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Black hole as quantum cloner
singularity

time

If information escapes from an
evaporating black hole, then …

The same quantum information is in 
two different places at the same time. 

The “nice slice” shown in green can be 
chosen to cross both the collapsing 
body behind the horizon and 99% of 
the escaping Hawking radiation 
outside the horizon.

Yet the slice only occupies regions of 
low curvature, where we would 
normally expect semiclassical physics 
to be reliable. 

We’re stuck: Either information is 
destroyed or cloning occurs. Either 
way, quantum physics needs revision.
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“Black hole complementarity”
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The inside and the outside 
are not two separate 
systems.

Rather, they are two different 
ways of looking at the same
system. [Susskind 1993].
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Complementarity Challenged 
(AMPS 2012)

Betty Adam

Edward

(1) For an old black hole, recently 
emitted radiation (B) is highly 
entangled with radiation 
emitted earlier (E) by the time it 
reaches Charlie.

(2) If B is entangled with E by the 
time it reaches Charlie, it was 
already entangled with E at the 
time of emission from the black 
hole.

(3) If freely falling observer sees 
vacuum at the horizon, then the 
recently emitted radiation (B) is 
highly entangled with modes 
behind the horizon (A).

Monogamy of entanglement 
violated! 
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Black hole complementarity reconsidered
Black hole complementarity was on the right track after all. For a black hole H that is 
entangled with its previously emitted radiation E, it may be correct to view at least 
part of the black hole interior as encoded in E.

To reconcile complementarity with locality, we need some concepts that were not 
fully appreciated by AMPS: quantum error correction, computational complexity, 
and pseudorandomness.

The main idea: The encoding of the black hole interior is very robust, so that 
observers outside the black hole can disturb the entanglement between the interior 
and the recently emitted radiation only by performing operations on the early 
radiation E that are computationally infeasible. For realistic computationally 
bounded observers, complementarity and locality are compatible.

This is work with Isaac Kim and Eugene Tang. Our work builds on earlier results by a 
number of other people, including Papadodimas and Raju 2012, Verlinde and 
Verlinde 2013, Harlow and Hayden 2013, Susskind and Maldacena 2013, Flammia, 
Haah, Kastoryano and Kim 2016, Ji, Liu and Song 2017, …. It includes some new 
insights about quantum error correction against adversarial noise. 

To explain this we need some further background. 
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AMPS and the TFD
In the thermofield double (TFD) state, the AdS black 
hole on the right is maximally entangled with another 
system (the black hole on the left), yet its horizon is 
smooth. How do we reconcile with the AMPS argument?

The answer is clear in this case: Hawking radiation from 
the right BH can be maximally entangled with modes on 
the other side of the horizon, and with another system, 
because both are the same system (the left black hole).

We may boldly assert that this is the resolution in 
general: the interior geometry of the black hole is 
actually constructed from the system which is maximally 
entangled with the black hole. 

We can imagine gravitationally collapsing the system 
entangled with the black hole, then applying a one-
sided unitary to obtain the TFD. Identifying the radiation 
emitted long ago with the black hole interior seems 
wildly nonlocal, and just about audacious enough to be 
on the right track. 
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Classical Pseudorandomness
Two probability distributions on n-bit strings. Easy to distinguish in principle, 
but hard to distinguish by any feasible computation.  
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Why? For a fixed circuit C, and a uniform distribution on all sets of bit strings 
with |S| = 2αn elements, probability that C “accepts” a sample is nearly the same 
for both distributions: pI and pS are distinguishable by more than an 
exponentially small amount with a probability that is doubly exponentially small.

And the number of circuits of size polynomial in n is much less than doubly 
exponentially large. 

It may be computationally hard to sample from pS, but there are other 
pseudorandom distributions that we can sample from efficiently (a highly 
plausible conjecture).
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Quantum Pseudorandomness
Two quantum states of n qubits. Easy to distinguish in principle, but hard to 
distinguish by any feasible quantum computation.  

pure | |ρ ψ ψ= 〉〈mixed / 2nIρ =

Why? For a fixed observable C, with eigenvalues 0 and 1, and a uniform (Haar) 
distribution on all pure quantum states,  probability that C=1 (observable 
“accepts” state) is nearly the same for both states: ρmixed and ρpure are 
distinguished by more than an exponentially small amount with a probability 
that is doubly exponentially small.

And the number of quantum circuits of size polynomial in n is much less than 
doubly exponentially large. 

It may be computationally hard to prepare the pure state ψ, but there are 
other pseudorandom quantum states that we can prepare efficiently (a highly 
plausible conjecture). 
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Quantum Pseudorandomness
The existence of efficiently preparable pseudorandom quantum states follows 
from a standard assumption of “post-quantum” cryptography: the existence of 
a family {PRFk, k in K} of quantum-secure pseudorandom functions. Each PRFk
is efficiently computable, but it’s computationally hard to distinguish a 
randomly sampled PRFk from a random function. (K is the key space of the 
family.)

