Entanglement hydrodynamics

and comments on tensor networks

Márk Mezei (SCGP, Stony Brook)

In collaboration with: Agón, Bao, Casini, Cotler, Hertzberg, Liu, Mueller, Stanford, van der Schee, Virrueta

Geometry from the Quantum, KITP, 01/13/2020

Transport

Thermalization

Butterfly effect

Phenomena associated with chaotic dynamics:

Thermalization

Butterfly effect

Ultimate goal: understand these phenomena and their relation in quantum systems, relate them to gravity through AdS/CFT

Goal of talk:

- Develop an effective theory of entanglement dynamics in the hydrodynamic limit
- Study its interplay with other chaotic phenomena
- Comment on relations to tensor network approaches to AdS/CFT

Setup:

- Degrees of freedom interacting strongly through local **chaotic** Hamiltonian.
- In highly excited state, out of equilibrium at t = 0, in equilibrium for $t \to \infty$.
- Foundational question in statistical physics. Subject of intense current activity in HEP, CMT, QI, and AMO experiments.

Setup:

- Degrees of freedom interacting strongly through local **chaotic** Hamiltonian.
- In highly excited state, out of equilibrium at t = 0, in equilibrium for $t \to \infty$.
- Foundational question in statistical physics. Subject of intense current activity in HEP, CMT, QI, and AMO experiments.

Study the setup using holographic duality:

- A QFT settling to thermal equilibrium is dual to a collapsing black hole.
- No small parameters, holography is indispensible in understanding real time quantum dynamics.
- Entanglement plays a crucial role in thermalization.

We have an effective theory for describing conserved densities.

- Hydrodynamics applies universally for all chaotic systems. Generalized hydrodynamics for integrable systems.
- Navier-Stokes equations: $\partial_t v + (v \cdot \nabla)v \nu \nabla^2 v = -\nabla p$

Quantum system with many interacting degrees of freedom

We have an effective theory for describing conserved densities.

- Hydrodynamics applies universally for all chaotic systems. Generalized hydrodynamics for integrable systems.
- Navier-Stokes equations: $\partial_t v + (v \cdot \nabla)v \nu \nabla^2 v = -\nabla p$

Quantum system with many interacting degrees of freedom

 Relativistic hydro from hep-th POV is an EFT based on systematic long distance, late time expansion. Fluid variables:

 $T_{ab} = (\rho + p)u_a u_b + p \eta_{ab} + \Pi_{ab}$

- Hydrodynamics follows from the conservation of T_{ab} . Solution determines $\langle T_{ab}\rangle$ out of equilibrium.

We have an effective theory for describing conserved densities.

• Fluid/gravity constructs black holes with bumpy horizons from fluid flows. [Bhattacharyya et al.]

$$ds^{2} = \frac{1}{z^{2}} \left[2u_{a}(x)dx^{a}dz + \left[\eta_{ab} + \left(1 - a\left(\frac{dz}{4\pi T(x)}\right) \right) u_{a}(x)u_{b}(x) \right] dx^{a}dx^{b} \right]$$

+ (gradients)

d

• Alternative history: String theorists discover hydrodynamics by studying AdS black holes.

Quantum system with many interacting degrees of freedom

We have an effective theory for describing conserved densities.

• Fluid/gravity constructs black holes with bumpy horizons from fluid flows.

$$ds^{2} = \frac{1}{z^{2}} \left[2u_{a}(x)dx^{a}dz + \left[\eta_{ab} + \left(1 - a\left(\frac{dz}{4\pi T(x)}\right) \right) u_{a}(x)u_{b}(x) \right] dx^{a}dx^{b} \right]$$

+ (gradients)

d

- Alternative history: String theorists discover hydrodynamics by studying AdS black holes.
- Interested in more data than $\langle T_{ab}\rangle$: entanglement entropy, butterfly effect, etc.
- I want to follow the "alternative history" path to discover a hydrodynamic effective theory of entanglement dynamics (and operator growth).
- Hydrodynamics is universal, there is evidence for the universality of the effective theory of entanglement hydrodynamics.

