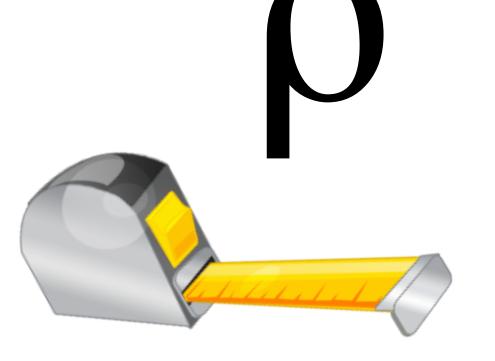
How Much Information Is In A Quantum State?



Scott Aaronson Andrew Drucker

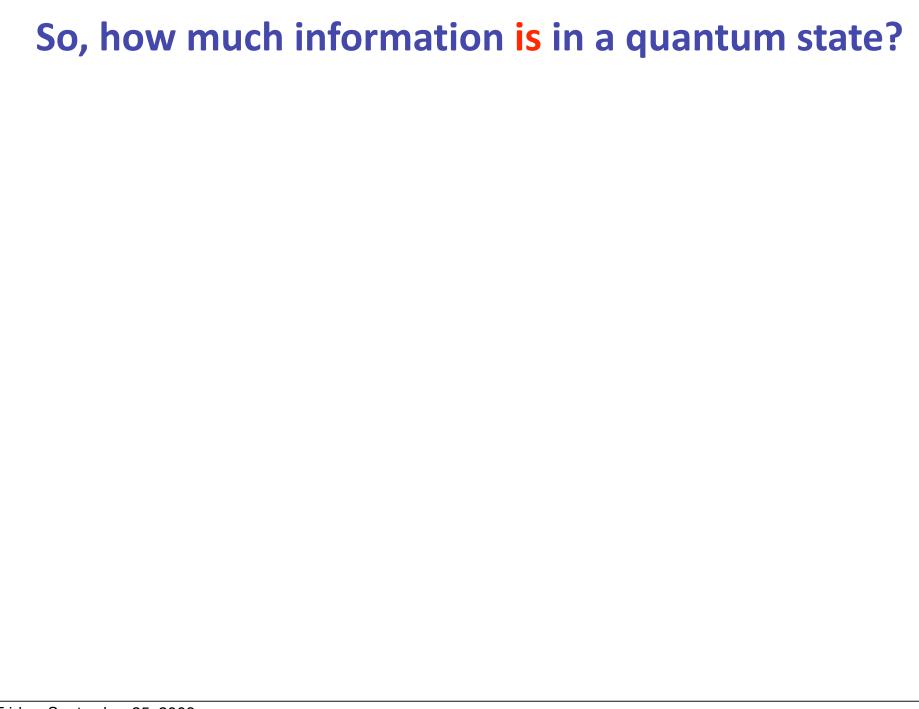
Computer Scientist / Physicist Nonaggression Pact

You tolerate these complexity classes:

NP coNP BQP QMA BQP/qpoly QMA/poly

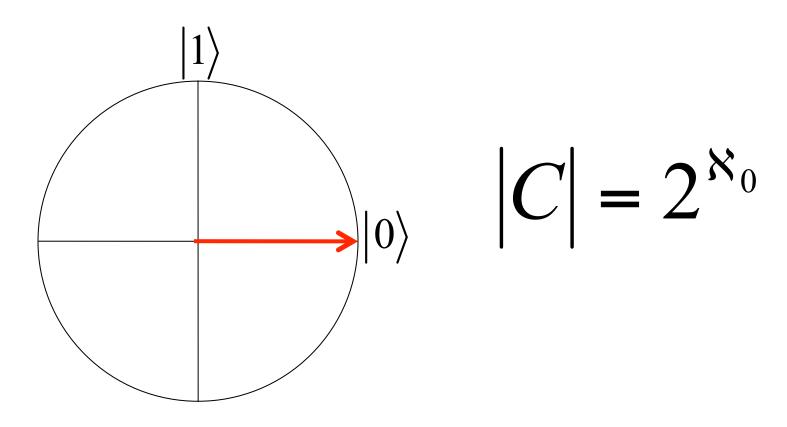
And I don't inflict these on you:

#P AM AWPP LWPP MA PostBQP PP CH PSPACE QCMA QIP SZK NISZK EXP NEXP UP PPAD PPP PLS TFNP \oplus P Mod_kP



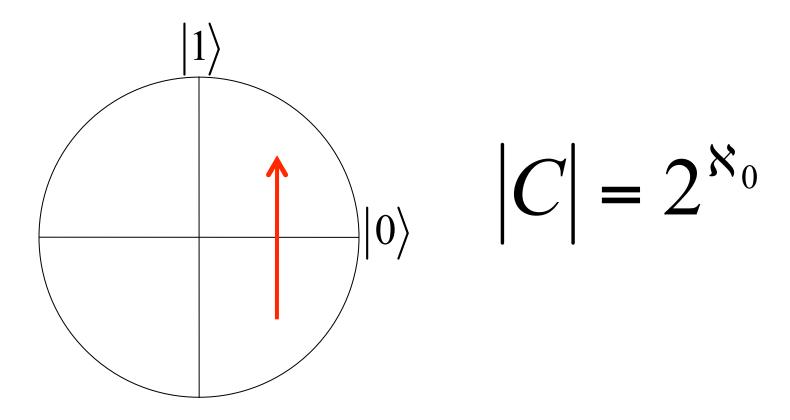
So, how much information is in a quantum state?

An infinite amount, of course, if you want to specify the state exactly...