Example: a uniform mixture of these pure states:

Easy to prepare because PRFk is easy to compute. But the phases are 
computationally indistinguishable from random (Ji, Liu, Song 2017). 

Since such states plausibly exist, and black holes are very effective scramblers 
of quantum information, it is plausible that a partially evaporated black hole 
(or other strongly chaotic quantum systems) efficiently prepares Hawking 
radiation in a pseudorandom state after the Page time. In that case, the key 
space is provided by black hole microstates. For a finite-temperature black 
hole, pseudorandom means information-theoretically but not computationally 
distinguishable from a perfectly thermal state.



Encoding the black hole interior
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Old black hole, small observer:
|O| << |H| << |E|

E: early Hawking radiation
H: remaining black hole
B: recently emitted Hawking mode
O: observer

UEHB: unitary black hole dynamics
UOE: interaction of observer with radiation

Idea: B’s partner mode A behind the black
hole horizon is robustly encoded in EH.

Computationally bounded observer O cannot
disrupt this encoding (cannot send an acausal
signal to the black hole interior). 



Encoding the black hole interior
Key assumption: Hawking radiation is 
pseudorandom. For an old black hole, where the size 
|E| of the previously emitted radiation system is 
much larger than the size |H| of the black hole, a 
computationally bounded (polynomial-time) 
observer O is unable to distinguish the state of E
from a maximally mixed state with probability better 
than exp[-α|H|].
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Main result: If in addition |O| << |H|, then ghost logical operators can be 
constructed, which can be regarded as operators acting on the encoded black 
hole interior. These act on a subspace of EH which is (nearly) maximally 
entangled with the recently emitted radiation system B, and their action on 
the state of BEH (nearly) commutes with the action of any computationally 
bounded observer O acting on E. 

( ) ( )max | |Pr ( ) 1 Pr ( ) 1 2 H
EB EB

αρ σ −= − = ≤ 

No two-outcome measurement with 
computationally complexity 
polynomial in |H| can distinguish 
state of EB from thermal state.



Encoding the black hole interior
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The argument has two steps. In the first step, we show that 
pseudorandomness of the Hawking radiation implies that the system A
(entangled with B) encoded in the radiation is computationally hard to decode. 
This is a refinement of earlier arguments by Harlow and Hayden 2013 and 
Aaronson 2016.

The second step is the construction of the ghost logical operators, logical 
operators of a quantum code that nearly commute with O’s actions.

( ) ( ) | |Pr ( ) 1 Pr ( ) 1 2 H
EB EB

αρ σ −= − = ≤ 

Main result: If in addition |O| << |H|, then ghost logical 
operators can be constructed, which can be regarded as 
operators acting on the encoded black hole interior. These 
act on a subspace of EH which is (nearly) maximally 
entangled with the recently emitted radiation system B, and 
their action on the state of BEH (nearly) commutes with the 
action of any computationally bounded observer O acting on 
E. 
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Pseudorandomness and Decoupling
13

(The constant factor on the right-hand side actually depends on |B|; what’s 
shown is the case where B is a single qubit.) This (approximate) decoupling 
condition means that the observer acquires negligible information about the 
encoded interior mode A that is entangled with the (late) exterior mode B.

( ) ( ) | |Pr ( ) 1 Pr ( ) 1 2 H
EB EB

αρ σ −= − = ≤ 

The late radiation B can be regarded as a “reference system” 
entangled with the encoded system embedded in EH. The 
observer may be regarded as an “environment” that 
“purifies” the noisy channel which afflicts the early radiation 
system E. We’ll suppose |O| small compared to |H|, the size 
of the remaining black hole. (The “Kraus rank” of the channel 
is not too large.)

Then O and B nearly decouple:

( | | | |)
1 6 2 H O

OB O B
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Decoupling and Error Correction
14

Residual error after recover is exponentially small. 

This decoupling condition holds because the observer 
performs an operation of polynomial complexity, and the 
Hawking radiation is assumed to be pseudorandom.

A consequence of decoupling is that the damage inflicted on 
the encoded system A (embedded in EH) that purifies B can 
be almost perfectly reversed by a suitable recovery map. (We 
are not making a claim about the complexity of the recovery 
map.) Recovery is possible because negligible information 
about the encode state leaks to O.

