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So, how much information is in a quantum state?

An infinite amount, of course, if you want to specify
the state exactly...
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Life is too short for infinite precision
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A More Serious Point

In general, a state of n possibly-entangled qubits takes

~2" bits to specify, even approximately
W)= ) ox)

X
x€{0,1}
To a computer scientist, this is arguably the
central fact about quantum mechanics

But why should we worry about it?
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Not something | just made up!
“As seen in Science & Nature”

Well-known problem: To do tomography on an entangled
state of n spins, you need ~c" measurements
Current record: 8 spins / ~656,000 experiments (!)
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Answer 1: Quantum
State Tomography

Task: Given lots of copies of an unknown quantum state p,
produce an approximate classical description of p

Not something | just made up!
“As seen in Science & Nature”

Well-known problem: To do tomography on an entangled
state of n spins, you need ~c" measurements
Current record: 8 spins / ~656,000 experiments (!)

This is a conceptual problem—not just a practical one!
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Answer 2: Quantum Computing Skepticism

Levin Goldreich ‘t Hooft Davies Wolfram

Some physicists and computer scientists believe quantum
computers will be impossible for a fundamental reason
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For many of them, the problem is that a quantum computer
would “manipulate an exponential amount of information”
using only polynomial resources
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Answer 2: Quantum Computing Skepticism

Levin Goldreich ‘t Hooft Davies Wolfram

Some physicists and computer scientists believe quantum
computers will be impossible for a fundamental reason

For many of them, the problem is that a quantum computer
would “manipulate an exponential amount of information”
using only polynomial resources

But is it really an exponential amount?
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Today we’ll tame the exponential beast

ldea: “Shrink guantum states down to reasonable
size” by viewing them operationally

Analogy: A probability distribution over n-bit strings also takes
~2" bits to specify. But that fact seems to be “more about the
map than the territory”

» Describing a state by postselected measurements [A. 2004 ]

« “Pretty good tomography” using far fewer measurements [A. 2006]

- Numerical simulation [A.-Dechter]

* Encoding quantum states as ground states of simple Hamiltonians
[A.-Drucker 2009]
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The Absent-Minded Advisor Problem

|
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Can you give your graduate student a quantum state p
with n qubits (or 10n, or n3, ...)—such that by measuring
O in a suitable basis, the student can learn your answer

to any one yes-or-no question of size n?
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The Absent-Minded Advisor Problem

|
o

Can you give your graduate student a quantum state p

with n qubits (or 10n, or n3, ...)—such that by measuring
O in a suitable basis, the student can learn your answer

to any one yes-or-no question of size n?

NO [Ambainis, Nayak, Ta-Shma, Vazirani 1999]
Indeed, quantum communication is no better than

classical for this problem as n—> .
(Earlier, Holevo showed you need n qubits to send n bits)
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On the Bright Side... 0

Suppose Alice wants to describe an n-qubit state p to

Bob, well enough that for any 2-outcome measurement E,
Bob can estimate Tr(Ep)

Then she’ll need to send ™~ C" bits, in the worst case.

But... suppose Bob only needs to be able to estimate Tr
(Ep) for every measurement E in a finite set S.
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On the Bright Side... 0

Suppose Alice wants to describe an n-qubit state p to

Bob, well enough that for any 2-outcome measurement E,
Bob can estimate Tr(Ep)

Then she’ll need to send ™~ C" bits, in the worst case.

But... suppose Bob only needs to be able to estimate Tr
(Ep) for every measurement E in a finite set S.

Theorem (A. 2004): In that case, it suffices for
Alice to send ~“Nn log n - log| S| bits
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Quantum Occam’s Razor
Theorem [A. 2006]

Let p be an unknown quantum state of n spins

Suppose you just want to be able to estimate Tr(Ep) for most
measurements E drawn from some probability measure D
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Quantum Occam’s Razor
Theorem [A. 2006]

Let p be an unknown quantum state of n spins

Suppose you just want to be able to estimate Tr(Ep) for most
measurements E drawn from some probability measure D

Then it suffices to do the following, for some m=0(n):

1.Choose E,...,E_ independently from D
2.Go into your lab and estimate Tr(E.p) for each 1<i<m