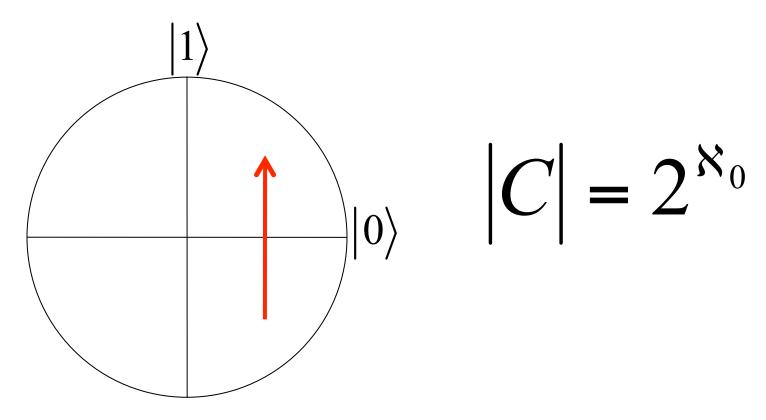
So, how much information is in a quantum state?

An infinite amount, of course, if you want to specify the state exactly...



So, how much information is in a quantum state?

An infinite amount, of course, if you want to specify the state exactly...



Life is too short for infinite precision

$$\left|\psi\right\rangle = \sum_{x \in \{0,1\}^n} \alpha_x \left|x\right\rangle$$

In general, a state of n possibly-entangled qubits takes

2n bits to specify, even approximately

$$\left|\psi\right\rangle = \sum_{x \in \{0,1\}^n} \alpha_x \left|x\right\rangle$$

In general, a state of n possibly-entangled qubits takes

2n bits to specify, even approximately

$$\left|\psi\right\rangle = \sum_{x \in \{0,1\}^n} \alpha_x \left|x\right\rangle$$

To a computer scientist, this is arguably the central fact about quantum mechanics

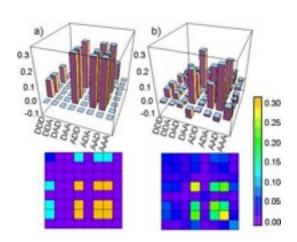
In general, a state of n possibly-entangled qubits takes

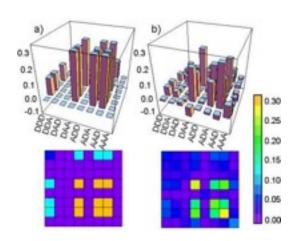
2n bits to specify, even approximately

$$\left|\psi\right\rangle = \sum_{x \in \{0,1\}^n} \alpha_x \left|x\right\rangle$$

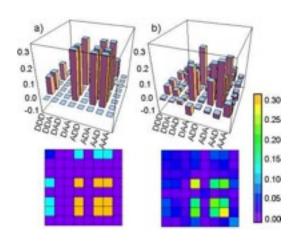
To a computer scientist, this is arguably the central fact about quantum mechanics

But why should we worry about it?





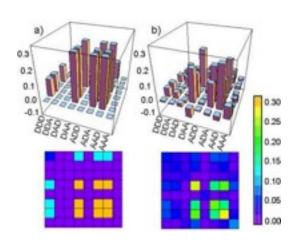
Task: Given lots of copies of an unknown quantum state ρ , produce an approximate classical description of ρ



Task: Given lots of copies of an unknown quantum state ρ , produce an approximate classical description of ρ

Not something I just made up!

"As seen in Science & Nature"



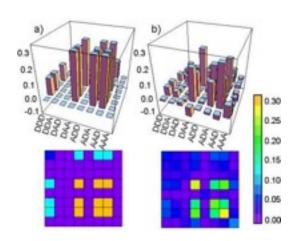
Task: Given lots of copies of an unknown quantum state ρ , produce an approximate classical description of ρ

Not something I just made up!

"As seen in Science & Nature"

Well-known problem: To do tomography on an entangled state of n spins, you need ~cⁿ measurements

Current record: 8 spins / ~656,000 experiments (!)



Task: Given lots of copies of an unknown quantum state ρ , produce an approximate classical description of ρ

Not something I just made up!

"As seen in Science & Nature"

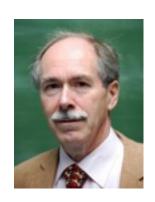
Well-known problem: To do tomography on an entangled state of n spins, you need ~cⁿ measurements

Current record: 8 spins / ~656,000 experiments (!)

This is a conceptual problem—not just a practical one!

Answer 2: Quantum Computing Skepticism

Goldreich



't Hooft

Davies

Wolfram

Some physicists and computer scientists believe quantum computers will be impossible for a fundamental reason

Answer 2: Quantum Computing Skepticism

Goldreich

't Hooft

Davies

Wolfram

Some physicists and computer scientists believe quantum computers will be impossible for a fundamental reason

For many of them, the problem is that a quantum computer would "manipulate an exponential amount of information" using only polynomial resources

Answer 2: Quantum Computing Skepticism

Goldreich

't Hooft

Davies

Wolfram

Some physicists and computer scientists believe quantum computers will be impossible for a fundamental reason

For many of them, the problem is that a quantum computer would "manipulate an exponential amount of information" using only polynomial resources

But is it really an exponential amount?

Today we'll tame the exponential beast

Idea: "Shrink quantum states down to reasonable size" by viewing them operationally

Today we'll tame the exponential beast

Idea: "Shrink quantum states down to reasonable size" by viewing them operationally

Analogy: A probability distribution over n-bit strings *also* takes ~2ⁿ bits to specify. But that fact seems to be "more about the map than the territory"

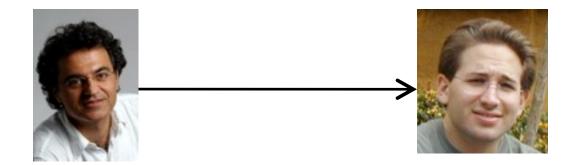
Today we'll tame the exponential beast

Idea: "Shrink quantum states down to reasonable size" by viewing them operationally

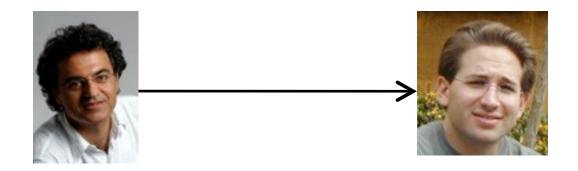
Analogy: A probability distribution over n-bit strings *also* takes ~2ⁿ bits to specify. But that fact seems to be "more about the map than the territory"

