Spacetime Locality and the Motion
of Quantum Information

Brian Swingle (UMD)
Jan 17, 2020

Geometry from the Quantum, KITP

?,OFSClE
< oé\o s )/A)O LA
. & . PHYSICS :
5 f At .‘1\ FRONTIER
CENTER
M‘m,.,,*""‘; * JOINT QUANTUM INSTITUTE

It from Qubit

7 Simons Collaboration
’ Quantum Fields, Gravity and Information




Plan

 Discuss motion of quantum information in chaotic many-body
systems (focuses on quasi-1d situations, but general criterion given)

* Work with Josiah Couch, Stefan Eccles, Phuc Nguyen, and Shenglong Xu
* arXiv:1908.06993

* Discuss a puzzle raised by Shor and a toy model displaying a
phenomenon of “chaos-protected locality”

* In another universe ... a mostly unrelated result giving a no-go result
for realizing SYK-like physics in bosonic models

* Work with Chris Baldwin H — Z g ap
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Z[J] fails to self-average at low temperature (roughly)



A simple communication protocol
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A B
Xa,a=0,1 V4, b=0,1
XX, =1 > Y =1

1. A signals at time O
2. B measures at time t

P(bla) — P(b|0) = (| XI[Y5(t), Xao]|¥))



Weak vs hon-weak interaction...

* Nearly free particles or waves:
 Excite localized wavepacket carrying information, e.g. electromagnetic wave
* Wavepacket moves at group velocity
 Commutator related to free particle propagator, can be large at late time

* Interacting, chaotic system
* Caninject energy, but typically no long-lived coherent excitations
 Commutator decays rapidly in time, distant observers see only noise

P(bla) — P(b]0) = (| XI[Y3(t), Xa]lth) = 0



Communication vs information spreading

* Weakly coupled degrees of freedom can be used to transmit
information in a locally accessible way, e.g. electromagnetic wave

* Strongly coupled degrees of freedom typically do not transmit
information in locally accessible form

* Information spread can be measured by tracking entanglement with a
reference:
R
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Minimal region needed to recover the entanglement




Quantum info toy model (quasi-1d = strips)

* Initial state; energy density £ ; entanglement fraction f:
* Entanglement growth: S(A) = min{ fs|A| + svg(f)|0A|t, s|A|}

* Operator spreading: vp [Suh-Liuy, ..., f-dependent rate
discussed by Nahum et al.]

* Result: information velocity vy = min { f({c)a B}

[Eccles-Couch-Nguyen-S-Xu 1908.06993]

* Argument: minimal region that can recover the entanglement roughly
equivalent to maximal complementary region that cannot recover the
entanglement = generalization of [Hayden-Preskill] for complement



Example: =1

R fully entangled pure state
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If purple region smaller than butterfly cone, then complement can recover —
entanglement (HP: maximal entanglement and access to scrambled output) B
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Quantum information argument

* Assume ve(f) < vg(1l — f) (we have an argument that is a
modification of | ]); this implies that operator
spreading is not the rate-limiting step, except when f=1

 Then we need to track the effective size of system + memory for HP

* Key point: let Asat be the region whose entropy has just saturated,
then the effective size of system + memory is twice the size of Asat

* Thus, if A > Asat, recovery is possible, and if A < Asat, recovery is not
possible (because recovery is possible in the complement of A):

R(1—-f) R ve(f)

Lont = L ... yp= lim - =
: vE(f) ! t—00 Tgqt 1 — f
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Spin chain evidence (1d) |
L=22 spins, Krylov method
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Holographic evidence (focus on quasi-1d)

* We can construct a general class of states with a given energy density
and entanglement fraction by beginning with a thermofield double
state of some lower energy density and adding energy:

~ s(eo)
'=56

* Add entanglement by injecting a particle entangled with a reference

e Rule: any region whose entanglement wedge includes the infalling
particle can recover the entanglement

* Goal: find the smallest such region, as a function of time

(generalizes | 1)



General case (quasi-1d)

vi, Ve (1)
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Comments

* Interesting story about shape dependence in higher dim (in progress)

e Can see explicitly that the output is scrambled using geometry, nice
setting where many aspects of recent BH info discussion appear

* Open questions at finite temperature, e.g. which butterfly speed?
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Toy model of external dynamics of black hole

e Setup a computational toy model of the outside dynamics of a black
hole ( ’s model of Schwarzschild BH; )

* Black hole has a characteristic time 7 and coarse-grained entropy S

* Rules:

* Break the spacetime up into cells defined by requiring the time
(Schwarzschild time) for light to cross the cell is order T

A calculation shows that each cell holds O(1) bits (or qubits) of entropy arising
from thermal excitations; outside only view of the physics

* We declare ignorance about the quantum gravity dynamics of the black hole
except that they are bounded by the motion of light in black hole spacetime



O(S) cells
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* Weak scrambling (= mixing O(1) qubits) is possible in time 7 log S
* Strong scrambling (= generating nearly maximal entanglement) takes at
least time 7.5 (or 757%)




Challenge:
* Calculations with particular model (AdS/CFT) show that the both the weak and
strong scrambling times are bounded by 7log S |
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Hawking radiation
(simple, e.g. photons) SIGNAL

~

H =iw Z ¢T¢T+1



Hawking radiation
(simple, e.g. photons) SIGNAL
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[S: coming soon]



Black: only simple part; Red: chaotic inner part; Black dot-dashed: non-chaotic inner part
open boundary conditions, wire N = 20, SYK N = 20
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Sachdev-Ye-Kitaev model: violations of locality are suppressed by system size [S: coming soon]



Black: only simple part; Red: chaotic inner part; Black dot-dashed: non-chaotic inner part
open boundary conditions, wire N = 20, SYK N = 20
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Sachdev-Ye-Kitaev model: violations of locality are suppressed by system size [S: coming soon]



What is spacetime geometry?

* It should be operationally defined in terms of the
motion of simple signals = Einstein’s rods and clocks!

* In the model, simple signals continue to respect the
local structure, up to entropy-suppressed corrections

* A super-observer with access to multiple copies of the
universe, or who can run time backwards, or process
the whole system in a quantum computer, could in
principle detect the anomalously fast entanglement
spreading — but this could be OK, we’ve never tested it




Ssummary

* Quantum information can move coherently or spread chaotically; its
motion obeys various kinds of speed limits

* We are building a set of concepts and tools to help us understand and
calculate the motion of quantum information; new physics includes
universal patterns of chaos spreading and emergent slow speed limits

* Possible application to black holes: “chaos-protected locality” defuses
tension between fast information dynamics and spacetime locality




