The Quantum from Geometry: The States of the of Microstate Geometries

"Geometry from the Quantum"
Nick Warner, KITP Santa Barbara, January 13-17, 2020.

Research supported supported in part by: ERC Grant number: 787320 - QBH Structure and DOE grant DE- SC0011687

Original photo credit: LIGO/Caltech

Outline

The present state

★ Why microstate geometries are an essential part of black-hole physics

Illustrate these ideas:

- ★ The structure of microstate geometries; superstrata
- ★ The holographic dictionary for superstrata
- ★ Probing superstata

The (hopefully near) future state

- ★ Infall and energy exchange; viscosity
- ★ The gravity dual of twisted-sector states
- ★ Non-extremal microstate geometries and gauged supergravity

Microstate Geometries

Smooth, horizonless "solitonic" solutions to the bosonic sector of supergravity (the low-energy limit of string theory) with the same asymptotic structure as a given black hole or black ring

Singularity resolved; Horizon removed

Looks exactly like a classical black hole until arbitrarily close to horizon scale

No horizons ⇔ No information problem

Fundamental mechanism: Replace singular sources by topology and topological fluxes from geometric transitions

Now have huge "zoos" of examples

... almost all are BPS

Why you must care about Microstate Geometries I

They embody the only gravitational mechanism that can support structure at the horizon scale

Gibbons and Warner, arXiv:1305.0957

Whatever quantum system you use to model a black hole:

- ★ It must look and behave like the astrophysical black hole described by GR close to the horizon scale ... it better have some gravity
- * It must have microstructure accessible from near the horizon scale

This strongly suggest that such a quantum system

- has a semi-classical limit that supports horizon-scale microstructure against gravitational collapse \Rightarrow This limit must be a microstate geometry
- there should be a limit in which some of the quantum states are described as stringy fluctuations in a microstate geometry
- ... and coherent combinations of such quantum states should be describable as supergravity fluctuations about a *microstate geometry*

Microstate geometries provide a gravitational laboratory for studying horizon-scale microstructure

- Why you must care about Microstate Geometries II
- Holographic RG flows, phase transitions and geometric transitions
- The problem: Start from a UV CFT, perturb the Lagrangian, determine the correct IR physics

The challenges: What is the new IR phase; Multiple phases? What are the order parameters and their vevs and how do they evolve into the IR? Are there new scales generated in the IR? Is there a mass gap, and how do you compute it?

<u>Last 20 years</u>: Large range of examples and some very important and general lessons for the gravity side of this duality.

- ★ IR geometry: Branes often undergo phase transition to create non-trivial cohomological cycles
 - Magnetic fluxes on those cycles dual to order parameters
 - Scale of the cycle is the emergent scale of new phase
 - Scale of cycle + redshift between UV and IR geometry → Mass gap
- ★ You should impose too much symmetry: you may be forbidding the transition to the new phase
- * You must activate all appropriate IR degrees of freedom: or you may be forbidding the order parameters of the new phase
- ★ Singular IR Geometry: usually the missing essential physics/wrong IR phase

The holographic dual of a flow to a confining gauge theory

N = 2 or N = 4 Yang Mills

Turn on masses and flow to N=1 SQCD

Interesting failures: Singular flows.

- Gauged supergravity (GPPZ)
- Klebanov-Tseytlin

Limited/Wrong IR Physics

The first attempts failed because they were missing critical degrees of freedom essential to the underlying physics ... and too much symmetry

Correct holographic description

- Magnetic fluxes dual to gaugino condensates
- Scale of the cycle dual to SQCD scale
- Scale of cycle + redshift → Mass gap

Polchinski-Strassler flow Klebanov-Strassler flow

Microstate geometries:

This collection of ideas applied to black holes ...

Black-hole physics

Spherically symmetric solution to gravity

Two basic mechanisms underlying microstate geometries

Pure topology:

Charges from cohomological fluxes

$$d * F^{(p)} \sim \sum_{k} G^{(k)} \wedge G^{(D-p-k)}$$

Charges from Chern-Simons interaction

Holographic Dictionary = Open problem!

