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Why quantum mechanics?

>

Interested in emergent spacetime, black holes, quantum gravity, etc.;
field theory is inessential, QM is enough! e.g. SYK in context of
AdS2/CFT1, or DO-brane QM /BFSS.

Wilsonian paradigm of QM vs. QFT: QM universal in UV, QFT
universal in IR:

s= [ (@0t +ve]. =152

Holographically, this implies exotic interiors,
e.g. dS centaur. [Anninos, Hofman; Anninos, Hofman,

Galante]

To isolate exotic interiors, we want analog of 7T deformation in QM

[Zamolodchikov, Smirnov; Cavaglia, Negro, Tateo, Szécsényi; McGough, Mezei, Verlinde]

Any “composite” operator built out of T is well-defined; 1d TT is one
example of infinite class of integrable deformations H — f(H).
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Finite-temperature correlators obtained as integral transform. Consider
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Since eigenfunctions unchanged, correlation functions treated similarly:

n—1
(O(11)...0(m)) = /< H dEi> (0|O|E1) - - (En—1]|0]0)e™ S (i) B
=1



AdS, JT gravity at finite cutoff: 1d TT

Consider s-wave sector of AdSs pure gravity:

. 2 2 y_ 1 21
Sir = 16”G/dx\/§<l>(R+€2) 87TG/dT\/E'1>(K e)'



AdS, JT gravity at finite cutoff: 1d TT

Consider s-wave sector of AdSs pure gravity:

SN S 2y b 21
Syr = 16”G/dx\/§<l>(R+£2) 87TG/dT\/E<1>(K e)'

Flow 85’(2‘i)/8)\ = d?>z TT in CFT; is supposed to implement finite cutoff
in AdSs (McGough, Mezei, verlinde]. Dimensionally reduce flow to get

aS(ld) T2
- / I
)\ 1/2 = 22T




AdS, JT gravity at finite cutoff: 1d TT

Consider s-wave sector of AdSs pure gravity:

SN S 2y b 21
Syr = 16”G/dx\/§<l>(R+€2) 87TG/dT\/E<1>(K e)'

Flow 85’(2d)/0)\ = d?>z TT in CFT; is supposed to implement finite cutoff
in AdSs (McGough, Mezei, Verlinde]. Dimensionally reduce flow to get

aS(ld) T2
- / I
)\ 1/2 = 22T

Energy levels of deformed theory given as

OE E? 1
N 12-2E H‘ﬁ(le’gH“A)'

This f(H) leads to a computable kernel for A < 0:

N B (5—5')2)
K(ﬁvﬂ)_\/wexp( 8B/A

General dilaton gravity (needed for exotic interiors!) must be analyzed
directly using method of [Hartman, Kruthotf, BS, Tajdini]
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Forget holography, apply this deformation to general QM theories! Consider

SE:/dT (%qurV(qi)), i=1,...,N

oL p

under our flow. Deformed action found by using T'= Lg — TE

flow equation which is solved by

Sp— ﬁ /dT (1 —Ja-mg)a- 8)\V(qi))> .

For A < 0 this is a worldline action with cosmological constant and mass
m =11in a curved target space metric g, = duv (1 — 8AV(qi)):

SE:ﬁ ar (1= gumdr@”) ,  p=1,.,N+1

Pick static gauge z°(7) = 7, 2*(1) = 2v/=Aqi(7). Sharp worldline
interpretation for A < 0 (wrong-sign kinetic terms otherwise).

q to write a
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1d 7T as coupling to worldline gravity

In 2d, the TT deformation is proposed to be equivalent to coupling the
theory to JT gravity in flat space [pDubovsky, Gorbenko, Mirbabayi].
Worldline actions for A < 0 suggest similar connection. Proposal:

DeDXDP _gyle,d]—S[e, X3A]
ZNB) = | o€ el
A(8) Vol(Diff)
for Sple, @] the undeformed theory with fields ®(7) on einbein e, 7 ~ 7+ ',

1

S[e,X] = _ﬁ

B’ e 2
edr (e_ X — 1)
0

X (7 + B') = X (1) + mB compact scalar with winding m. Gauge fixing
e = 1 reduces the path integral over einbeins to an integral over §3':

70) = s [ o e (s —50°) 7).