Quantum system with many interacting degrees of freedom

Outline

Transport

- Hydro as an EFT
- Holography for real time dynamics

Thermalization

- Entanglement entropy as a probe
- Membrane theory is the EFT
- Interplay with hydro

Comments on tensor networks

- Membrane theory from random circuits
- Interplay with operator growth

Conclusions and open questions

Outline

- Hydro as an EFT
- Holography for real time dynamics

Thermalization

- Entanglement entropy as a probe
- Membrane theory is the EFT
- Interplay with hydro

Comments on tensor networks

- Membrane theory from random circuits
- Interplay with operator growth

Conclusions and open questions

Quantum thermalization and subsystems

Quantum thermalization

- Pure state with nonzero energy density: $|\psi(0)\rangle$ Unitary time evolution: $|\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle$
- $\rho(t) \equiv |\psi(t)\rangle\langle\psi(t)| \not\rightarrow \frac{e^{-\beta H}}{Z}$ cannot mean thermalization.

 $\rho(t)$ encodes all the information in $|\psi(0)\rangle$, but at late times in a very nonlocal way.

Quantum system with many interacting degrees of freedom

Fully isolated from environment

Quantum thermalization and subsystems

Quantum thermalization

- Pure state with nonzero energy density: $|\psi(0)\rangle$ Unitary time evolution: $|\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle$
- $\rho(t) \equiv |\psi(t)\rangle \langle \psi(t)| \not\rightarrow \frac{e^{-\beta H}}{Z}$ cannot mean thermalization.

 $\rho(t)$ encodes all the information in $|\psi(0)\rangle$, but at late times in a very nonlocal way.

- Consider subsystems, reduced density matrix: $ho_A = {
 m Tr}_{ar A} \, |\psi
 angle \, \langle\psi|$
- Thermalization: $\rho_A(t) \rightarrow \rho_A^{(eq)}(\beta) = \text{Tr}_{\bar{A}} \frac{e^{-\beta H}}{Z}$

For $t \to \infty$, in the thermodynamic limit $\bar{A} \to \infty$, with β determined by the energy density. Entanglement is crucial in making this possible.

Entanglement entropy

Entanglement entropy is a good diagnostic of thermalization, we **focus on this quantity**.

• In ground states of local Hamiltonians the entropy scales with the area:

 $S_A = \# \frac{\operatorname{area}(\Sigma)}{\delta^{d-2}} + \dots$

• A generic state in the Hilbert space shows volume scaling: $S_A = s_{\rm th} \operatorname{vol}(A) + \dots$

S Typical point inside unentangled with outside

Entanglement entropy

Entanglement entropy is a good diagnostic of thermalization, we **focus on this quantity**.

• In ground states of local Hamiltonians the entropy scales with the area:

 $S_A = \# \frac{\operatorname{area}(\Sigma)}{\delta^{d-2}} + \dots$

• A generic state in the Hilbert space shows volume scaling: $S_A = s_{\rm th} \operatorname{vol}(A) + \dots$

 Purest setup is a quench: start with ground state of a local Hamiltonian, change the Hamiltonian suddenly, and let the system evolve. (No transport.)

Can reformulate holographic surface extremization in d+1 dimensions as membrane minimization in d dimensions in the limit $R, t \gg t_{\rm loc}$. [MM₂] A

- Detailed understanding of HRT surfaces. The surface has three parts: [MM₁]
 - 1. Outside the horizon part gives (divergent) area law.
 - 2. Behind the horizon region.
 - 3. Behind the shell part gives entropy in the vacuum.

