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Takeaway
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Motivation Slide

TT̄ (and related) deformations are cool.

• Universal: exist in every theory with relevant symmetries. TT̄ exists in

any QFT with a conserved stress tensor.

• New type of deformation: “recursive,” rather than adding a term to the

action.

• Solvable!

• Preserve integrability.

• Definition very field-theoretic, but does not always give you a QFT.

• TT̄ : toy model of quantum gravity.

• TT̄ : toy version of finite-cutoff AdS/CFT.

• TT̄ + Λ2: AdS/CFT → theory bulk dual dS.

• Discovered 5 times.

Zamolodchikov ‘04 + Smirnov-Zamolodchikov ‘16, Cavaglia-Negro-Szeczenyi-Tateo ‘16, Dubovsky-Flauger-Gorbenko ‘12, Lechner

‘12, Freidel ‘08.
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What is TT̄?

In 2d flat space,

For any two conserved currents JµA , A = 1, 2,

the operator

“JAJ̄
′′
B = εABεµνJ

µ
A (x)JνB (0)

has no x → 0 power-law divergences,1

and so the limit is easy to define in a theory-independent manner.

Examples:

• TT̄ = TzzTz̄ z̄ − Tzz̄Tz̄z

• JT̄ = JzTz̄ z̄ − Jz̄Tz̄z

• TJ̄ = TzzJz̄ − Tzz̄Jz

TT̄ deformation: a class of theories defined by

∂λ logZλ =

∫
d2x〈JAJ̄B(x)λ〉λ

1Zamolodchikov ‘04, Smirnov-Zamolodchikov ‘16.
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Solvability

Can find flow of S-matrix and energy levels.

The TT̄ -deformed S-matrix:

Sλ(pi ) = S0(pi )e
i

4λ

∑
i<j εµνp

µ
i pνj .

TT̄ -deformed energy Levels on S1 of radius r :

Pn(λ, r) = Pn(0, r)

En(λ, r) =
r

λ

{
1−

√
1− 2λEn(0, r)

r
+ 2

λ2P2
n

r 2

}
.

Similar formulas in other deformations.
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Cutoff AdS3/CFT2
2

Write AdS3 in FG gauge,

ds2
3 =

dρ2

ρ2
+ ρ2ds2

2 .

and make the identifications

c =
3`

2GN
,

λ

r 2
∼ GN`

ρ2
c
.

(The stress tensor sector of)

a TT̄ -deformed holographic CFT

is dual to

(the pure GR sector of)

AdS3 with Dirichlet boundary conditions at ρ = ρc ,

2McGough-Mezei-Verlinde ‘16
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Cutoff AdS3/CFT2 from Dimensional Analysis

When we deform a CFT,

the dimensionful parameters are λ ∼ [L]2, r ∼ [L], ε ∼ [L].

So, dimensional analysis requires

(r∂r + 2λ∂λ + ε∂ε) logZλ = 0.

(In CFT, last term is conformal anomaly.)

Making assumption that the anomaly is untouched, this becomes∫ √
g
(
Tµ
µ + 2λTT̄ − c

24π
R
)

= 0.

After identifications,

This is one of the Einstein equations,
∫
E r
r .
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Before we move on, we need to know what vielbeins are

We’re all (I hope) used to describing a geometry by its metric, gµν ,

which gives infinitesimal distances, ds2 = gµνdx
µdxν .

Sometimes useful to deal not with the metric but the transformation between

real coordinates and a local inertial frame/tangent space:

eaµ = “ ∂y
a

∂xµ
”, ds2 = “ηabdy

adyb” = ηabe
a
µe

b
νdx

µdxν .

Why quotes? ∵ ys are only really coordinates for flat manifolds.

Vielbein/frame field3 = eaµ.

Note: rotations of the tangent space index a are a redundancy if you only care

about the metric.

3Do yourself a favour and refuse to call these by any other name.
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The Spin Connection

For covariant derivatives of object with both spacetime (µ, ν) and tangent

space indices (a, b), we use the spin connection,

∇µA
b

νa = ∂µA
b

νa − ΓρµνA
b

ρa + ω b
µ cA

c
νa − ω c

µ aA
b

νc , ωµab = −ωµba. (1)

In 2d, the only anti-symmetric two-tensor is εab, and so

ωµab ≡ ωµεab.

