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  Consider some unknown quantum state    of     spins, say, of ions in a trap

  We would like to measure that state
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  Now, how many numbers do we have to measure for full tomography?

  Ok, surely about 

  What a terrible waste!



 Can one obtain complete information about an unknown quantum state  
   using substantially fewer than     measurement settings, if the state is
   (essentially) low rank?   

d2

 Yes we can

 Main question of first part of talk:

Unknown quantum state Measurement
Reconstruction



 Guided tour through (the rest of) the talk:

 A classical analogue

 The theorem

 Some flavor of proof

 Long outlook: Other ideas related in spirit:

 Entanglement bounds in optical systems

 Certifying spectral densities of environments of opto-mechanical systems

 Detecting non-Markovian dynamics from a snapshot in time

 Certified quantum state tomography



 A classical analogue



 At given time few (   ) out of many possible strings (   ) sound

 Spectrum essentially described by            numbers

 Task: Identify that spectrum using a few measurements

r d

r ! d



 First idea: Measure in frequency domain

    Need    sensors!

 Second idea: Take few samples in time domain

    Shannon-Nyquist: "If a function contains no frequencies
      higher than    Hertz, it is completely determined by
      giving its ordinates at a series of points spaced  
      seconds apart"

d

ω
1/(2ω)



 Compressed sensing



 Consider discrete time signal    , composed of at most    "frequencies" 

   so              , and perform measurements                      ,   

 Classical compressed sensing:

x r

x =
r∑

i=1

siψi

x = Ψs yi = 〈x, φi〉 y = Φx

Theorem (Candes, Tao, et al, 2004):

 Knowing only                    different such measurements, with 
   

   randomly chosen measurement vectors     , one can recover
   any discrete-time signal    composed of at most    frequencies 

 Scheme is probabilistic, succeeds with overwhelming probability

 Recovery is exact

 Computationally efficient: Signal uniquely solves convex optimization 
   problem

           min
  

        subject to 

r

O(r log d)

x

‖s′‖l1

ΦΨs′ = y

φi

Candes, Tao, IEEE Trans Inf Th 51, 4203 (2005)
Candes, Romberg, Tao, IEEE Trans Inf Th 52, 489 (2006)



 Quantum compressed sensing



Unknown quantum state Measurement
Reconstruction

 Back to unknown rank-    density matrices    ...r ρ

... which we would like to learn in an economic fashion

 Want to learn about a sparse object, without knowing sparsity pattern,  
   does resemble compressed sensing 

 Indeed, previous results extend to matrix completion: 
   Reconstruct unknown matrix from only few matrix elements

 Not quite applicable to quantum case

Candes, Recht, arXiv:0805.4471
Candes, Tao, arXiv:0903.1476
Candes, Plan, arXiv:0903.3131



Unknown quantum state Measurement
Reconstruction

 More natural in quantum case: 

 Measure Pauli matrix expectation values

 so collect data

{I, σx, σy, σz}
trρ(σi1 ⊗ · · ·⊗ σin)

w(A), A ∈ [1, d2]

 Physical dimension is             , write d = 2n

w =
n⊗

i=1

wi, wi ∈ {I, σx, σy, σz}



Theorem (Gross, Liu, Flammia, Becker, Eisert, 2009):

 Knowing                     randomly chosen Pauli expectation values 
  

  one can recover any unknown density matrix    of rank   

 Scheme is probabilistic, succeeds with overwhelming probability

 Recovery is exact

 Achieved computationally efficiently: Quantum state uniquely solves convex 
   optimization problem

     min
  

     subject to 

O(rd log d) tr(w(Ai)ρ)
ρ r

‖ω‖1

tr(w(Ai)ω) = tr(w(Ai)ρ) , i = 1, . . . ,m

Gross, Liu, Flammia, Becker, Eisert, arXiv:0909.3304

tr(ω) = 1

 Quantum compressed sensing: 



 For                 measurements, define measurement operator

 For a state    , consider deviation                     from "true state"

R : ρ !→ d

m

m∑

i=1

w(Ai)tr(ρw(Ai))

σ ∆ = σ − ρ

 Quantum compressed sensing: Flavor of proof

m = κdr

 Let     be column and row space of    ,        projection onto    , 

     decompose deviation as ∆ =∆ T + ∆⊥T

T ρ PT T ∆T

∆T⊥

 Have uniqueness if for all deviations     either

-                                    ("worse solution") or

-                   ("infeasible")