Can reformulate holographic surface extremization in d+1 dimensions as membrane minimization in d dimensions in the limit $R, t \gg t_{\rm loc}$. [MM₂] A

- Detailed understanding of HRT surfaces. The surface has three parts: [MM₁]
 - 1. Outside the horizon part gives (divergent) area law.
 - 2. Behind the horizon region.
 - 3. Behind the shell part gives entropy in the vacuum.
- Only the **2. part** contributes to the extensive part of the entropy.

$$S(t) = s_{\rm th} R^{d-1} \mathcal{S}_{\rm ext} \left(\frac{t}{R}\right) + \dots$$

Can reformulate holographic surface extremization in d+1 dimensions as membrane minimization in d dimensions in the limit $R, t \gg t_{\rm loc}$. [MM₂] A

• Only the **2. part** contributes to the extensive part of the entropy.

$$S(t) = s_{\rm th} R^{d-1} \mathcal{S}_{\rm ext} \left(\frac{t}{R}\right) + \dots$$

• Push HRT surface to the boundary along constant infalling time.

Can reformulate holographic surface extremization in d+1 dimensions as membrane minimization in d dimensions in the limit $R, t \gg t_{loc}$. [MM₂] A

• Only the **2. part** contributes to the extensive part of the entropy.

$$S(t) = s_{\rm th} R^{d-1} \mathcal{S}_{\rm ext} \left(\frac{t}{R}\right) + \dots$$

• Push HRT surface to the boundary along constant infalling time.

Can reformulate holographic surface extremization in d+1 dimensions as membrane minimization in d dimensions in the limit $R, t \gg t_{loc}$. [MM₂] A

• Only the **2. part** contributes to the extensive part of the entropy.

$$S(t) = s_{\rm th} R^{d-1} \mathcal{S}_{\rm ext} \left(\frac{t}{R}\right) + \dots$$

- Push HRT surface to the boundary along constant infalling time.
- Scaling limit: $x^{\mu} \rightarrow R x^{\mu}$, $z \rightarrow z$ Area functional independent of the derivatives of z. Solve algebraic EoM, plug back into action to derive membrane theory.

$$S[A] = s_{\rm th} \int d^{d-1}\xi \sqrt{\gamma} \frac{\mathcal{E}(v)}{\sqrt{1-v^2}}$$

Horizon ~ boundary
$$t \int v$$

t for the second second

Can reformulate holographic surface extremization in d+1 dimensions as membrane minimization in d dimensions in the limit $R, t \gg t_{loc}$. [MM₂]

• Membrane theory:

$$S[A] = s_{\rm th} \int d^{d-1}\xi \,\sqrt{\gamma} \,\frac{\mathcal{E}(v)}{\sqrt{1-v^2}}$$

Membrane is projection of HRT to boundary. $\mathcal{E}(v)$ is repackaging of geometry, independent of quench details.

Can reformulate holographic surface extremization in d+1 dimensions as membrane minimization in d dimensions in the limit $R, t \gg t_{loc}$. [MM₂]

• Membrane theory:

$$S[A] = s_{\rm th} \int d^{d-1}\xi \,\sqrt{\gamma} \,\frac{\mathcal{E}(v)}{\sqrt{1-v^2}}$$

Membrane is projection of HRT to boundary. $\mathcal{E}(v)$ is repackaging of geometry, independent of quench details.

• Using the NEC, can prove the following properties of $\mathcal{E}(v)$. $\mathcal{E}(v)$ can be thought of as a transport coefficient.

EE for strip, sphere, cylinder regions in the hydro limit is analytically solvable. [MM₁; MM₂] $S_A(t)$

•

EE for strip, sphere, cylinder regions in the hydro limit is analytically solvable. [MM₁; MM₂]

EE for strip, sphere, cylinder regions in the hydro limit is analytically solvable. [MM₁; MM₂] $S_A(t)$ Strip: S(T) / S(∞) $t_S = R/v_E$ 1.0 Sphere: 0.8 0.6 0.4 0.2 T/R 1.2 0.2 0.4 0.6 0.8 1.0 Stadium shape: ۲ ratio = 2.5, t = 1.00 [MM, van der Schee] 1.0 _ z = 0.00 0.5 _ z = 0.20 > 0.0 ____ z = 0.40 ____ z = 0.60 -0.5 — z = 0.80 -1.0 ____ z = 1.00 -2 -1 0 2 1 х ratio = 2.5, t = 1.22 4D Stadium, ratio = 2.5 1.0 ____ z = 0.00 1.0 0.5 ____ z = 0.24 ₹0.8 > 0.0 z = 0.49 0.6 S(t) / S^{the} 0.2 - z = 0.73 -0.5 — z = 0.98 -1.0 _ z = 1.22 -2 0 2 -1 1 0.8<u>k</u> 1/v_B $1/v_E$ х 1.5 0.5 1.0 t/R