As you might expect, ∇µe
a
ν = 0.

Of interest: the antisymmetric part of this (“torsionlessness”) is just

dea + εabω ∧ eb = 0, ω = (∗dea) ea. (2)

Finally,

R = ∗dω, dω =
1

2
Rε ≡ 1

2
R
√
gεµνdx

µ ∧ dxν . (3)
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TT̄CU part 2: From TT̄ to a Fluctuating Vielbein4

Define the stress tensor,

〈Tµ
a 〉 ≡ −

1

det e
δeaµ logZ . (4)

An infinitesimal amount of TT̄ deformation is

Zδλ[f ] = e
− δλ

2

∫
εµνε

abδf aµ
δ
f bν Z0[f ]

Hubbard-Stratonovich−−−−−−−−−−−→
∫

Dδe e−
1

2δλ

∫
εabδe

a∧δebZ0[f − δe] (5)

How to exponentiate?

4Cardy 1801.06895.
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TT̄CU Part 3: The DGH-C Kernel

The TT̄ deformed theory can be exactly written down as a quantum gravity

path integral.

df a = ω = 0 (flat TS) ⇒

Zλ[f ] =

∫
DeDY

vol(diff)
e−

1
2λ

∫
εab(dX−e)a∧(dX−e)bZ0[e],

dX a ≡ f a + dY a = X ∗f . (6)
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Virtues of the DGH-C Kernel

1. S-matrix:5 The dressing comes from the coordinate transformation

between the two spaces; scattering is happening on the BS, but clocks and

rods are on the TS.

(Kernel reduces to JT gravity in R2.)

2. Partition Function:6 The new energy eigenstates are the old energy

eigenstes on the BS.

3. Classical Actions:7 The deformed classical action can be found by setting

the gravitational variables to their saddle-point values.

5Dubovsky-Gorbenko-Mirbabayi ‘17.
6Dubovsky–Gorbenko–Hernandez-Chifflet ‘18
7Conti–Negro–Tateo ‘18, Coleman–Aguilera-Damia–Freedman–RMS ‘19
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TT̄CU Part 4: A Kernel for JT̄ + T ¯̃J + TT̄ Deformations8

Also introduce a dynamical relative “U(1) frame” between the manifolds,

df a = dB = 0⇒

Z`1,`2,λ[f ,B, B̃] =

∫
D[e,Y ,A, α, Ã, α̃]

vol(diff× U(1)× ˜U(1))
e−SK Z0[e,A, Ã]

SK =
1

`1

∫
ña(f + dY − e)a ∧ (B + dα− A)

+
1

`2

∫
na(f + dY − e)a ∧ (B̃ + dα̃− Ã)

−
λ

`1`2

∫
(B + dα− A) ∧ (B̃ + dα̃− Ã)

8A-DG-RMLS ‘19, Anous-Guica ‘19.
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TT̄CU Part ?: TT̄ + Λ2

Related deformation that is related to bulk dS3, Mink3:9

∂λ logZλ =

∫
〈TT̄ 〉 − c

λ2

The torus partition function is10

Zλ[r , τ ] =

∫
DYDe

vol(diff)
e
− 1

2λ

∫
εab(dX−e)a∧(dX−e)b+ c̃

2λ
r2

r2
BS

∫
e1∧e2

Z0[e]

Here, c̃ ∝ c, but have the same sign.

9Gorbenko-Silverstein-Torroba ‘18.
10Mazenc-Silverstein-RMS, unpublished.
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TT̄CU Part 5: Beyond Flat Spaces

The main input of flatness into DGH-C kernel is that

the coordinate transformed vielbein X ∗f a can be written as f a + dY a.

Reason: f a has no spatial dependence.

Let’s gauge-fix this coordinate transformation to trivial, obtaining

Zλ[f ] =

∫
De e−

1
2λ

∫
εab(f−e)a∧(f−e)bZ0[e].