- Describing a state by postselected measurements [A. 2004]
- "Pretty good tomography" using far fewer measurements [A. 2006]
 - Numerical simulation [A.-Dechter]
- Encoding quantum states as ground states of simple Hamiltonians
 [A.-Drucker 2009]

The Absent-Minded Advisor Problem

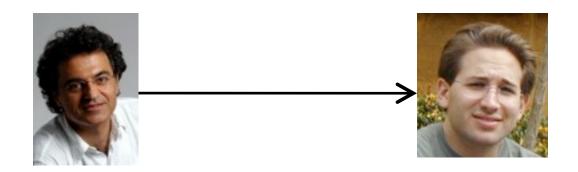


The Absent-Minded Advisor Problem



Can you give your graduate student a quantum state ρ with n qubits (or 10n, or n³, ...)—such that by measuring ρ in a suitable basis, the student can learn your answer to any **one** yes-or-no question of size n?

The Absent-Minded Advisor Problem



Can you give your graduate student a quantum state ρ with n qubits (or 10n, or n³, ...)—such that by measuring ρ in a suitable basis, the student can learn your answer to any **one** yes-or-no question of size n?

NO [Ambainis, Nayak, Ta-Shma, Vazirani 1999] Indeed, quantum communication is no better than classical for this problem as $n \rightarrow \infty$.

(Earlier, Holevo showed you need n qubits to send n bits)

On the Bright Side...

On the Bright Side...

Suppose Alice wants to describe an n-qubit state ρ to Bob, well enough that for any 2-outcome measurement E, Bob can estimate $\text{Tr}(E\rho)$

Then she'll need to send **C** bits, in the worst case.

But... suppose Bob only needs to be able to estimate Tr $(E\rho)$ for every measurement E in a finite set S.

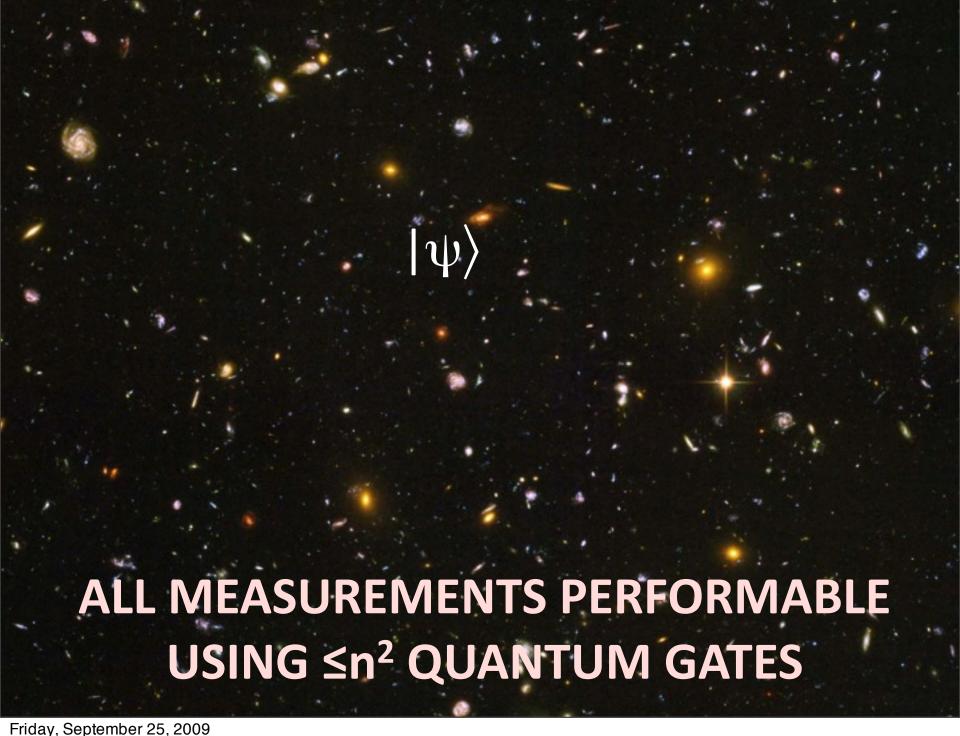
On the Bright Side...

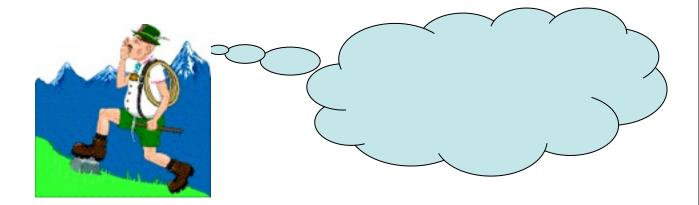
Suppose Alice wants to describe an n-qubit state ρ to Bob, well enough that for any 2-outcome measurement E, Bob can estimate $\text{Tr}(\text{E}\rho)$

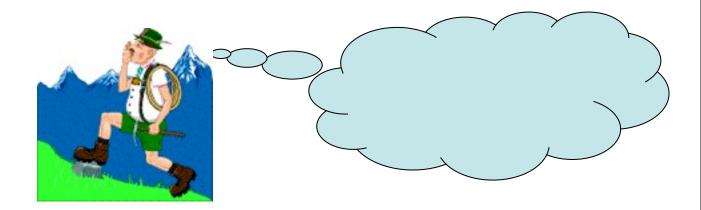
Then she'll need to send **C** bits, in the worst case.

But... suppose Bob only needs to be able to estimate Tr $(E\rho)$ for every measurement E in a finite set S.

