Learning much from little

Compressed sensing ideas for quantum state tomography and other instances of quantum systems identification

Jens Eisert

David Gross
Yi-Kai Liu
Steve Flammia
Stephen Becker

Potsdam/Institute for Advanced Study Berlin
Potsdam/Hannover CalTech
Perimeter Institute

Imperial College London

Mention joint work with Toby Cubitt, Michael Wolf, Ignacio Cirac

- Consider some unknown quantum state ρ of n spins, say, of ions in a trap
- We would like to measure that state

Unknown quantum state

Measurement

- Consider some unknown quantum state ρ of n spins, say, of ions in a trap
- We would like to measure that state

3.2Mb

Haeffner et al, Nature 438, 64 (2005)

Unknown quantum state

Reconstruction

- Consider some unknown quantum state ρ of n spins, say, of ions in a trap
- We would like to measure that state
- Assume that rank $\rho=r$, with $r \ll d$, where $d=2^{n}$
- How many parameters do we need to know to specify ρ ?
- Hmm, well, about $r d$

Unknown quantum state

Measurement

Reconstruction

- Consider some unknown quantum state ρ of n spins, say, of ions in a trap
- We would like to measure that state
- Assume that rank $\rho=r$, with $r \ll d$, where $d=2^{n}$
- How many parameters do we need to know to specify ρ ?
- Hmm, well, about $r d$
- Now, how many numbers do we have to measure for full tomography?
- Ok, surely about $d^{2} \gg r d$
- What a terrible waste!

Unknown quantum state

Measurement

Reconstruction

- Main question of first part of talk:

- Can one obtain complete information about an unknown quantum state using substantially fewer than d^{2} measurement settings, if the state is (essentially) low rank?
- Yes we can

Unknown quantum state

Measurement

- Guided tour through (the rest of) the talk:

- A classical analogue
- The theorem
- Some flavor of proof
- Certified quantum state tomography
- Long outlook: Other ideas related in spirit:
- Entanglement bounds in optical systems
- Certifying spectral densities of environments of opto-mechanical systems
- Detecting non-Markovian dynamics from a snapshot in time
- A classical analogue
- At given time few (r) out of many possible strings (d) sound
- Spectrum essentially described by $r \ll d$ numbers
- Task: Identify that spectrum using a few measurements
- First idea: Measure in frequency domain
- Need d sensors!
- Second idea: Take few samples in time domain
- Shannon-Nyquist: "If a function contains no frequencies higher than ω Hertz, it is completely determined by giving its ordinates at a series of points spaced $1 /(2 \omega)$ seconds apart"
. Compressed sensing

- Classical compressed sensing:

- Consider discrete time signal x, composed of at most r "frequencies"

$$
\begin{aligned}
x & =\sum_{i=1}^{r} s_{i} \psi_{i} \\
\text { so } x & =\Psi s, \text { and perform measurements } y_{i}=\left\langle x, \phi_{i}\right\rangle, y=\Phi x
\end{aligned}
$$

Theorem (Candes, Tao, et al, 2004):

- Knowing only $O(r \log d)$ different such measurements, with randomly chosen measurement vectors ϕ_{i}, one can recover any discrete-time signal x composed of at most r frequencies
- Scheme is probabilistic, succeeds with overwhelming probability
- Recovery is exact
- Computationally efficient: Signal uniquely solves convex optimization problem

$$
\begin{gathered}
\min \left\|s^{\prime}\right\|_{l_{1}} \\
\text { subject to } \Phi \Psi s^{\prime}=y
\end{gathered}
$$

- Quantum compressed sensing
- Back to unknown rank- r density matrices ρ...
... which we would like to learn in an economic fashion
- Want to learn about a sparse object, without knowing sparsity pattern, does resemble compressed sensing
- Indeed, previous results extend to matrix completion: Reconstruct unknown matrix from only few matrix elements

Candes, Recht, arXiv:0805.447।
Candes, Tao, arXiv:0903.1476
Candes, Plan, arXiv:0903.3।3।

- Not quite applicable to quantum case

Unknown quantum state

Measurement

Reconstruction

- More natural in quantum case:

- Measure Pauli matrix expectation values $\left\{\mathbb{I}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\}$ so collect data $\operatorname{tr} \rho\left(\sigma_{i_{1}} \otimes \cdots \otimes \sigma_{i_{n}}\right)$

- Physical dimension is $d=2^{n}$, write

$$
\begin{gathered}
w=\bigotimes_{i=1}^{n} w_{i}, w_{i} \in\left\{\mathbb{I}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\} \\
w(A), A \in\left[1, d^{2}\right]
\end{gathered}
$$

Unknown quantum state

Measurement

Reconstruction

- Quantum compressed sensing:

Theorem (Gross, Liu, Flammia, Becker, Eisert, 2009):

- Knowing $O(r d \log d)$ randomly chosen Pauli expectation values $\operatorname{tr}\left(w\left(A_{i}\right) \rho\right)$ one can recover any unknown density matrix ρ of rank r
- Scheme is probabilistic, succeeds with overwhelming probability
- Recovery is exact
- Achieved computationally efficiently: Quantum state uniquely solves convex optimization problem

$$
\begin{aligned}
& \min \|\omega\|_{1} \\
& \text { subject to } \operatorname{tr}\left(w\left(A_{i}\right) \omega\right)=\operatorname{tr}\left(w\left(A_{i}\right) \rho\right), i=1, \ldots, m \\
& \operatorname{tr}(\omega)=1
\end{aligned}
$$

- Quantum compressed sensing: Flavor of proof
- For $m=\kappa d r$ measurements, define measurement operator

$$
\mathcal{R}: \rho \mapsto \frac{d}{m} \sum_{i=1}^{m} w\left(A_{i}\right) \operatorname{tr}\left(\rho w\left(A_{i}\right)\right)
$$

- For a state σ, consider deviation $\Delta=\sigma-\rho$ from "true state"
- Let T be column and row space of ρ, \mathcal{P}_{T} projection onto T, decompose deviation as $\Delta=\Delta_{T}+\Delta_{T}^{\perp}$

- $\|\rho+\Delta\|_{1}>\|\rho\|_{1}$ ("worse solution") or
- $\mathcal{R} \Delta \neq 0$ ("infeasible")
- Quantum compressed sensing: Flavor of proof
- Now consider two cases: Case (i): $\left\|\Delta_{T}\right\|_{2}<d^{2}\left\|\Delta_{T^{\perp}}\right\|_{2}$

$$
\operatorname{Pr}\left(\left\|\mathcal{P}_{T} \mathcal{R} \mathcal{P}_{T}-\mathbb{I}_{T}\right\|>t\right)<4 d r e^{-t^{2} \kappa / 4}
$$

$$
\|\mathcal{R} \Delta\|_{2}>0
$$

"Infeasible"

- Matrix-valued Bernstein inequality (Ahlswede,Winter, 2002):
- Let $S=\sum^{m} X_{i}$ with X_{i} i.i.d. matrix-valued random variables, $\mathbb{E}(X)=0$, set $\sigma^{2}=\stackrel{i=1}{\| \mathbb{E}}\left(X^{2}\right) \|$, then, for $t<2 m \sigma^{2} /\|X\|$ one finds

$$
\operatorname{Pr}(\|S\|>t) \leq 2 d e^{-t^{2} /\left(4 m \sigma^{2}\right)}
$$

- Quantum compressed sensing: Flavor of proof
- Now consider two cases: Case (ii): $\left\|\Delta_{T}\right\|_{2}>d^{2}\left\|\Delta_{T^{\perp}}\right\|_{2}$

Task: Find subgradient $Y \in$ range \mathcal{R} such that

$$
\|\rho+\Delta\|_{1}>\|\rho\|_{1}+\operatorname{tr}[Y \Delta] \geq\|\rho\|_{1}
$$

$$
\text { for all } \Delta \in \operatorname{range} \mathcal{R}^{\perp} \neq 0
$$

$$
\|\rho+\Delta\|_{1}>\|\rho\|_{1}
$$

"Not optimal"