∆

‖ρ + ∆‖1 > ‖ρ‖1

R∆ != 0



 Quantum compressed sensing: Flavor of proof

Pr(‖PTRPT − IT ‖ > t) < 4dre−t2κ/4 ‖R∆‖2 > 0

 Let                       with       i.i.d. matrix-valued random variables,                   ,        

  set                            , then, for                               one finds 

S =
m∑

i=1

Xi Xi

Pr(‖S‖ > t) ≤ 2de−t2/(4mσ2)

σ2 = ‖E(X2)‖

 Matrix-valued Bernstein inequality (Ahlswede, Winter, 2002):

Ahlswede, Winter, IEEE Trans Inf Th 48, 569 (2002)

t < 2mσ2/‖X‖

"Infeasible"

E(X) = 0

 Now consider two cases: Case (i): ‖∆T ‖2 < d2‖∆T⊥‖2



 Quantum compressed sensing: Flavor of proof

∆ ∈ rangeR⊥

"Data"

"Orthogonal deviations"

Task: Find subgradient                       such that

 for all 

‖ρ + ∆‖1 > ‖ρ‖1

"Not optimal"

‖ρ + ∆‖1 > ‖ρ‖1 + tr[Y ∆] ≥ ‖ρ‖1

Y ∈ rangeR
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∆ ∈ rangeR⊥ "= 0
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Task: Find subgradient                       such that

 for all 

‖ρ + ∆‖1 > ‖ρ‖1

"Not optimal"

‖ρ + ∆‖1 > ‖ρ‖1 + tr[Y ∆] ≥ ‖ρ‖1

Y ∈ rangeR

 Now consider two cases: Case (ii): ‖∆T ‖2 > d2‖∆T⊥‖2

Sweat goes into construction of such   , again
- using large deviation bounds, and 
- an adaptive scheme of using data, "golfing"
  
                                         ,
   (End of proof)

Y

‖PT Y − IT ‖2 ≤ 1(2d2) ‖PT Y ‖2 < 1/2

∆ ∈ rangeR⊥ "= 0



 Nice, but how do we know that the state is low rank in the first place?

 One does not have to! (Say,           ) 

 Make use of part of the data                      to 

   estimate the purity           ,

 ... formulate a version of theorem allowing for errors 

 ... use the estimate for the purity in the bound

O(rd log d)
tr(ρ2)

 Certified tomography:

 Assumption-free quantum state tomography

r = 1

Gross, Liu, Flammia, Becker, Eisert, arXiv:0909.3304



Unknown quantum state Measurement
Reconstruction

If a state is close to being low-rank, then perform the
same measurements as for full quantum state tomography, but
just randomly so and much fewer of them, and still 
faithfully (and efficiently) reconstruct the state 

 Lesson of the main part of talk:

 (Methods general enough to get simpler - and in effort scaling improved - proof of matrix completion)
Gross, arXiv:0910.1879

Gross, Liu, Flammia, Becker, Eisert, arXiv:0909.3304



 Long outlook: Related ideas



 Trying to further "learn much from little"

 Directly measure interesting quantities in experiments, without detour via 
   quantum process or state tomography

 Do it with error bars

 Measure the "unexpected"

Unknown quantum state Measurement
Reconstruction



1. Directly estimating entanglement

 Estimate the quantitative entanglement content of states 
  
 ...from much less than tomographic knowledge

Lundeen, Feito, Coldenstrodt-Ronge, Pregnell, Silberhorn, Ralph,
Eisert, Plenio, Walmsley, Nature Physics 5, 27 (2009)
Puentes, Datta, Feito, Eisert, Plenio, Walmsley, arXiv:0911.2482

Eisert, Brandao, Audenaert, New J Phys 8, 46 (2007)
Guehne, Reimpell, Werner, Phys Rev Lett 98, 110502 (2007)

 Find good and feasible lower bounds to solution of 

   for entanglement measure     and some expectation values of

           min
  

        subject to 

E(ρ)
tr(ρWi) = ci

E Wi

 Applied to continuous-variable entanglement distillation schemes, where
   tomographic knowledge is too expensive/noisy



Spectral density

I(ω) =
∑

n

c2
n

2mnωn
δ(ω − ωn)

Heat bath
(inaccessible)

Driving field
Cavity mode

Micromirror

Detection

 Learn about otherwise inaccessible spectral density of the heat bath of 
   mechanical mode from spectral properties of light leaving the optical cavity
 

 Certify non-Ohmic baths

Trubarov, Kieling, Groeblacher, Aspelmeyer, Eisert, in preparation (2009)

2. Assessing decoherence of optomechanical systems:



T (ρ)ρ

Time0 t

Dynamics under 
noise

State at time tState at time 0

Cubitt, Eisert, Wolf, arXiv:0908.2128
Wolf, Eisert, Cubitt, Cirac, Phys Rev Lett 101, 150402 (2008)

3. Detecting non-Markovian dynamics from a snapshot in time?



 Dynamical map: Completely positive map     specifying dynamics after given timeT

 Typical setting in process tomography: Do process tomography 
   at many time slices

State at time 0

ρ T T (ρ)

Dynamics under 
noise

Time0 t

State at time t

3. Detecting non-Markovian dynamics from a snapshot in time?



 But could we have known whether dynamics was
   Markovian from just a single snapshot in time?

