pulses can be used to map other observables onto σz. In
the experiment we apply a state-dependent displacement
operation U = exp(−ikx̂σx/2) to the quantum state ρ
followed by a measurement of σz which is equivalent to
measuring the observable

A(k) = U †σzU = cos(kx̂)σz + sin(kx̂)σy . (5)

Here, k = 2ηΩpt/∆ is proportional to the interaction
time t. If the ion’s internal initial state is the eigenstate
of σz belonging to eigenvalue +1, 〈A(k)〉 = 〈cos(kx̂)〉
and for the eigenstate of σy belonging to eigenvalue +1,
〈A(k)〉 = 〈sin(kx̂)〉. A Fourier transformation of these
measurements yields the probability density 〈δ(x̂−x)〉 in
position space.

For the position operator we have that d
dk 〈A(k)〉∣∣

t=0
∝

〈x̂σy〉. Measuring 〈x̂〉 thus requires the preparation of an
eigenstate of σy which however cannot be done directly
when the motional state is entangled with the internal
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Relativistic Scattering and the Klein Paradox

Three regimes

0 < V1 < E −m

E −m < V2 < E + m

E + m < V3

First two cases are the same as for nonrelativistic scattering.
Third case results in the Klein paradox
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Relativistic Scattering: V1

The above graph shows the 0 < V < E −m scenario of the Klein
paradox. The origin is in the right, back corner. Parameters for the
model were set so the lattice size was 128, θ = π

3 , and k = π
4 . The

initial binomial width was set to 32 spacings, the packet began at
site 32 and the barrier was located at site 64 with a value of π

21 .

Peter J. Love Quantum Simulation



Relativistic Scattering: V2

The above graph shows the E −m < V < E + m scenario of the
Klein paradox. The origin is in the right, back corner. Parameters
for the model were set so the lattice size was 128, θ = π

3 , and
k = π

4 . The initial binomial width was set to 32 spacings, the
packet began at site 32 and the barrier was located at site 64 with
a value of π

4 .
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Relativistic Scattering: V3

The above graph shows the E + m < V scenario of the Klein
paradox. The origin is in the right, back corner. Parameters for the
model were set so the lattice size was 128, θ = π

3 , and k = π
4 . The

initial binomial width was set to 32 spacings, the packet began at
site 32 and the barrier was located at site 64 with a value of 5π

6 .
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Conclusions

Can perform interesting simulations of quantum systems on
quantum computers

Simplest cases are now within reach of experiment

Historical development of classical simulation of quantum
mechanics provides a potential roadmap for experiment

Many interesting theoretical questions: state preparation for
molecules (Kitaev, Webb arxiv:0801.0342, Wang, Ashab, Nori
arxiv:0902.1419, Ward, Kassal, Aspuru-Gusik
arxiv:0812.2681), alternatives to Jordan-Wigner, efficient
quantum computation of potential functions....
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