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... dreading therefore each of these things, he [Aristagoras] meditated a revolt: for it
happened at the same time that a messenger with his head punctured (steganographic
message) came from Susa from Histiaeus, urging Aristagoras to revolt from the king.
For Histiaeus, being desirous to signify to Aristagoras his wish for him to revolt, had no
other means of signifying it with safety, because the roads were guarded; therefore, having
shaved the head of the most trustworthy of his slaves, he marked it, and waited till the
hair was grown again: as soon as it was grown again (encoding), he sent him to Miletus
without any other instructions than that when he arrived at Miletus he should desire
Aristagoras to shave off his hair (decoding) and look upon his head: the punctures, as I
said before, signified a wish for him to revolt. [The Histories of Heredotus]

HERODTUS

485 – 420 BCE

For when Xerxes had determined to invade Greece, Demaratus, who was then at Susa, and
had heard of his intention, communicated it to the Lacedaemonians.  But he was unable to
make it known by any other means, for there was great danger of being detected; he
therefore had recourse to the following contrivance: having taken a folding tablet, he
scraped off the wax, and then wrote the king’s intention (steganographic message) on the
wood of the tablet; and having done this, he melted the wax again over the writing
(encoding), in order that the tablet, being carried with nothing written on it, might occasion
him no trouble from the guards upon the road.  When it arrived at  Sparta, the
Lacedaemonians were unable to comprehend it; until, as I am informed, Gorgo, daugther of
Cleomenes, and wife to Leonidas, made a suggestion, having considered the matter with
herself, and bade them scrape off the wax (decoding), and they would find letters written
on the wood.  They, having obeyed, found and read the contents, and forwarded them to
the rest of the Greeks. These things are reported to have happened in this manner.[The
Histories of Heredotus

Steganography =
steganos+graphia

steganos = “covered”

graphia = “writing”



Johannes Trithemius

Profession: Abbot and occultist

Steganographia

Written 1500; published Frankfurt 1606



Gustavus J. Simmons’ Model of Steganography

ALICE BOB

EVE

Story Line:  Eve is the warden of a
prison.  She has incarcerated Alice and
Bob in two separate cells.  However,
she does allow them to communicate.

Prior to their incarceration Alice and
Bob shared a secret key which they now
use to devise an escape plan, by sending
hidden messages in their communiqués.
These messages must look perfectly
innocent to Eve, or she will prevent
them from communicating.

CAN ALICE AND BOB
DUPE EVE?

Noisy Communication Channel

EVE IS A PASSIVE
ADVERSARY

Gustavus J. Simmons.  The Prisoner’s Problem And The Subliminal
Channel. Advances in Cryptology – CRYPTO 83, pp. 51-67



Requirements for Quantum Steganography

• What is required to make a quantum message look
“innocent” to Eve?

• How can Alice and Bob hide information from Eve?
• How much information can they hide?
• Can they hide quantum information?

• We will start by looking at a model of classical
steganography.
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• Here the requirement of an “innocent” message is
fulfilled by having the stego bits appear like errors in an
error-correcting code.

• However, in this naïve formulation, the errors don’t
appear very natural.  The error “rate” is far too high for
the choice of code, and the probabilities of the three
syndromes don’t match a natural choice of channel.  If
Eve is paying attention, she will be suspicious.

• If Eve guesses that there is information hidden, she can
read it without difficulty.

• Is it possible to send quantum information in this way?

Let’s try a more sophisticated take on the same idea.



General Protocol for Quantum Steganography



Hiding Classical Information in the Binary Symmetric Channel

!

Instead of flipping a bit
with probability p, we can
think of replacing bits by
completely random bits

with probability 2p.
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The binary symmetric channel has a probability p to flip each bit that passes
through it.  (We will write this using quantum notation to make it easy to go
to the quantum case later.)
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Classical Protocol

1. Alice and Bob choose an [N,k] ECC to encode k bits of covertext.  This is
the outer code.  (It is important to choose N sufficiently large.)

2. Using the secret key, Alice and Bob determine the number M of
randomized bits using the binomial expansion with probability 2p.  They
want M to be big enough to hold the entire message with probability close
to 1, so the should have N > M/2p by a sufficient margin.  If M is bigger
than the message, Alice pads with zero bits.