Unit winding sector is the integral transform for Z(8')!
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Consider Schwarzian action

) 9" 1 9" 2 9/2
_ 19(7') __ 1 v~
S = C’/dT{e C/dT<<9/> 2((9,)—1—2).

Deformed action? Compute deformed Hamiltonian and transform:

o ey 0L _d (oL o
=" =0, pr= o6’ du \ 99" )’ P2 = 00" "
The undeformed and deformed Hamiltonian are
C
Ho =pags + s +pig2,  H(N) = f(Ho).

Euclidean Lagrangian becomes

C €¢ i ’ P— — —bpl p— —
Le(\) = 5 5 (6”7 = 0) + F(F 71 (e°0) —e 7?0 f 71 (e0),
where we have substituted g2 = e?. As A — 0 latter terms enforce 6’ = e?.

OTOC: linearize around saddle 8 = 7 + £(7), e = ¢;e"™), compute
(e(7)e(0)) which feeds into 4-pt function. Lyapunov exponent unaffected.
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Applications: Schwarzian theory

This theory has a one-loop exact partition function [stantora, witten]

7_{_2

« « .
Z(B) = W €xXp (?) ) p(E) = 232 sinh (Qw\/ﬁ) .
p(E) determines potential for matrix model. [saad, Shenker, Stanfora) Deforming
H — f(H) gives

df = (E)

pA(E) = P(fil(E))dT :

New matrix model descriptions from this spectral function? 1d 7T

pA(B) = —575(1 = 4AE) sinh (2m/E(1 - 2/\E)) .

One cut matrix model description? Deformed partition function can be
computed exactly by integral transform for A < 0:

B
— aﬂeiﬂ 7i 2 71'2
ZA(B)f\/Tm\(ﬂugw?A)Kz( mVvAots ’\)'

Hagedorn divergence! Can be continued to A > 0. Bulk calculation would
be a check of TT-ology at subleading order in 1/N.
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H = iQ/2 Jil“'iqwil . 'wiqv J ~ dJH exp 2 Z(lezq)
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Applications: SYK

J
H = iQ/2 E Jil"'iqwil .. 'wiqv J ~ /djll ¢ €XP ( <J2 >> Z(lezq)
ij “iq

Can deform then disorder average (only simple deformations manageable),
or disorder average then deform; for latter, we end with

Sga=N (—log PO, — X) + % /dT {/ dr's(r, 7)G(r, ') + Zf(H/N)D

where

iq J*N

H=- /dT’G(T, ™9 — Eo,

with Ey a constant shift. Deforming microscopic SYK H + AH? then
disorder averaging leads to a particular f(H). SD equations are

/dT/G(T, 2, 7" = 0, G(r,7") = =6(r — "),
S(r,7') — iqfl(H/N)J2Gq71(T, ) =0.
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Applications: SYK

Combining SD equations by solving for ¥ gives
72 (H/N) / dr'G(r, 7)G( )~ 0.G(r, ") = —8(r — ")

Seems difficult because of the [ G factors in f'(H/N), but it is formally
the same as the undeformed equations if we identify
J(\)? = J2f'(H/N).
Our proposed solution to the Schwinger-Dyson equations is
G(r,7") = Go(r,7'; J(N)),

where we take the undeformed correlator and map J — J(A). For
Eo = Evac we find J(X) = J. Can see this from integral transforms as well.

Integral transforms work for H + AH? with A ~ O(1), but no effective
action understanding.
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Comments

» Hamiltonian deformations H — f(H) are integrable.

» 1d TT is a Hamiltonian deformation that couples the theory to
worldline gravity.

» Can mix in additional commuting conserved charges, e.g.
H, + Hy + \H 1 H>.

» Quantum mechanics is interesting due to the rich infrared!
» Duality for truncated theory?
» Holography for more general spacetimes through 1d 777

» Questionable tangent to entertain my friends and connect directly to
“Geometry from the Quantum”: how do higher-form symmetries /
Eguchi-Kawai fit into the 1d framework, if at all? (es)