( | | | |)
1 6 2 H O

OB O B
αρ ρ ρ − −− ⊗ ≤ ⋅‖ ‖

( | | | |)
1m 6ax ( )( ) 2 2 H Oα

ρ ρ ρ − −° − ≤ ‖ ‖

encoded state, : noisy channel, : recovery mapE E EH EHρ = → = → = 
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Decoupling and Error Correction
15

That “post-quantum cryptography” assumptions imply the 
hardness of decoding Hawking radiation had been noted 
earlier by Harlow and Hayden 2013,  Aaronson 2016. 

( | | | |)
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OB O B
αρ ρ ρ − −− ⊗ ≤ ⋅‖ ‖

( | | | |)
1m 6ax ( )( ) 2 2 H Oα

ρ ρ ρ − −° − ≤ ‖ ‖

We’ve related this hardness of decoding to 
pseudorandomness of the Hawking radiation. We have also seen that decoding 
remains hard even for |H| << |E|, provided |H| >> 1. 

And we’ve seen that errors afflicted by noise with complexity polynomial in |H| is 
correctable. Usually we consider quantum error correction against noise that is 
weak and weakly correlated. In this case the noise can be strong and highly 
correlated, and chosen adversarially, as long as the noise process has reasonable 
computational complexity. The black hole encoding, or other encodings 
associated with pseudorandom states, can resist this correlated noise. (But note 
that the “noise” acts only on E; we treat H as a noiseless system.)
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We can construct logical operators for a quantum code which commute with 
correctable errors (when acting on the code space).

In the setting of exact error correction:

16

“Ghost Logical Operators”

code code[ , ] 0 [ , ]a bZ E X EΠ = = Π 

where Ea , Eb are correctable errors. Logical Pauli operators acting on code 
basis states,

| 0 | 0 , |1 |1 ,

| | , | | ,
L L L L

L L L L

Z Z

X X

〉 = 〉 〉 = − 〉

+〉 = +〉 −〉 = − −〉

 

 

can be extended: | 0 | 0 , |1 |1 ,

| | , | | ,
a L a L a L a L

a L a L a L a L

ZE E ZE E

XE E XE E

〉 = 〉 〉 = − 〉

+〉 = +〉 −〉 = − −〉

 

 

These extended Pauli operators anticommute, square to 1, and commute with 
correctable errors when acting on the code space. The correctable errors do not 
disturb the logical operator algebra: 

| 0 |1 , | | .a L b L a L b LE E E E〉 ⊥ 〉 +〉 ⊥ −〉



The technical part of our work shows that a similar construction of ghost 
operators still works in the setting of approximate error correction. 
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Approximate Error Correction

The (nearly) maximally entangled state of B
with EH defines a (nearly) isometric map of the 
logical system A (the interior) to EH.

Our pseudorandomness assumption means 
that the computationally bounded observer O 
is (nearly) decoupled from A provided 
|O| << |H| (even if |H| << |E|).

This means that operations performed by 
observer are (nearly) correctable. 

We can extend the action of logical operators 
to the space reached by correctable operators 
acting on the code space. 

There are the “ghost operators” which (nearly) 
commute with the observer’s operations. 
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Encoding the black hole interior
Plausibly, the Hawking radiation emitted by an incompletely evaporated old black 
hole is pseudorandom. (Hawking was almost right.)

The decoupling of computationally bounded observers from the reference system is 
quantified by the size |H| of the remaining black hole, not the size |E| of the 
radiation systems. 

The Hawking radiation is hard to decode, as long as H is macroscopic. 

It is hard to create a firewall by acting on the radiation -- causality is well respected 
from the viewpoint of computationally bounded observers. On the other hand, 
superpolynomially powerful quantum computes can tear spacetime apart. 

Interior observers, who have access to the key space H as well as E can perform 
operations which are beyond the ability of the exterior observers. 

The encoded interior is well protected against harsh actions by the exterior agents. 
For example, they can control probe systems which interact with all the radiation 
quanta outside the black hole without disturbing the encoded interior (at least until 
late in the evaporation process when |H| is no longer very large). 

18



Encoding the black hole interior
For effective field theory to be a good approximation, we require not only low 
curvature and low energy, but also low complexity and low Kraus rank.

We have shown that encodings with the desired properties exist, not that they really
describe actions performed by observers who fall into the black hole. 

The encoding of the black hole interior in EH is state dependent --- that is, the 
subspace of EH which is maximally entangled with the system B depends on what 
black hole microstate has been evaporating.

Is state dependence a problem? It suggests that we still don’t have a fully 
satisfactory understanding of measurements inside black holes. 

Further research may clarify the connection between these robust encodings and 
the disconnected components of the entanglement wedge (“islands”) in AdS/CFT.

What’s the relation to complexity quantified by the size of the “python’s lunch”?

The general structure of this robust encoding of the black hole interior may apply 
beyond the context of AdS/CFT duality. 

As we learn more, we may be better equipped to understand what quantum gravity 
tells us about very early universe cosmology. 
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