3.Find any “hypothesis state” o such that Tr(E.0)=Tr(E p) for
all 1<ism

Friday, September 25, 2009



Quantum Occam’s Razor
Theorem [A. 2006]

Let p be an unknown quantum state of n spins

Suppose you just want to be able to estimate Tr(Ep) for most
measurements E drawn from some probability measure D
Then it suffices to do the following, for so
1.Choose E,...,E_ independently from D

2.Go into your lab and estimate Tr(E.p) for each 1<i<m

3.Find any “hypothesis state” o such that Tr(E.0)=Tr(E p) for
all 1<ism

Friday, September 25, 2009



Quantum Occam’s Razor
Theorem [A. 2006]

Let p be an unknown quantum state of n spins

Supposeyd “Quantum states are [Ep) for most
measurem PAC-IearnabIe” neasure D
Then it suff =0(n):

1.Choose E,...,E_ independently from D

2.Go into your lab and estimate Tr(E.p) for each 1<i<m

3.Find any
all 1<i<m

“hypothesis state” o such that Tr(E.0)=Tr(E.p) for
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Numerical Simulation
[A.-Dechter]

We implemented the “pretty-good tomography” algorithm
in MATLAB, using a fast convex programming method
developed specifically for this application [Hazan 2008]

We then tested it (on simulated data) using MIT’s
computing cluster

We studied how the number of sample measurements m
needed for accurate predictions scales with the number of
qubits n, for n<10
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Numerical Simulation
[A.-Dechter]

We implemented the “pretty-good tomography” algorithm
in MATLAB, using a fast convex programming method
developed specifically for this application [Hazan 2008]

We then tested it (on simulated data) using MIT’s
computing cluster

We studied how the number of sample measurements m

needed for accurate predictions scales with the number of
qubits n, for n<10

Result of experiment: My theorem appears to be true
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Recap: Given an unknown n-qubit entangled quantum state
0, and a set S of two-outcome measurements...

Learning theorem: “Any hypothesis state o consistent with a
small number of sample points behaves like p on most
measurements in S”

Postselection theorem: “A particular state p; (produced by
postselection) behaves like p on all measurements in S”
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Recap: Given an unknown n-qubit entangled quantum state
0, and a set S of two-outcome measurements...

Learning theorem: “Any hypothesis state o consistent with a
small number of sample points behaves like p on most
measurements in S”

Postselection theorem: “A particular state p; (produced by
postselection) behaves like p on all measurements in S”

Dream theorem: “Any state o that passes a small number of
tests behaves like p on all measurements in §”

[A.-Drucker 2009]: The dream theorem holds
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New Result

Any quantum state can be “simulated,” on all efficient
measurements, by the ground state of a local Hamiltonian
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New Result

Any quantum state can be “simulated,” on all efficient
measurements, by the ground state of a local Hamiltonian

IN OTHER WORDS...

Given any n-qubit state p, there exists a local Hamiltonian H
(indeed, a sum of 2D nearest-neighbor interactions) such that:

For any ground state |1) of H, and measuring circuit E with <m
gates, there’s an efficient measuring circuit E’ such that

‘<1P ‘E'W>—TI’(Ep)sg,

Furthermore, H is on poly(n,m,1/¢) qubits.
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What Does It Mean?

Without loss of generality, every quantum advice state is the
ground state of a local Hamiltonian

BQP/gpoly € QMA/poly. Indeed, trusted quantum advice is
equivalent in power to trusted classical advice combined with
untrusted quantum advice.

(“Quantum states never need to be trusted”)

“Quantum Karp-Lipton Theorem”: NP-complete problems are
not efficiently solvable using quantum advice, unless some
uniform complexity classes collapse

Friday, September 25, 2009



Intuition: We’re given a black box (think: quantum state)

e
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Intuition: We’re given a black box (think: quantum state)

e

that computes some Boolean function f:{0,1}"=>{0,1} belonging

|”

to a “small” set S (meaning, of size 2P°V(n)), Someone wants to
prove to us that f equals (say) the all-0 function, by having us
check a polynomial number of outputs f(x,),...,f(x ).
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Intuition: We’re given a black box (think: quantum state)

e

that computes some Boolean function f:{0,1}"=2{0,1} belonging
to a “small” set S (meaning, of size 2P°V(n)), Someone wants to
prove to us that f equals (say) the all-0 function, by having us
check a polynomial number of outputs f(x,),...,f(x ).