Superstrata:

Momentum waves on topological "bubbles"

Third charge adjusted via momentum waves on bubbled geometry

Well-developed holographic dictionary

⇒ Central focus for last few years

+ Hybrids = Momentum waves on multi-bubble geometries = Open problem!

Superstrata

The Field Theory: The D1-D5 system wrapped on $T^4 \times S^1(y)$

Open D1-D5 superstrings moving in T^4 with $N = N_1 N_5$ Chan-Paton labels: $(T^4)^N/S_N$

⇒ Supersymmetric CFT with $c = 6 N_1 N_5$

Ramond-Ramond Ground States

Ground-state spins on strand of length k:

These are ½ BPS States with (4,4) supersymmetry

Gravity dual: AdS₃ × S³

Maximally spinning ground state:

$$(|+\frac{1}{2},+\frac{1}{2}\rangle_1)^N$$

Mode excitations on sphere

 $|\alpha_i, \beta_i\rangle_k$

Momentum Excitations:

Add purely left-moving momentum:

$$Q_P \sim N_P = L_{0,left} \neq 0$$

Right moving sector: Ramond ground state

 $\Rightarrow \frac{1}{8}$ BPS states

At vanishing string coupling, $g_s \rightarrow 0$, Cardy formula:

$$S \equiv \log \left(\Omega(Q_P)\right) = 2\pi \sqrt{\frac{c}{6}} L_0$$
$$= 2\pi \sqrt{N_1 N_5 N_P} = 2\pi \sqrt{Q_1 Q_5 Q_P}$$

Finite string coupling, g_s

★ Spherical symmetry: Matter/microstate structure disappears inside black-hole horizon

$$S = \frac{1}{4} A = 2 \pi \sqrt{Q_1 Q_5 Q_P}$$

Perfect match! Declare victory

Strominger, Vafa 1996

Area, A

Superstrata and the holography of the D1-D5 CFT

We now know the holographic dual of a very specific coherent subsets of the BPS states counted by Strominger and Vafa: "Supergraviton gas"

Left-moving states:

(Right moving sector: Ramond ground state; 1/8 BPS)

$$(|+\frac{1}{2},+\frac{1}{2}\rangle_{1})^{N_{0}} \otimes \left[\bigotimes_{k_{i},m_{i},n_{i}} \left(\frac{1}{m_{i}!\,n_{i}!} \underbrace{(J_{-1}^{+})^{m_{i}}\,(L_{-1}-J_{-1}^{3})^{n_{i}}}_{| l = 1, ..., N \equiv N_{1}|} \right]^{N_{k_{i},m_{i},n_{i}}} \right]$$

Momentum and R-charge excitations

Geometric modes:

$$\chi_{\mathbf{k}_{j},\mathbf{m}_{j},\mathbf{n}_{j}} \equiv R^{-1} \left(\mathbf{m}_{j} + \mathbf{n}_{j} \right) v + \frac{1}{2} \left(\mathbf{k}_{j} - 2 \mathbf{m}_{j} \right) \psi - \frac{1}{2} \mathbf{k}_{j} \phi$$

Coherent states
$$N_{k_i,m_i,n_i} \gg 1$$

Harmonic deformation of $AdS_3 \times S^3$

Superstrata: Holomorphic waves of microstructure

Coherent states of the supergraviton gas:

Geometric modes:

$$\chi_{\mathbf{k}_{j},\mathbf{m}_{j},\mathbf{n}_{j}} \equiv R^{-1} (\mathbf{m}_{j} + \mathbf{n}_{j}) v + \frac{1}{2} (\mathbf{k}_{j} - 2\mathbf{m}_{j}) \psi - \frac{1}{2} \mathbf{k}_{j} \phi$$