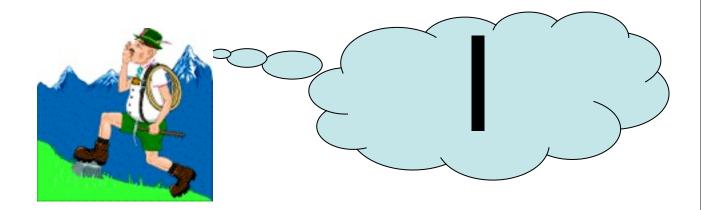
Theorem (A. 2004): In that case, it suffices for Alice to send ~n log n · log | S | bits





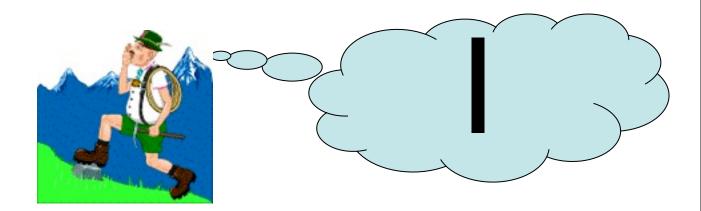


Alice is trying to describe the quantum state ρ to Bob



Alice is trying to describe the quantum state ρ to Bob

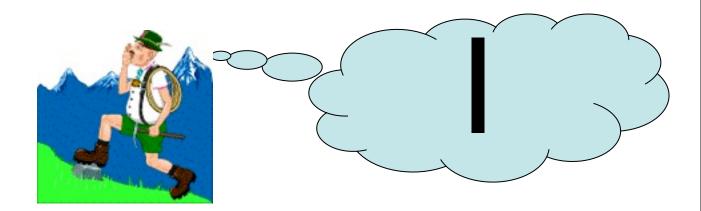
In the beginning, Bob knows nothing about ρ , so he guesses it's the maximally mixed state ρ_0 =I



Alice is trying to describe the quantum state ρ to Bob

In the beginning, Bob knows nothing about ρ , so he guesses it's the maximally mixed state ρ_0 =I

Then Alice helps Bob improve, by repeatedly telling him a measurement $E_t \in S$ on which his current guess ρ_{t-1} badly fails

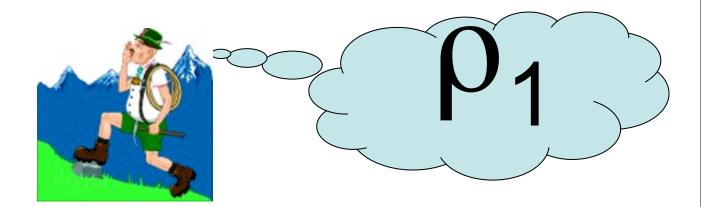


Alice is trying to describe the quantum state ρ to Bob

In the beginning, Bob knows nothing about ρ , so he guesses it's the maximally mixed state ρ_0 =I

Then Alice helps Bob improve, by repeatedly telling him a measurement $E_t \in S$ on which his current guess ρ_{t-1} badly fails

Bob lets ρ_t be the state obtained by starting from ρ_{t-1} , then performing E, and postselecting on getting the right outcome



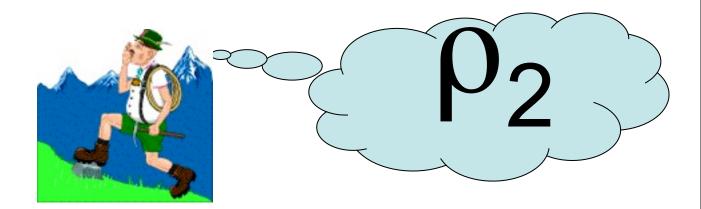
Alice is trying to describe the quantum state ρ to Bob

In the beginning, Bob knows nothing about ρ , so he guesses it's the maximally mixed state ρ_0 =I

Then Alice helps Bob improve, by repeatedly telling him a measurement $E_t \in S$ on which his current guess ρ_{t-1} badly fails

Bob lets ρ_t be the state obtained by starting from ρ_{t-1} , then performing E, and postselecting on getting the right outcome

How does the theorem work?



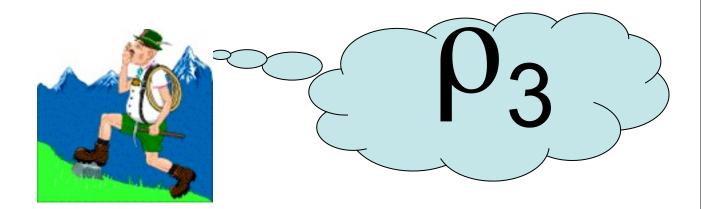
Alice is trying to describe the quantum state ρ to Bob

In the beginning, Bob knows nothing about ρ , so he guesses it's the maximally mixed state ρ_0 =I

Then Alice helps Bob improve, by repeatedly telling him a measurement $E_t \in S$ on which his current guess ρ_{t-1} badly fails

Bob lets ρ_t be the state obtained by starting from ρ_{t-1} , then performing E, and postselecting on getting the right outcome

How does the theorem work?



Alice is trying to describe the quantum state ρ to Bob

In the beginning, Bob knows nothing about ρ , so he guesses it's the maximally mixed state ρ_0 =I

Then Alice helps Bob improve, by repeatedly telling him a measurement $E_t \in S$ on which his current guess ρ_{t-1} badly fails

Bob lets ρ_t be the state obtained by starting from ρ_{t-1} , then performing E, and postselecting on getting the right outcome

Let ρ be an unknown quantum state of n spins

Suppose you just want to be able to estimate $Tr(E\rho)$ for most measurements E drawn from some probability measure D

Let ρ be an unknown quantum state of n spins

Suppose you just want to be able to estimate $Tr(E\rho)$ for most measurements E drawn from some probability measure D

Then it suffices to do the following, for some m=O(n):

- 1.Choose E₁,...,E_m independently from D
- 2.Go into your lab and estimate Tr(E_iρ) for each 1≤i≤m
- 3.Find any "hypothesis state" σ such that $Tr(E_i\sigma) \approx Tr(E_i\rho)$ for all $1 \le i \le m$

Let ρ be an unknown quantum state of n spins

Suppose you just want to be able to estimate Tr(Eρ) for most measurements E drawn from some probability measure D

Then it suffices to do the following, for some m=O(n):