This is trivially impossible! \L
x. 0 1 0 0 0 0
x~ 0 0 1 0 0 O
x~ 0 0 0 1 0 O
xa 0 0 0 0 1 O
x= 0 0 O O 0 1
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Intuition: We’re given a black box (think: quantum state)

e

that computes some Boolean function f:{0,1}"=2{0,1} belonging
to a “small” set S (meaning, of size 2P°V(n)), Someone wants to
prove to us that f equals (say) the all-0 function, by having us
check a polynomial number of outputs f(x,),...,f(x ).

This is trivially impossible!

But ... what if we get 3
black boxes, and are
allowed to simulate f=f; by

X4

taking the point-wise X1
MAJORITY of their outputs? Xz

OO0 OD
oo@oo
O-~00OD
INelolole
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Majority-Certificates Lemma

Definitions: A certificate is a partial Boolean function C:{0,1}"—>

{0,1,*}. A Boolean function f:{0,1}"=2>{0,1} is consistent with C,

if f(x)=C(x) whenever C(x)&{0,1}. The size of Cis the number of
inputs x such that C(x)&{0,1}.
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Majority-Certificates Lemma

Definitions: A certificate is a partial Boolean function C:{0,1}">

{0,1,*}. A Boolean function f:{0,1}"=2>{0,1} is consistent with C,

if f(x)=C(x) whenever C(x)&{0,1}. The size of Cis the number of
inputs x such that C(x)&{0,1}.

Lemma: Let S be a set of Boolean functions f:{0,1}"—=>{0,1}, and
let f'ES. Then there exist m=0(n) certificates C,,...,C_, each of

size k=O(log|S]), such that

(i) Some &S is consistent with each C, and

(ii) If fES is consistent with C for all i, then MAJ(f(x),...,f_(x))=Ff"
(x) for all x&{0,1}".
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Proof Idea

By symmetry, we can assume f is the all-0 function. Consider a
two-player, zero-sum matrix game:

Bob picks an input x&{0,1}"

Alice picks a certificate
C of size k consistent
with some f&S

Alice wins this game if f(x)=0 for all f&S consistent with C.
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Alice wins this game if f(x)=0 for all f&S consistent with C.

Crucial Claim: Alice has a mixed strategy that lets her win
>90% of the time.
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Proof Idea

By symmetry, we can assume f is the all-0 function. Consider a
two-player, zero-sum matrix game:

Bob picks an input x&{0,1}"
The lemma follows from this claim! Just choose
certificates C,,...,C_ independently from Alice’s winning

AI'CC‘ distribution. Then by a Chernoff bound, almost certainly
MAIJ(f,(x),...,f_(x))=0 for all f,,...,f  consistent with C,...,C_

respectively and all inputs x&{0,1}". So clearly there exist
C,,...,.C, with this property.

Alice wins this game if f(x)=0 for all f&S consistent with C.

Crucial Claim: Alice has a mixed strategy that lets her win
>90% of the time.
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Proof of Claim

Use the Minimax Theorem! Given a distribution D over ¥, it’s
enough to create a fixed certificate C such that

]
Pr|3 | ith C's.t. =1 |[<—.
Pr [ If consistent with C s.t. f (x) ]< -~
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Use the Minimax Theorem! Given a distribution D over ¥, it’s
enough to create a fixed certificate C such that

]
Pr|3 | ith C's.t. =1 |[<—.
Pr [ If consistent with C s.t. f (x) ]< -~

Stage I: Choose x,,...,x, independently from D, for some t=0
(log|S|). Then with high probability, requiring f(x,)=...=f(x,)=0
kills off every f&S SLiCh that

Pr(f(x)=1]=

E.
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(log|S|). Then with high probability, requiring f(x,)=...=f(x,)=0
kills off every f&S SLiCh that

Pr(f(x)=1]=

Stage Il: Repeatedly add a constraint f(x.)=b. that kills at least

E.

half the remaining functions. After <log,|S| iterations, we’ll
have winnowed S down to just a single function f&S.
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“Lifting” the Lemma to Quantumland
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“Lifting” the Lemma to Quantumland