3. Again using the secret key, Alice chooses a random subset of M bits out
of the N-bit string.  She substitutes her M stego bits for these bits.

4. Alice applies M bits of a one-time pad to the stego bits, again using bits
from the shared key.  To Eve, who lacks the key, these now appear to be
random bits.

5. Alice transmits the string to Bob.  He pulls out the subset, applies the
one-time pad, and reads off the message.



Noisy Case

• If there is noise in the channel, essentially the same protocol is
used.  However, Alice first encodes her stego bits using an ECC.
This is the inner code.

• The concatenation of two binary symmetric channels with bit flip
probabilities p and q is still a binary symmetric channel.  The
resulting bit flip probability is

• We define the increase in the noise rate over the physical noise rate
p to be

! 

" p = p + q # 2pq = p + q(1# 2p).

! 

" p = p + #p,

! 

"p = q(1# 2p).



Noisy Case



Key Consumption Rate

Number of bits for shared
one-time pad

Number of bits to specify
the subset that comprises

the inner-code

Stirling’s Approximation



Quantum Case

This classical protocol for the binary symmetric channel
naturally goes over to the quantum case for the
depolarizing channel.

Let’s see how this works.



An operator     is the density operator associated to
some ensemble                 if and only if it satisfies
the conditions:

(1) (Trace Condition)      has trace equal to one.

(2) (Positivity Condition)      is a positive operator.
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A quantum channel       is a completely-
positive, trace-preserving map.

Complete-Positivity: If      maps density
operators of system Q to density operators
of S, then             must be positive for any
positive operator A.  Furthermore, if we
introduce an extra system R of arbitrary
dimensionality, it must be true that
is positive for any positive operator A on
the combined system RQ, where
denotes the identity map on system R.

Trace-Preserving:
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Bloch Sphere
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Depolarizing Channel

!

Twirled qubit
masquerading as a
depolarizing error
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Quantum Protocol

1. Alice and Bob choose an [[N,k]] QECC to encode k qubits of covertext.
2. Using the secret key, Alice and Bob determine the number M of

maximally mixed bits using the binomial expansion with probability 4p/3.
3. Again using the secret key, Alice chooses a random subset of M qubits

out of the N-qubit string.  She substitutes her M stego qubits for these.
4. Alice applies 2M bits of a one-time pad to “twirl” the stego qubits, again

using bits from the shared key.  To Eve, who lacks the key, these now
appear to be maximally mixed qubits.

5. Alice transmits the string to Bob.  He pulls out the subset, applies the
one-time pad, and recovers the message.

If the channel contains intrinsic noise, Alice first protects her stego qubits in a
QECC (the inner code).





Effects of Monitoring

• In the classical case, it was assumed that Eve was a passive
observer--she monitored the channel, but did not actively alter what
flowed through it.  In the quantum case, however, measuring the
channel collapses the state.  Monitoring is active!

• Alice and Bob can therefore only share quantum information if Eve
doesn’t always measure the syndromes.  For instance, if she
measures only 1 codeword in n at random, Alice and Bob can
spread their quantum information out over multiple codewords and
use a QECC to correct any corruption due to Eve’s measurements.

• In another scheme, Alice and Bob share EPR pairs rather than a
classical random key.  In this case, they can send quantum
information by teleportation, using stego qubits only to transmit
classical information (which is robust against Eve’s measurements).



How innocent is “innocent enough?”

• Suppose that Eve knows the physical channel error rate to be p.
Can Alice and Bob still send information?  If δp is “sufficiently small,”
Eve will not be able to detect the difference.

• We can bound her ability using the diamond norm:

• So Alice and Bob can send an arbitrarily large amount of information
if they spread it over a sufficiently large covertext.

• If Eve’s knowledge of the channel is imperfect (as in practice it must
be), Alice and Bob can communicate at a finite rate by choosing a
small enough δp.
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Another approach:  hiding information in
error syndromes

• While the protocols described before are very simple and elegant,
they do not approach the amount of information Alice and Bob could
send (at least in the noise-free case).

• Instead of hiding information in a random subset of M bits, Alice
could encode information in all possible strings of weight M/2.  The
difference is M versus

• We can think of this as hiding information in the error syndromes
rather than the errors themselves.