This satisfies the equation11

∂λ logZλ =

∫
d2x
√
g〈TT̄ (x)〉,

where the TT̄ operator is stupidly defined as a coincident derivative

〈TT̄ 〉λ =
1

Zλ

{
εµνε

ab 1

(det f )2

δ

δf aµ (x)

δ

δf bν (x)
Zλ −

1

det f

(
δf aµ (x)

δf aµ (x)

)
Zλ

}
11Tolley ‘19, Mazenc-Shyam-Soni ‘19.
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TT̄CU Part 1: The 3d Glasses12

Turns out that this kernel also solves a local equation,

〈Tµ
µ (x)〉λ + 2λ〈TT̄ (x)〉λ −

c − 24

24π
R(x)

=

∫
De e−SKZ0[e](. . . )

{
〈Tµ

0µ(x)〉0 −
c

24π
R[e]

}
,

for the same TT̄ operator.

RHS vanishes when seed is CFT.

Note similarity to 3d Einstein eqn from earlier:

this quantum equation is the Wheeler-de Witt equation of 3d GR,

a constraint that is satisfied by any GR path integral with a boundary.

12Freidel ‘08, see also Verlinde ‘89.
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A Clarification

This is not a duality.

In general the deformation is building a “fake” 3d bulk.

When seed has a bulk dual,

this can be thought of as flowing into the dual bulk

as long as you ignore bulk matter.13

13See Hartman-Kruthoff-Shaghoulian-Tajdini ‘18 for inclusion of matter fields.
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Putting on the 3d Glasses

The picture for general CFTs is that the deformed partition function is

the following 3d GR path integral.14

Note the state at the outer boundary is not quite the CFT partition function;

in holographic limit, this convolution

transforms to the known mixed boundary conditions.15

14Mazenc-Shyam-Soni ‘19.
15Guica-Monten ‘19.

17



A Classical Limit17

The gravitational path integral has a classical limit when

c →∞, λc finite.

Taking TS vielbein f to be a vielbein for S2 of radius r ,

classical solution of BS vielbein e is S2 of radius

rBS =
r

2
+

√
r 2

4
+

cλ

24π
.

Plugging it back in reproduces holographic answer16 for S2 partition function.

16Donnelly-Shyam ‘18.
17Mazenc-Shyam-Soni ‘19.
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Known Results: TT̄ Smooths out Entropies

Let’s take the dS ground state of a deformed holographic CFT

and think about the entanglement of half the S1.18

Example of smoothing out:

On the n-sheeted manifold for an interval in R2, the stress tensor near the conical

singularity behaves as19

T (z) ∼ δn 1

z2

1√
1 + δn λ

|z|2

z→0−−−→ |z |
λz2

, δn ≡ n − 1� 1.

18Donnelly-Shyam ‘18.
19Lewkowycz-Liu-Silverstein-Torroba ‘19.
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A New Perspective

Look at the classical base space

corresponding to a smoothed out n-replica manifold.

Out[538]=
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TS Curvature (Singular)

BSCurvature (Smooth)

Figure 1: λc = 12π, δ = .01, n = .5

so algebraic smoothing of stress tensor

is

the geometric smoothing of base space.
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Conclusions

TT̄ (and related) deformations can naturally be thought of as

integrating over related gauge fields with topological Gaussian kernels.

Perspective allowed us to

1. Generalise DGH-C kernel to other deformations,

2. Move beyond flat space.

Further, 3d glasses told us that

the deformed theory satisfies a local equation

in which TT̄ behaves like a relevant deformation!
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Future Directions

1. Can we use WdW equation to find the finite-c deformed S2 partition

function?

2. Polyakov: Flat space TT̄ deformations of CFTs can also be related to

usual Polyakov action.20

Needs to be understood, because Polyakov naively doesn’t allow arbitrary

target space.

Classical calculation in Tolley ‘19, but quantum calculations need to be

done.

3. TT̄ + Λ2 deformations.

4. Algebraic non-locality of deformed theory should be geometric non-locality

of BS,

like in Renyi entropy case.

(Ongoing conversations with many people.)

5. “Lorentzian” theory, in Harlow’s sense.

20Dubovsky-Gorbenko-Mirbabayi ‘17, Callebaut-Kruthoff-Verlinde ‘19.
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