- 1.Choose E₁,...,E_m independently from D
- 2.Go into your lab and estimate Tr(E_iρ) for each 1≤i≤m
- 3.Find any "hypothesis state" σ such that $Tr(E_i\sigma) \approx Tr(E_i\rho)$ for all $1 \le i \le m$

Let ρ be an unknown quantum state of n spins

Suppose yo measureme

"Quantum states are PAC-learnable"

(Ερ) for <mark>most</mark> neasure D

Then it suffices to do the following, for some m=0(n):

- 1.Choose E₁,...,E_m independently from D
- 2.Go into your lab and estimate Tr(E_iρ) for each 1≤i≤m
- 3.Find any "hypothesis state" σ such that $Tr(E_i\sigma) \approx Tr(E_i\rho)$ for all $1 \le i \le m$

Numerical Simulation

[A.-Dechter]

Numerical Simulation

[A.-Dechter]

We implemented the "pretty-good tomography" algorithm in MATLAB, using a fast convex programming method developed specifically for this application [Hazan 2008]

We then tested it (on simulated data) using MIT's computing cluster

We studied how the number of sample measurements m needed for accurate predictions scales with the number of qubits n, for n≤10

Numerical Simulation

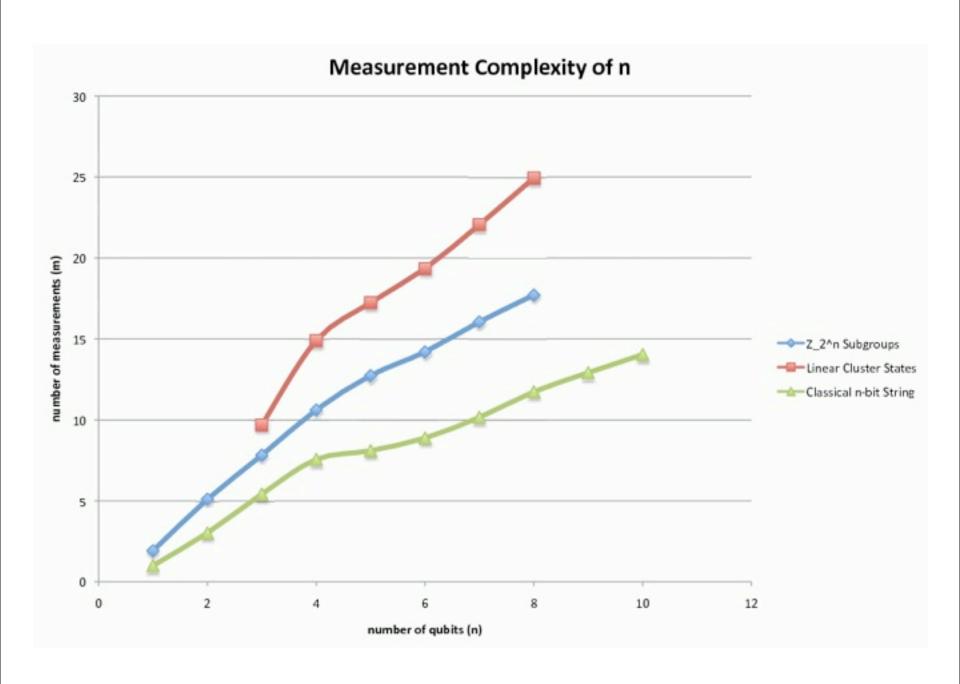
[A.-Dechter]

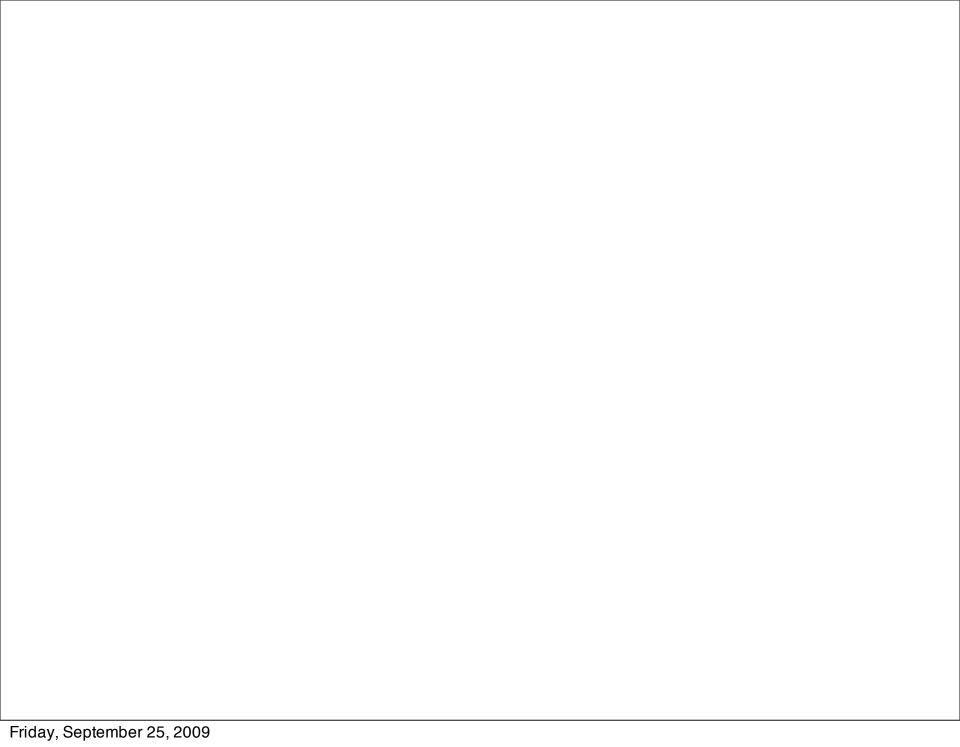
We implemented the "pretty-good tomography" algorithm in MATLAB, using a fast convex programming method developed specifically for this application [Hazan 2008]

We then tested it (on simulated data) using MIT's computing cluster

We studied how the number of sample measurements m needed for accurate predictions scales with the number of qubits n, for n≤10

Result of experiment: My theorem appears to be true





Recap: Given an unknown n-qubit entangled quantum state ρ , and a set S of two-outcome measurements...