 $(u,v,r) \qquad \qquad (\theta,\psi,\varphi)$

with arbitrary Fourier coefficients

⇒ Supergravity solutions based on arbitrary functions of *three variables*

Generic **BPS** Superstrata ⇒ arbitrary *holomorphic* functions of three variables

$$\xi \equiv \frac{r}{\sqrt{r^2 + a^2}} e^{i\frac{\sqrt{2}}{R_y}v}, \quad \chi \equiv \frac{a}{\sqrt{r^2 + a^2}} \sin\theta \, e^{\frac{i}{2}(\psi + \phi)}, \quad \eta \equiv \frac{a}{\sqrt{r^2 + a^2}} \cos\theta \, e^{i\left(\frac{\sqrt{2}v}{R_y} - \frac{1}{2}(\psi - \phi)\right)}$$

Hugely simplifies the construction ...

P. Heidmann, N.P. Warner: 1903.07631

P. Heidmann, D.Mayerson, R. Walker, N.P. Warner: 1910.10714

Superstrata → largest classes of solutions ever built = States of the supegraviton gas

Counting superstrata:

$$S_{superstrata} \sim \sqrt{Q_1 Q_5} (Q_P)^{1/4} \ll \sqrt{Q_1 Q_5 Q_P} \sim S_{black\ hole}$$

M. Shigemori, 1907.03878

What are superstrata missing? The twisted sector states of the CFT ...

The structure of the (2+1)-geometry

Asymptotically flat $R^{4,1} \times S^1 \to BTZ (\times S^3) \to Capped in IR by global AdS_3 Looks just like a five-dimensional black hole$

Important scales related to charges

b \leftrightarrow momentum charge, Q_P

a ↔ angular momenta, jL, jR
 Low angular momentum: b ≫ a

A Simple Class of D1-D5 States

$$(|+\frac{1}{2}\,,+\frac{1}{2}
angle_1)^{N_0}\otimes \left(rac{1}{n!}\,(L_{-1}-J_{-1}^3)^n|00
angle_1
ight)^{N_n} \qquad ext{with} \qquad rac{N_1\,N_5}{N_1} \;=\; N_0 \;+\; N_n$$

(0,4) supersymmetry; 1/8 BPS states

Supergravity Parameters: Fourier Coefficients a, b; Momentum mode, n

Compactification/Planck Scale:

$$\mathcal{K} \equiv \frac{\operatorname{Vol}(T^4) R_y^2}{\ell_{10}^8}$$

Quantized Parameters:

$$j_L = \tilde{j}_R = \frac{1}{2} \mathcal{K} \mathbf{a^2} \qquad N_P = \frac{1}{2} \mathcal{K} n \mathbf{b^2}$$

Probing Microstate Geometries: Tides

Consider a family of time-like geodesics with velocity vectors, V^{μ} , and proper time, τ

A <u>deviation vector</u>, S^{μ} , is any space-like unit vector (at $\tau = 0$) and everywhere perpendicular to the geodesics:

$$S^{\mu} S_{\mu_{\tau=0}} = 1, \qquad V^{\mu} S_{\mu} = 0$$

The <u>relative acceleration</u> between geodesics in a family is then given by:

$$a^{\mu} \equiv \frac{d^2 S^{\mu}}{d au^2} = \mathcal{A}^{\mu}{}_{
u} S^{
u}$$

where
$$\mathcal{A}^{\mu}{}_{\nu} \equiv -R^{\mu}{}_{\rho\nu\sigma} V^{\rho} V^{\sigma}$$
 is the tidal tensor.