• This approach will probably also generalize to a broader class of
channels.
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CLASSICAL STEGANOGRAPHY

Three-Bit Repetition Code – Noiseless Channel
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Binary Symmetric Channel with
bit-flip rate 0 < p < 1/2.

A key-set S that contains bit-strings distributed
uniformly.

A generating function f  takes input key-bits and
generates an ordered pair (j, k), with a non-uniform
probability        where j, k  take values from the set
{0, 1, 2, 3} that correspond to syndromes.

Eve is a passive observer.

Alice wants to transmit a single steganographic bit to
Bob.
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Five-Bit Repetition Code

[5, 1, 5]

Noise Model for Binary Symmetric Channel with Error-Rate p.



Classical (Noiseless) Protocol

Alice and Bob are simulating a channel with entropy s.  For a codeword
of length N>>1, the channel will be dominated by 2Ns “typical
errors.”  These errors can be enumerated {ej} for j=0,…, 2Ns-1.
(These can be approximated as equally likely.)

1. Alice encodes the covertext in an [N,k] ECC.  This code has
distinct syndromes sj for each of the typical errors ej.

2. Alice’s stego text is ~Ns bits.  Alice applies a one-time pad to
these bits to get a random string of bits.  These are interpreted as
representing a random number j in binary form.

3. Alice applies error ej to the codeword.
4. Alice transmits the codeword to Bob.  If Eve examines it, she will

find a typical error.
5. Bob decodes and finds the syndrome sj.  He maps sj to j, applies

the one-time pad to j, and reads the message.



Quantum (Noiseless) Protocol

• Alice and Bob are simulating a quantum channel with entropy s.
The channel will be dominated by 2Ns “typical errors.”  These
errors are represented by operators {Ej} for j=0,…, 2Ns.

• Alice will encode the covertext in an [[N,k]] QECC.  Assume (for
now) this code is nondegenerate, and hence has distinct
syndromes sj for each of the typical errors Ej.

• It is possible to choose the encoding and decoding unitaries for
this code such that
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Quantum Protocol (Continued)
1. Alice prepares k qubits of covertext in a state |ψc>.
2. Alice’s stego text is ~Ns qubits, in a state

3. Alice twirls these qubits to get a maximally mixed string, and appends N-Ns-k
ancilla qubits in the state |0>, to get a total register of N-k qubits.

4. Alice applies a unitary Us to this register that maps

5. Alice now applies the encoding unitary UE to the covertext plus the register.  The
state will look to Eve like

6. Alice transmits the codeword to Bob.  Bob applies the decoding unitary UD and the
inverse of US, and discards the covertext and ancilla qubits.  Using the shared key,
he undoes the twirling operation and recovers the stego qubits.
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The Noisy Case

• It is clear that this encoding will fail if the channel contains intrinsic
noise.  In the plausible case where p>>δp, the typical errors used by
Alice would be swamped by the noise in the channel.

• This can be countered by some form of error correction.  But since
we are encoding in syndromes, rather than directly in bits, it is not
clear how to design codes that give good performance.

• One approach borrows from our earlier protocol--Alice chooses a
random subset of the bits (or qubits) and encodes only in this
subset.  This allows Alice and Bob to ignore physical errors outside
this subset.  However, some error correction is still necessary.

• Without knowing the best form of encoding, we can only roughly
estimate the best possible rate of stego transmission in the noisy
case.



Conclusion and Future Work

• For a general channel, what encoding wil stay closest to what Eve expects?

• What is the capacity of quantum steganographic channels with noise?

• If Bob knows the covertext ahead of time, can additional information be sent?

•What optimal measurements can Eve perform to gain knowledge of a quantum
steganographic channel?  Can we prove that if Eve knows the channel exactly,
Alice and Bob cannot communicate at a finite rate?

• For which quantum error-correcting codes do we get the best rates?

•  Developed a classical and quantum model of steganography for
the binary symmetric and depolarizing channels.  The stego bits or
qubits appear to Eve to be random errors because she lacks the
shared secret key.

•  Also developed an alternative formulation encoding information in
syndromes.  This is certainly more efficient in the noiseless case.

•  Calculated the key-consumption rate

•  Showed that these protocols have steganographic security if a long
enough covertext is used.