EE for strip, sphere, cylinder regions in the hydro limit is analytically solvable. [MM₁; MM₂] $S_A(t)$ Strip: S(T) / S(∞) $t_S = R/v_E$ 1.0 Sphere: 0.8 0.6 0.4 0.2 +++ 12 T/R 0.2 0.6 0.8 1.0 0.4 Stadium shape: ratio = 2.5, t = 1.00 1.0 [MM, van der Schee] – z = 0.00 0.5 z = 0.20 > 0.0 - z = 0.40 z = 0.60 -0.5 ____ z = 0.80 -1.0 _ z = 1.00 -2 0 2 _1 х ratio = 2.5, t = 1.22 4D Stadium, ratio = 2.5 1.0 z = 0.00 1.0 0.5 z = 0.24 E0.8 > 0.0 z = 0.49 o.0 ہے۔ z = 0.73 -0.5 - z = 0.98 -1.0 z = 1.22 0.2 -2 0 2 -1 0.0<u>k</u> 1/v_B $1/v_E$ 1.5 0.5 1.0 t/R

• Simple bound on saturation time from operator growth: [MM, Stanford] $t_S \ge R/v_B$ For elongated shapes in 4D we find: $t_S = R/v_B$ Black holes often saturate entanglement entropy the fastest.

Interplay with hydro

The membrane theory is robust, can be generalized away from global quenches. [MM, Virrueta]

• Fluid/gravity black brane dual to an inhomogenous state in local thermal equilibrium. To subleading order, we get the membrane coupled to hydrodynamics:

$$S = \int d^{d-1}\xi \,\sqrt{\gamma} \,s_{\rm th}(x) \frac{\mathcal{E}(v)}{\sqrt{1-v^2}} + \dots, \quad v(x) \equiv \frac{(n \cdot u(x))}{\sqrt{1+(n \cdot u(x))^2}}$$

Interplay with hydro

The membrane theory is robust, can be generalized away from global quenches. [MM, Virrueta]

• Fluid/gravity black brane dual to an inhomogenous state in local thermal equilibrium. To subleading order, we get the membrane coupled to hydrodynamics:

$$S = \int d^{d-1}\xi \,\sqrt{\gamma} \,s_{\rm th}(x) \frac{\mathcal{E}(v)}{\sqrt{1-v^2}} + \dots, \quad v(x) \equiv \frac{(n \cdot u(x))}{\sqrt{1+(n \cdot u(x))^2}}$$

- Adaptable to other inhomogenous setups, can incorporate β/R and $1/\lambda$ corrections without change in the structure of the membrane theory. 1/N corrections would be most interesting.
- Membrane theory is versatile, has connections to operator growth and hydrodynamics, and has all the features to be a universal theory.

Features of the thermalization:

- Conserved densities described by hydro.
- State of the entire system cannot become thermal. Small subsystem thermalize by becoming entangled with the rest of the system.

 $S_A(t) \rightarrow S_A^{(eq)}(\beta) = s_{th}(\beta) \operatorname{vol}(A)$ Captures the essence of thermalization.

Goal: Find effective theory (akin to hydro) of entanglement dynamics.

- Alternative history method: Discovered membrane theory by studying AdS black holes, has structure applicable to all chaotic theories.
- In the following conduct further tests. Elucidate connections to other manifestations of chaotic dynamics.

Outline

Transport

- Hydro as an EFT
- Holography for real time dynamics

Thermalization

- Entanglement entropy as a probe
- Membrane theory is the EFT
- Interplay with hydro

Comments on tensor networks

- Membrane theory from random circuits
- Interplay with operator growth

Conclusions and open questions

The same description of entanglement dynamics arises in CMT.