ρ T (ρ)

Time0 t

State at time 

Dynamics under 
noise

State at time 0 t

3. Detecting non-Markovian dynamics from a snapshot in time?



 Channel                          has matrix formT : Md → Md

T̂j,k = tr[OjT (Ok)]

T̂

 and Choi matrix      ,T̂
Γ 〈j, k|T̂Γ|a, b〉 = 〈j, a|T̂ |k, b〉

 Channel is Markovian, if               for some generator    (setting time          ) T = e
L

L t = 1

 “Lindblad form” of generator:

 Quantum channels:

L(ρ) = i[ρ, H] +
∑

α,β

Gα,β

(

FαρF †
β −

1

2
{F †

βFα, ρ}+

)



 Logarithm:

 Needless to say, has infinitely many branches

 How do we now “test for Markovianity”?

 Jordan normal form

Real part
Complex part

 Is one of the branches a valid Lindblad generator?

T̂ =
∑

r

λrPr +
∑

c

(λcPc + λ̄cFP̄cF)

log T̂ = L0 + 2πi
∑

c

mc(λcPc + λ̄cFP̄cF)
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Real part
Complex part

 Is one of the branches a valid Lindblad generator?

T̂ =
∑

r

λrPr +
∑

c

(λcPc + λ̄cFP̄cF)

log T̂ = L0 + 2πi
∑

c

mc(λcPc + λ̄cFP̄cF)

 Lemma: A Hermitian linear map                          is a valid Lindblad
   generator iff it satisfies normalization                   and

L : Md → Md

L
∗( ) = 0

ω maximally entangled state

(I− ω)LΓ(I− ω) ≥ 0



 Putting things together:

A0 +
∑

c

mcAc ≥ 0

T

Ac = 2πi( − ω)(Pc − P̄c )Γ( − ω)

Test for Markovianity! 

(Efficient in input length, practical; interestingly NP hard in 
physical dimension, just as the classical embedding problem)

Can be made quantitative measure of Markovianity

 Known matrices:

 Theorem: A channel     is Markovian (“could have come from 
   Markovian dynamics”) iff there is an integer solution to

A0 = (I− ω)LΓ
0 (I− ω)

Cubitt, Eisert, Wolf, arXiv:0908.2128
Wolf, Eisert, Cubitt, Cirac, Phys Rev Lett 101, 150402 (2008)



 Where are the Markovian channels?

All channels

Identity channel,
“do nothing!”

Markovian 
channels

 For qubit channels: Only 2% Markovian*

* Drawn according to Haar measure for unitaries on system+ environment



 Where are the Markovian channels?

All channels

Identity channel,
“do nothing!”

Markovian 
channels

 Strange enough: Non-convex! E.g.,

T (ρ) = (λ)T1(ρ) + (1 − λ)T2(ρ)

Dephasing channelRabi oscillation channelπ/4

 Non-Markovian effects can arise from environments in mixture
   of states each of which would lead to Markovian dynamics



State at time State at time 0

T (ρ)ρ

t

 Interestingly, for some times, single snapshots
   of phase qubit evolution certify strongly 
   non-Markovian dynamicsNeeley, Ansmann, Bialczak, Hofheinz,

Katz, Lucero, O'Connell, Wang, Cleland,
Martinis, Nature Physics 4, 523 (2008)

 Test for Markovianity at a single time



 Can one even get an estimate for the bath-correlation time, without  
   making a model of environment, without even thinking about it?

State at time State at time 0

T (ρ)ρ

t

 Many snapshots?

 Test for Markovianity at a single time



 Summary



1. Compressed sensing approach to quantum state tomography:

2. Related ideas, like detecting forgetfulness
    of channels from a snapshot in time:

"Measure once, and get a meaningful statement about a 
 continuous process"

Thanks for your attention

"Get reliable estimates from few measurement settings,
 within the paradigm of compressed sensing"

 "Learn much from little"