- Quantum compressed sensing: Flavor of proof
- Now consider two cases: Case (ii): $\left\|\Delta_{T}\right\|_{2}>d^{2}\left\|\Delta_{T^{\perp}}\right\|_{2}$

$$
\begin{aligned}
& \text { Task: Find subgradient } Y \in \text { range } \mathcal{R} \text { such that } \\
& \qquad\|\rho+\Delta\|_{1}>\|\rho\|_{1}+\operatorname{tr}[Y \Delta] \geq\|\rho\|_{1} \\
& \text { for all } \Delta \in \text { range } \mathcal{R}^{\perp} \neq 0
\end{aligned}
$$

Sweat goes into construction of such Y, again

- using large deviation bounds, and
- an adaptive scheme of using data, "golfing"
$\left\|\mathcal{P}_{T} Y-\mathbb{I}_{T}\right\|_{2} \leq 1\left(2 d^{2}\right),\left\|\mathcal{P}_{T} Y\right\|_{2}<1 / 2$
(End of proof)

- Certified tomography:

- Nice, but how do we know that the state is low rank in the first place?
- One does not have to! (Say, $r=1$)
- Make use of part of the data $O(r d \log d)$ to estimate the purity $\operatorname{tr}\left(\rho^{2}\right)$,
- ... formulate a version of theorem allowing for errors
- ... use the estimate for the purity in the bound

- Lesson of the main part of talk:

If a state is close to being low-rank, then perform the same measurements as for full quantum state tomography, but just randomly so and much fewer of them, and still faithfully (and efficiently) reconstruct the state

Gross, Liu, Flammia, Becker, Eisert, arXiv:0909.3304

- (Methods general enough to get simpler - and in effort scaling improved - proof of matrix completion)
- Long outlook: Related ideas

- Trying to further "learn much from little"

- Directly measure interesting quantities in experiments, without detour via quantum process or state tomography
- Do it with error bars
- Measure the "unexpected"

Unknown quantum state

Measurement

Reconstruction

I. Directly estimating entanglement

- Estimate the quantitative entanglement content of states
- ...from much less than tomographic knowledge
- Find good and feasible lower bounds to solution of

$$
\begin{array}{ll}
\min & E(\rho) \\
\text { subject to } & \operatorname{tr}\left(\rho W_{i}\right)=c_{i}
\end{array}
$$

for entanglement measure E and some expectation values of W_{i}

- Applied to continuous-variable entanglement distillation schemes, where tomographic knowledge is too expensive/noisy

Lundeen, Feito, Coldenstrodt-Ronge, Pregnell, Silberhorn, Ralph, Eisert, Plenio, Walmsley, Nature Physics 5, 27 (2009)
Puentes, Datta, Feito, Eisert, Plenio,Walmsley, arXiv:09I I . 2482
Eisert, Brandao, Audenaert, New J Phys 8, 46 (2007)
Guehne, Reimpell,Werner, Phys Rev Lett 98, I I0502 (2007)

2. Assessing decoherence of optomechanical systems:

- Learn about otherwise inaccessible spectral density of the heat bath of mechanical mode from spectral properties of light leaving the optical cavity
- Certify non-Ohmic baths

3. Detecting non-Markovian dynamics from a snapshot in time?

3. Detecting non-Markovian dynamics from a snapshot in time?

- Dynamical map: Completely positive map T specifying dynamics after given time
- Typical setting in process tomography: Do process tomography at many time slices

3. Detecting non-Markovian dynamics from a snapshot in time?

- But could we have known whether dynamics was Markovian from just a single snapshot in time?
- Quantum channels:
- Channel $T: M_{d} \rightarrow M_{d}$ has matrix form \hat{T}

$$
\hat{T}_{j, k}=\operatorname{tr}\left[O_{j} T\left(O_{k}\right)\right]
$$

and Choi matrix $\hat{T}^{\Gamma},\langle j, k| \hat{T}^{\Gamma}|a, b\rangle=\langle j, a| \hat{T}|k, b\rangle$

- Channel is Markovian, if $T=e^{L}$ for some generator L (setting time $t=1$)
- "Lindblad form" of generator:

$$
L(\rho)=i[\rho, H]+\sum_{\alpha, \beta} G_{\alpha, \beta}\left(F_{\alpha} \rho F_{\beta}^{\dagger}-\frac{1}{2}\left\{F_{\beta}^{\dagger} F_{\alpha}, \rho\right\}_{+}\right)
$$

- How do we now "test for Markovianity"?