Learning theorem: "Any hypothesis state σ consistent with a small number of sample points behaves like ρ on most measurements in S"

Postselection theorem: "A particular state ρ_T (produced by postselection) behaves like ρ on all measurements in S"

Recap: Given an unknown n-qubit entangled quantum state ρ , and a set S of two-outcome measurements...

Learning theorem: "Any hypothesis state σ consistent with a small number of sample points behaves like ρ on most measurements in S"

Postselection theorem: "A particular state ρ_T (produced by postselection) behaves like ρ on all measurements in S"

Dream theorem: "Any state σ that passes a small number of tests behaves like ρ on all measurements in S"

Recap: Given an unknown n-qubit entangled quantum state ρ , and a set S of two-outcome measurements...

Learning theorem: "Any hypothesis state σ consistent with a small number of sample points behaves like ρ on most measurements in S"

Postselection theorem: "A particular state ρ_T (produced by postselection) behaves like ρ on all measurements in S"

Dream theorem: "Any state σ that passes a small number of tests behaves like ρ on all measurements in S"

[A.-Drucker 2009]: The dream theorem holds

New Result

Any quantum state can be "simulated," on all efficient measurements, by the ground state of a local Hamiltonian

New Result

Any quantum state can be "simulated," on all efficient measurements, by the ground state of a local Hamiltonian

IN OTHER WORDS...

Given any n-qubit state ρ , there exists a local Hamiltonian H (indeed, a sum of 2D nearest-neighbor interactions) such that:

For any ground state $|\psi\rangle$ of H, and measuring circuit E with \leq m gates, there's an efficient measuring circuit E' such that

$$|\langle \psi | E' | \psi \rangle - \text{Tr}(E\rho)| \leq \varepsilon$$
.

Furthermore, H is on poly $(n,m,1/\epsilon)$ qubits.

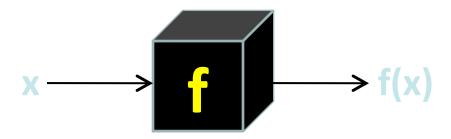
What Does It Mean?

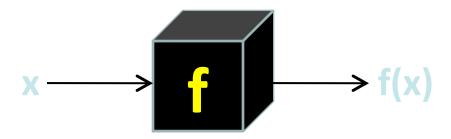
Without loss of generality, every quantum advice state is the ground state of a local Hamiltonian

BQP/qpoly ⊆ **QMA/poly**. Indeed, trusted quantum advice is equivalent in power to trusted classical advice combined with untrusted quantum advice.

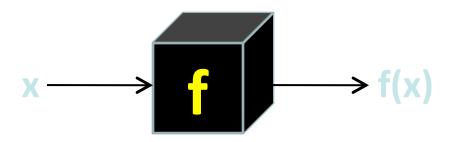
("Quantum states never need to be trusted")

"Quantum Karp-Lipton Theorem": NP-complete problems are not efficiently solvable using quantum advice, unless some uniform complexity classes collapse





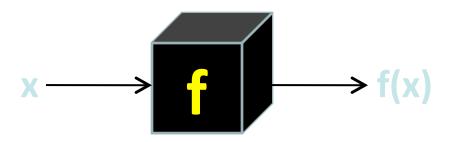
that computes some Boolean function $f:\{0,1\}^n \rightarrow \{0,1\}$ belonging to a "small" set S (meaning, of size $2^{\text{poly}(n)}$). Someone wants to prove to us that f equals (say) the all-0 function, by having us check a polynomial number of outputs $f(x_1),...,f(x_m)$.



that computes some Boolean function $f:\{0,1\}^n \rightarrow \{0,1\}$ belonging to a "small" set S (meaning, of size $2^{\text{poly(n)}}$). Someone wants to prove to us that f equals (say) the all-0 function, by having us check a polynomial number of outputs $f(x_1),...,f(x_m)$.

This is trivially impossible!

	<u> </u>					
	fo	f,	f	f,	f	f ₅
X ₁	0	1	0	0	0	0
X2	0	0	1	0	0	0
X2	0	0	0	1	0	0
XΛ	0	0	0	0	1	0
XE	0	0	0	0	0	1



that computes some Boolean function $f:\{0,1\}^n \rightarrow \{0,1\}$ belonging to a "small" set S (meaning, of size $2^{\text{poly(n)}}$). Someone wants to prove to us that f equals (say) the all-0 function, by having us check a polynomial number of outputs $f(x_1),...,f(x_m)$.

This is trivially impossible!

But ... what if we get 3
black boxes, and are
allowed to simulate f=f₀ by
taking the point-wise
MAJORITY of their outputs?

	f	f	f	f	f ₄	f
X ₁	0		0	0	0	0
X2	0	0	1	0	0	0
X2	0	0	0	1	0	0
XΛ	0	0	0	0	1	0
XE	0	0	0	0	0	1

Majority-Certificates Lemma

Majority-Certificates Lemma

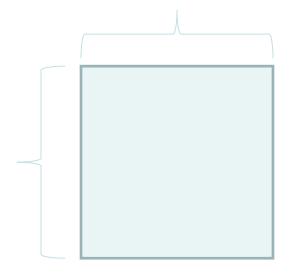
Definitions: A *certificate* is a partial Boolean function $C:\{0,1\}^n \rightarrow \{0,1,*\}$. A Boolean function $f:\{0,1\}^n \rightarrow \{0,1\}$ is *consistent* with C, if f(x)=C(x) whenever $C(x)\subseteq\{0,1\}$. The *size* of C is the number of inputs x such that $C(x)\subseteq\{0,1\}$.

Majority-Certificates Lemma

Definitions: A *certificate* is a partial Boolean function $C:\{0,1\}^n \to \{0,1,*\}$. A Boolean function $f:\{0,1\}^n \to \{0,1\}$ is *consistent* with C, if f(x)=C(x) whenever $C(x)\in\{0,1\}$. The *size* of C is the number of inputs X such that $C(x)\in\{0,1\}$.