The tidal tensor satisfies $A^{\mu}_{\nu}V^{\nu}=0$ and so only has space-like components

The norm of the tidal tensor is defined by: $|A| \equiv \sqrt{A^{\mu}_{\nu}A^{\nu}_{\mu}}$

$$|\mathcal{A}| \equiv \sqrt{\mathcal{A}^{\mu}_{\ \nu} \mathcal{A}^{\nu}_{\ \mu}}$$

and sets the scale of the tidal force per unit length, per unit mass

Tidal Forces: BTZ

BTZ Metric: a = 0

- No "drama at the horizon"
- Locally same curvature as AdS₃

Tidal tensor magnitude along radial infall:

$$|\mathcal{A}| = \frac{2}{R_y b} = \frac{\sqrt{2}}{\sqrt{Q_1 Q_5}} = \frac{\sqrt{2}}{\sqrt{N_1 N_5}} \frac{\sqrt{\text{Vol}(T^4)}}{\ell_{10}^4}$$

Vanishes for large $N \equiv N_1 N_5$

Tidal Forces in Superstrata

Tidal tensor has BTZ term: $|A| = \frac{2}{R_n b}$

$$|\mathcal{A}| = \frac{2}{R_y \, b}$$

Tidal tensor also has higher multipole moments:

$$|\mathcal{A}|_{\mathrm{throat}} \sim \frac{a^2 b^2 E^2}{r^6}$$

E = energy of geodesic particle

Note that this vanishes for BTZ (a=0)

$$r_* \approx b \sqrt{n} \implies |E| \approx \sqrt{\frac{b n}{R_y}} \implies |A|_{\text{throat}} \sim \frac{a^2 b^3 n}{R_y r^6}$$

At $r \sim \sqrt{a\,b}$ this gives $|\mathcal{A}|_{\mathrm{throat}} \sim \frac{n}{a\,R_n} \sim \frac{n}{\sqrt{2\,i_L}} \frac{\sqrt{\mathrm{Vol}(T^4)}}{\ell_{10}^4}$

At $r \sim \sqrt{a\,b}$ in the deepest possible throats: $|\mathcal{A}|_{\mathrm{throat}} \sim \frac{\sqrt{\mathrm{Vol}(T^4)}}{\ell^4}$

 \Rightarrow Tidal forces hit the Planck/Compactification scale at $r \sim \sqrt{ab}$

Penrose limit of ultra-relativistic radially infalling string:

Light-cone gauge: $x^- = \alpha' p^+ \tau$

Transverse oscillations

$$(\partial_{\tau}^2 - \partial_{\sigma}^2) z^i = (\alpha' p^+)^2 \mathcal{A}_{ij} (\alpha' p^+ \tau) z^j$$

Aij is a "time-dependent" mass term.

AdS or BTZ: $A_{ij} = 0$

Superstratum at large r, A_{ij} has eigenvalues $\sim +\frac{a^2b^2}{r^6}$ and $-\frac{a^2b^2}{r^6}$

⇒ Exponentially growing mode ..

Recall tidal tensor: $|\mathcal{A}|_{\mathrm{throat}} \sim \frac{a^2 \, b^2 \, E^2}{r^6}$ with $E \sim \alpha' \, p^+$

Ultra-relativistic speeds enhance multipole moments of microstate geometries

⇒ Tidal forces scramble infalling matter* into stringy excitations

Next steps and open problems ...

Tidal forces and viscosity

(Why you should care about Microstate Geometries III)

Supergravity can be a powerful tool in understanding the large-scale effective hydrodynamics of strongly coupled quantum systems

- e.g.

 Viscosity and jet-quenching in quark-gluon plasmas
 - **♦** Trailing strings and viscous drag from microstate geometries

I. Bena, A. Tyukov: 1911.12821

- ★ Tides ⇒ Energy transfer to probes
- ★ Back-reaction of tidal effects on probes
 - → Energy transfer between probes and background
- ★ Use D1-brane probes
 - → background/probe on same footing
- ★ Estimate energy exchange with background as probe scrambles
 - → effective viscosity of interactions with microstates
- * What is the CFT analogue of this tidal disruption?

Twisted sector states: The bulk of black hole entropy

- Very limited supergravity examples from orbifolds
- "W-branes:" wrapping branes around cycles of microstate geometries

 Martinec and Niehoff, 1509.00044

Entropy of such states grows as $\sim Q^{3/2}$

Massless limit → Semi-classical description of black-hole microstructure

Generic coherent twisted sector excitations should be visible in supergravity.