- Jordan normal form

$$
\begin{gathered}
\hat{T}=\sum_{r} \lambda_{r} P_{r}+\sum_{c}\left(\lambda_{c} P_{c}+\bar{\lambda}_{c} \mathbb{F} \bar{P}_{c} \mathbb{F}\right) \\
\text { Complex part }
\end{gathered}
$$

- Logarithm:

$$
\log \hat{T}=L_{0}+2 \pi i \sum_{c} m_{c}\left(\lambda_{c} P_{c}+\bar{\lambda}_{c} \mathbb{F} \bar{P}_{c} \mathbb{F}\right)
$$

- Needless to say, has infinitely many branches
- Is one of the branches a valid Lindblad generator?

- How do we now "test for Markovianity"?

- Jordan normal form

$$
\begin{gathered}
\hat{T}=\sum_{r} \lambda_{r} P_{r}+\sum_{c}\left(\lambda_{c} P_{c}+\bar{\lambda}_{c} \mathbb{F} \bar{P}_{c} \mathbb{F}\right) \\
\text { Complex part }
\end{gathered}
$$

- Logarithm:

$$
\log \hat{T}=L_{0}+2 \pi i \sum_{c} m_{c}\left(\lambda_{c} P_{c}+\bar{\lambda}_{c} \mathbb{F} \bar{P}_{c} \mathbb{F}\right)
$$

- Needless to say, has infinitely many branches
- Is one of the branches a valid Lindblad generator?
- Lemma: A Hermitian linear map $L: M_{d} \rightarrow M_{d}$ is a valid Lindblad generator iff it satisfies normalization $L^{*}(\mathbb{1})=0$ and

$$
(\mathbb{I}-\omega) L^{\Gamma}(\mathbb{I}-\omega) \geq 0
$$

ω maximally entangled state

- Putting things together:
- Theorem: A channel T is Markovian ("could have come from Markovian dynamics") iff there is an integer solution to

$$
A_{0}+\sum_{c} m_{c} A_{c} \geq 0
$$

- Known matrices:

$$
\begin{aligned}
& A_{0}=(\mathbb{I}-\omega) L_{0}^{\Gamma}(\mathbb{I}-\omega) \\
& A_{c}=2 \pi i(\mathbb{1}-\omega)\left(P_{c}-\mathbb{F} \bar{P}_{c} \mathbb{F}\right)^{\Gamma}(\mathbb{1}-\omega)
\end{aligned}
$$

Test for Markovianity!

(Efficient in input length, practical; interestingly NP hard in physical dimension, just as the classical embedding problem)

Can be made quantitative measure of Markovianity

- Where are the Markovian channels?

- For qubit channels: Only 2\% Markovian*
* Drawn according to Haar measure for unitaries on system+ environment
- Where are the Markovian channels?

Identity channel, "do nothing!"

- Strange enough: Non-convex! E.g.,

$$
T(\rho)=(\lambda) T_{1}(\rho)+(1-\lambda) T_{2}(\rho)
$$

- Non-Markovian effects can arise from environments in mixture of states each of which would lead to Markovian dynamics
- Test for Markovianity at a single time

Neeley, Ansmann, Bialczak, Hofheinz, Katz, Lucero, O'Connell,Wang, Cleland, Martinis, Nature Physics 4, 523 (2008)

- Interestingly, for some times, single snapshots of phase qubit evolution certify strongly non-Markovian dynamics
- Test for Markovianity at a single time

- Can one even get an estimate for the bath-correlation time, without making a model of environment, without even thinking about it?
- Many snapshots?
. Summary

- "Learn much from little"

I. Compressed sensing approach to quantum state tomography:

"Get reliable estimates from few measurement settings, within the paradigm of compressed sensing"

2. Related ideas, like detecting forgetfulness of channels from a snapshot in time:
"Measure once, and get a meaningful statement about a continuous process"

Thanks for your attention