Lemma: Let S be a set of Boolean functions $f:\{0,1\}^n \rightarrow \{0,1\}$, and let $f^* \in S$. Then there exist m=O(n) certificates $C_1,...,C_m$, each of size $k=O(\log|S|)$, such that

- (i) Some $f_i \in S$ is consistent with each C_i , and
- (ii) If $f_i \in S$ is consistent with C_i for all i, then MAJ $(f_1(x),...,f_m(x))=f^*$ (x) for all $x \in \{0,1\}^n$.



By symmetry, we can assume f* is the all-0 function. Consider a two-player, zero-sum matrix game:

Bob picks an input $x \in \{0,1\}^n$

Alice picks a certificate C of size k consistent with some f∈S

Alice wins this game if f(x)=0 for all $f \in S$ consistent with C.

By symmetry, we can assume f* is the all-0 function. Consider a two-player, zero-sum matrix game:

Bob picks an input x∈{0,1}ⁿ

Alice picks a certificate C of size k consistent with some f∈S

Alice wins this game if f(x)=0 for all $f \in S$ consistent with C.

Crucial Claim: Alice has a mixed strategy that lets her win >90% of the time.

By symmetry, we can assume f* is the all-0 function. Consider a two-player, zero-sum matrix game:

Bob picks an input $x \in \{0,1\}^n$

The lemma follows from this claim! Just choose certificates $C_1,...,C_m$ independently from Alice's winning distribution. Then by a Chernoff bound, almost certainly MAJ($f_1(x),...,f_m(x)$)=0 for all $f_1,...,f_m$ consistent with $C_1,...,C_m$ respectively and all inputs $x \in \{0,1\}^n$. So clearly there exist $C_1,...,C_m$ with this property.

Alice wins this game if f(x)=0 for all $f \in S$ consistent with C.

Crucial Claim: Alice has a mixed strategy that lets her win >90% of the time.

Alic

Use the Minimax Theorem! Given a distribution D over x, it's enough to create a *fixed* certificate C such that

$$\Pr_{x \in D} \left[\exists f \text{ consistent with } C \text{ s.t. } f(x) = 1 \right] < \frac{1}{10}.$$

Use the Minimax Theorem! Given a distribution D over x, it's enough to create a *fixed* certificate C such that

$$\Pr_{x \in D} \left[\exists f \text{ consistent with } C \text{ s.t. } f(x) = 1 \right] < \frac{1}{10}.$$

Stage I: Choose $x_1,...,x_t$ independently from D, for some t=0 (log|S|). Then with high probability, requiring $f(x_1)=...=f(x_t)=0$ kills off every $f \in S$ such that $\Pr_{x \in D} [f(x) = 1] \ge \frac{1}{10}$.

$$\Pr_{x \in D} [f(x) = 1] \ge \frac{1}{10}.$$

Use the Minimax Theorem! Given a distribution D over x, it's enough to create a *fixed* certificate C such that

$$\Pr_{x \in D} \left[\exists f \text{ consistent with } C \text{ s.t. } f(x) = 1 \right] < \frac{1}{10}.$$

Stage I: Choose $x_1,...,x_t$ independently from D, for some t=0 (log|S|). Then with high probability, requiring $f(x_1)=...=f(x_t)=0$ kills off every $f \in S$ such that $\Pr_{x \in D} [f(x)=1] \ge \frac{1}{10}$.

Stage II: Repeatedly add a constraint $f(x_i)=b_i$ that kills at least half the remaining functions. After $\leq \log_2 |S|$ iterations, we'll have winnowed S down to just a single function $f \in S$.

Use the Minimax Theorem! Given a distribution D over x, it's enough to create a *fixed* certificate C such that

$$\Pr_{x \in D} \left[\exists f \text{ consistent with } C \text{ s.t. } f(x) = 1 \right] < \frac{1}{10}.$$

Stage I: Choose $x_1,...,x_t$ independently from D, for some t=0 (log|S|). Then with high probability, requiring $f(x_1)=...=f(x_t)=0$ kills off every $f \in S$ such that $\Pr_{x \in D} [f(x)=1] \ge \frac{1}{10}$.

Stage II: Repeatedly add a constraint $f(x_i)=b_i$ that kills at least half the remaining functions. After $\leq \log_2 |S|$ iterations, we'll have winnowed S down to just a single function $f \in S$.

"Lifting" the Lemma to Quantumland

Boolean Majority-	BOP/anoly=YOP/
Set S of Roolean	Set S of n(n)-auhit
"True" function	"True" advice state
Other functions far	Other states Oa.
Certificate C. to	Measurement F. to

"Lifting" the Lemma to Quantumland

Boolean Majority-	BOP/apoly=YOP/
Set S of Roolean	Set S of n(n)-auhit
"True" function	"True" advice state
Other functions face	Other states Oa.
Certificate C. to	Measurement F. to

New Difficulty	Solution
The class of p(n)-qubit	Result of A.'06 on
quantum states is infinitely	learnability of quantum
Instead of Boolean functions	Learning theory has tools
$f:\{0,1\}^n \to \{0,1\}$, now we have	to deal with this: fat-
How do we verify a quantum	QMA=QMA+ (Aharonov &
What if a certificate asks us to	"Safe Winnowing Lemma"