States of open strings stretched between branes → Magnons

Related to (?) open problem on the gravity side:

The holography of multi-centered microstate geometries: multi-superstrata

<u>UV</u>: D1-D5 CFT with $c = 6 N_1 N_5$

Holographic RG flow

IR: State/Phase of D1-D5 CFT
Complex "product of CFTs" each
with some momentum excitation

Magnon condensates?

Bena, Shigemori, NPW

Non-extremal microstate geometries: Colliding superstrata

Following the results of Strominger and Vafa in 1996, there was an industry analyzing such near BPS states in the CFT and at vanishing string coupling, $g_s \rightarrow 0$

Near BPS \leftrightarrow Small number, N_{Right} , of right movers

- \star Non BPS: $M \sim N_{Left} + N_{Right}$, $Q_P \sim N_{Left} N_{Right}$
- ★ State counting worked well, including both left-moving and right-moving states
- **★** Small Hawking Temperature
- ★ Hawking radiation is correctly captured by open string scattering into closed strings
- ★ Grey-body factors work nicely ...

Beautifully controlled supersymmetry breaking.

All of this was done in the CFT and with $g_s \rightarrow 0$

Can we find the gravity dual with finite g_s ?

The BPS story gave us a precise holographic dictionary ...

Setting up the scattering problem in gravity

These BPS solutions are exactly known - localizable momentum waves Holographic dictionary is also known

Holomorphic waves in superstrata: Accurate approximations to solutions with localized regions with (0,4) and (4,0) supersymmetry

The really hard part: The waves collide.

BPS elements \rightarrow Precisely-posed initial value problem Still depends on all coordinates: $(u,v,r,\theta,\psi,\varphi)$

Colliding superstratum states:

Options:

- ★ Treat the anti-BPS, right-moving states perturbatively ... in the exactly-known, left-moving superstratum background
- **★** Numerical simulations
 - Precisely-posed initial value problem for explicitly known D1-D5 CFT microstates
 - One can do the dual computation in the CFT

Perturbative calculations: Mathur; Bombini

Gravity side:

In principle, the solution depends on all six coordinates: $(u,v,r,\theta,\psi,\varphi)$

However, exact results on superstrata have led to a huge bonus ...

In the underlying six-dimensional supergravity theory, colliding superstrata can be described in terms of harmonic deformations of AdS₃ × S³

- ◆ There are still very rich families of both purely left-moving and purely right-moving superstrata that only involve the lowest harmonics of S³.
- * Restricting to these modes **seems** to be a consistent truncation of six-dimensional supergravity to a **three-dimensional gauged supergravity**

D. Mayerson, R. Walker and NPW

Such superstrata, and their collisions could be described entirely in a gauged supergravity in three-dimensions (u, v, r):

All degrees of freedom described by a gauged non-linear σ -model (SO(5,4)) depending on only three space-time variables

Conclusions

- \star To understand black-hole microstructure we need to apply all that we have learned from holographic field theory \Rightarrow Microstate geometries
- ★ Microstate geometries: a laboratory for studying horizon-scale microstructure
- ★ Superstrata: holographic dual of "supergraviton gas"
 - ★ Capped BTZ geometries
 - ★ Supergravity solutions that depend on arbitrary holomorphic functions of three variables
- ★ Infall and tidal scrambling
 - ★ Infall from large distances ⇒ scrambling half-way down the throat
 - ★ Viscosity/hydrodynamics of the microstructure: Supergravity is good at this!
 - ★ CFT dual of tidal disruption?

Important open problems

- ★ Systematics of twisted sector states; W-branes;
 - Magnon condensates ?↔? Holography of multi-centered geometries
 - ★ Non-BPS/Near-BPS ★ Perturbation theory ★ Numerical simulations
 - ★ We are in a position to address this problem because the study of BPS microstate geometries has given us the holographic dictionary and the ability to localize waves
 - ★ non-BPS scattering can be compared to CFT computations
 - ★ Gauged supergravity in three dimensions might lead to huge simplifications ...