Cet S nf Rnnlean Cet S nf nin)-Aihit
“Truie” function “Truie” advice state
Other fiinctiong f. Other states n.
Certificate C. to Measiirement F. to
The class of p(n)-qubit Result of A/06 on
guantum states is infinitely learnability of quantum

Instead of Boolean functions Learning theory has tools
f:{0,1}"=>{0,1}, now we have to deal with this: fat-

How do we verlfy a quantum QMA=QMA+ (Aharonov &

- _— - - =%

What if a certlflcate asks us to ”Safe Winnowing Lemma”

- — . — — - —
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Majority-Certificates Lemma, Real Case

Lemma: Let S be a set of functions f:{0,1}"->[0,1], let f*€S, and

let €>0. Then we can find m=0(n/e?) functions f,,...,f €S, sets

e’ )

X,,...,.X_&{0,1}" each of size
1 m § o = Q 1
9 niat, (S)}_

k = O(_3fats/48 (S )*a
: )

an

for whiéﬁ?{zﬂgffgﬁl)c;w]iph(g}\glgs. All functions g,,...,g, €S that

sat?sfy max l[gl (x)+ f.f.":gilt)'c }—m} ady%j <¢.
satisfy 0,11 | m
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Theorem: BQP/qgpoly € QMA/poly.

Proof Sketch: Let LEBQP/qpoly. Let M be a quantum
algorithm that decides L using advice state |y, ). Define

/, (x):= Pr[M (x, P )accepts]

Let S = {fp : p}. Then S has fat-shattering dimension at most

poly(n), by A’06. So we can apply the real analogue of the
Majority-Certificates Lemma to S. This yields certificates C,,

...,C.. (for some m=poly(n)), such that any states p,...,p,,
consistent with C,,...,C_ respectively satisfy

L7, 6)e-rr s, ) fmwn(xise

for all x€{0,1}" (regardless of entanglement). To check the C’s,

we use the “OQMA+ super-verifier” of Aharonov & Regev.
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Quantum Karp-Lipton Theorem
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Quantum Karp-Lipton Theorem

Karp-Lipton 1982: If NP C P/poly, then coNPNP = NPNP,
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Karp-Lipton 1982: If NP C P/poly, then coNPNP = NPNP,
Our quantum analogue:

If NP C BQP/gpoly, then coNPNP C QMAPromiseQMA
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Quantum Karp-Lipton Theorem

Karp-Lipton 1982: If NP C P/poly, then coNPNP = NPNP,
Our quantum analogue:

If NP C BQP/gpoly, then coNPNP C QMAPromiseQMA

Proof Idea: In QMAPromiseQVIA first guess a local Hamiltonian H
whose ground state [1) lets us solve NP-complete problems in
polynomial time, together with |) itself. Then pass H to the
PromiseQMA oracle, which reconstructs [1), guesses the first
quantified string of the coNP"? statement, and uses | ) to find
the second quantified string.
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Quantum Karp-Lipton Theorem

Karp-Lipton 1982: If NP C P/poly, then coNPNP = NPNP,
Our quantum analogue:

If NP C BQP/gpoly, then coNPNP C QMAPromiseQMA

Proof Idea: In QMAPromiseQVIA first guess a local Hamiltonian H
whose ground state [1) lets us solve NP-complete problems in
polynomial time, together with |) itself. Then pass H to the
PromiseQMA oracle, which reconstructs [1), guesses the first
quantified string of the coNP"? statement, and uses | ) to find
the second quantified string.

To check that |1) actually works, use the self-reducibility of NP-
complete problems (like in the original K-L Theorem)
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Summary

In many natural scenarios, the “exponentiality” of quantum
states is an illusion

That is, there’s a short (though possibly cryptic) classical
string that specifies how a quantum state p behaves, on any

measurement you could actually perform

Applications: Pretty-good quantum state tomography,
characterization of quantum computers with “magic initial
states”...
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Open Problems

Find classes of quantum states that can be learned in a
computationally efficient way

[A.-Gottesman, in preparation]: Stabilizer states
Oracle separation between BQP/poly and BQP/qpoly

[A.-Kuperberg 2007]: Quantum oracle separation
Other applications of “isolatability” of Boolean functions?

“Experimental demonstration”?
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