Majority-Certificates Lemma, Real Case

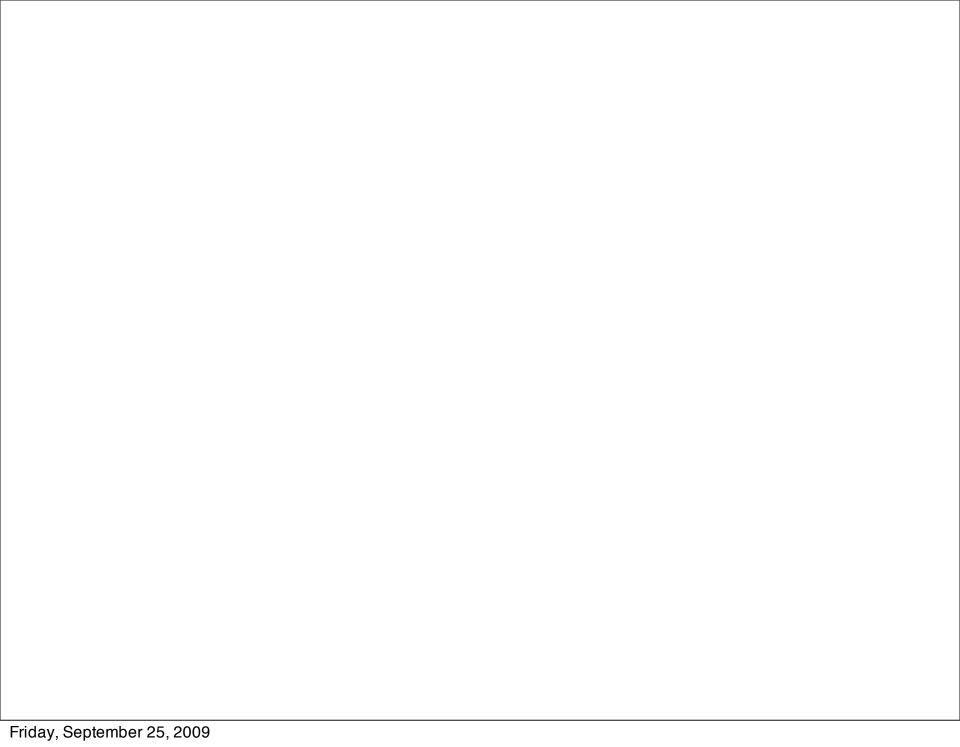
Lemma: Let S be a set of functions $f:\{0,1\}^n \rightarrow [0,1]$, let $f^* \in S$, and let $\epsilon > 0$. Then we can find $m = O(n/\epsilon^2)$ functions $f_1, ..., f_m \in S$, sets

$$X_1,...,X_m \subseteq \{0,1\}^n \text{ each of size }$$

$$k = O\left(\frac{n}{\epsilon^3} \operatorname{fat}_{\epsilon/48}(S)\right)$$
and
$$\alpha = \Omega\left(\frac{\epsilon^2}{n \operatorname{fat}_{\epsilon/48}(S)}\right)$$

for which the following holds. All functions $g_1,...,g_m \in S$ that

satisfy
$$\max_{x \in \{0,1\}^n} \left| \frac{1}{m} [g_1(x) + \dots + g_m(x)] - \int_{-\infty}^{\infty} dx \right| \le \varepsilon.$$



Theorem: $BQP/qpoly \subseteq QMA/poly$.

Proof Sketch: Let L∈BQP/qpoly. Let M be a quantum algorithm that decides L using advice state $|\psi_n\rangle$. Define

$$f_{\rho}(x) := \Pr[M(x, \rho) \text{ accepts}]$$

Let $S = \{f_{\Omega} : \rho\}$. Then S has fat-shattering dimension at most poly(n), by A.'06. So we can apply the real analogue of the Majority-Certificates Lemma to S. This yields certificates C₁, ..., C_m (for some m=poly(n)), such that any states $\rho_1,...,\rho_m$ consistent with C₁,...,C_m respectively satisfy

$$\left|\frac{1}{m}\left(f_{\rho_1}(x)+\cdots+f_{\rho_m}(x)\right)-f_{|\psi_n\rangle\langle\psi_n|}(x)\right| \leq \varepsilon$$

for all $x \in \{0,1\}^n$ (regardless of entanglement). To check the C_i 's, we use the "QMA+ super-verifier" of Aharonov & Regev.

Karp-Lipton 1982: If NP \subseteq P/poly, then coNP^{NP} = NP^{NP}.

Karp-Lipton 1982: If NP \subseteq P/poly, then coNP^{NP} = NP^{NP}.

Our quantum analogue:

If NP \subseteq BQP/qpoly, then coNP^{NP} \subseteq QMA^{PromiseQMA}.

Karp-Lipton 1982: If NP \subseteq P/poly, then coNP^{NP} = NP^{NP}.

Our quantum analogue:

If NP \subseteq BQP/qpoly, then coNP^{NP} \subseteq QMA^{PromiseQMA}.

Proof Idea: In QMA^{PromiseQMA}, first guess a local Hamiltonian H whose ground state $|\psi\rangle$ lets us solve NP-complete problems in polynomial time, together with $|\psi\rangle$ itself. Then pass H to the PromiseQMA oracle, which reconstructs $|\psi\rangle$, guesses the first quantified string of the coNP^{NP} statement, and uses $|\psi\rangle$ to find the second quantified string.

Karp-Lipton 1982: If NP \subseteq P/poly, then coNP^{NP} = NP^{NP}.

Our quantum analogue:

If NP \subseteq BQP/qpoly, then coNP^{NP} \subseteq QMA^{PromiseQMA}.

Proof Idea: In QMA^{PromiseQMA}, first guess a local Hamiltonian H whose ground state $|\psi\rangle$ lets us solve NP-complete problems in polynomial time, together with $|\psi\rangle$ itself. Then pass H to the PromiseQMA oracle, which reconstructs $|\psi\rangle$, guesses the first quantified string of the coNP^{NP} statement, and uses $|\psi\rangle$ to find the second quantified string.

To check that $|\psi\rangle$ actually works, use the self-reducibility of NP-complete problems (like in the original K-L Theorem)

Summary

In many natural scenarios, the "exponentiality" of quantum states is an illusion

That is, there's a short (though possibly cryptic) classical string that specifies how a quantum state ρ behaves, on any measurement you could actually perform

Applications: Pretty-good quantum state tomography, characterization of quantum computers with "magic initial states"...

Open Problems

Find classes of quantum states that can be learned in a computationally efficient way

[A.-Gottesman, in preparation]: Stabilizer states

Oracle separation between BQP/poly and BQP/qpoly

[A.-Kuperberg 2007]: Quantum oracle separation

Other applications of "isolatability" of Boolean functions?

"Experimental demonstration"?