• Random quantum circuit model for the evolving wave function.

The same description of entanglement dynamics arises in CMT.

• Random quantum circuit model for the evolving wave function.

The same description of entanglement dynamics arises in CMT.

• Random quantum circuit model for the evolving wave function.

Minimal cut computes the entropy. [Nahum, Ruhman, Vijay, Haah]

Minimal membrane phenomenology of entropy dynamics. [Jonay, Huse, Nahum]

The same description of entanglement dynamics arises in CMT.

• Random quantum circuit model for the evolving wave function.

Minimal cut computes the entropy. [Nahum, Ruhman, Vijay, Haah]

Minimal membrane phenomenology of entropy dynamics. [Jonay, Huse, Nahum]

- Analytic arguments in Floquet systems. [Nahum, Zhou] Evidence in chaotic spin chains. [Jonay, Huse, Nahum]
- Remarkable unification of CMT and HEP approaches: Membrane description of EE growth in quenches.

Tensor networks and holography

The analogy between minimal cuts and the RT surface computing entanglement entropy has inspired toy models of holography. u = -3

 AdS/MERA analogy, [Swingle] perfect and random tensor networks [Pastawski et al; Hayden et al.]

 Suggestive results for maximal volume slice. [Hartman, Maldacena; Roberts, Stanford, Susskind] But HRT surfaces for different shapes do not lie on same Cauchy slice.

Tensor networks and holography

The analogy between minimal cuts and the RT surface computing entanglement entropy has inspired toy models of holography. u = -3

 AdS/MERA analogy, [Swingle] perfect and random tensor networks [Pastawski et al; Hayden et al.]

 Suggestive results for maximal volume slice. [Hartman, Maldacena; Roberts, Stanford, Susskind] But HRT surfaces for different shapes do not lie on same Cauchy slice.

Tensor networks and holography

Analogy between minimal cuts and the RT surface has inspired toy models of holography.

• Suggestive results for maximal volume slice. [Hartman, Maldacena; Roberts, Stanford, Susskind] But HRT surfaces for different shapes do not lie on same Cauchy slice.

 Entanglement of local operator with growing footprint is computed by membrane in time fold geometry. [Roberts, Stanford, Susskind; Jonay, Huse, Nahum; MM, Virrueta]

• Quantitative connection to TNs through EoM, bulk geometry encoded in $\mathcal{E}(v)$.

Outline

Transport

- Hydro as an EFT
- Holography for real time dynamics

Thermalization

- Entanglement entropy as a probe
- Membrane theory is the EFT
- Interplay with hydro

Comments on tensor networks

- Membrane theory from random circuits
- Interplay with operator growth

Conclusions and open questions

Universality classes of entropy dynamics

I propose that there are two universality classes of entropy dynamics at long distances and late times (in translationally invariant systems).

- 2d integrable models, RCFTs, d>2 free theories are described by the **quasiparticle theory**.
- The holographic results can be reformulated in terms of a **membrane theory**, which then can be adopted to any chaotic system. Applies to holographic theories, random circuits, evidence for chaotic spin chains. [Jonay et al., MM₂]
- Is there something in between?
- Analogous to the dichotomy between generalized hydrodynamics applicable to integrable systems (giving ballistic transport) and hydrodynamics (describing diffusive transport).

- Qualitative picture of entanglement entropy at time t of a region of characteristic size R, R, t ≫ t_{loc}.
 [Cardy, Calabrese; Hartman, Maldacena; Liu, Suh]
- EE in free scalar theory for a disk, dots are data points, line is quasiparticle theory [Cotler, Hertzberg, MM, Mueller]

 EE in holographic theories for a disk, data collapse, solid line is membrane theory, deviation is controlled by 1/R [MM₁]

1	
-	3
	601407

•

- Hydrodynamics is the EFT for transport, serves as target
- Universality classes of thermalization:
 Quasiparticle theory vs Membrane theory
- Derived the membrane theory of entanglement dynamics from holography. Evidence for universality from CMT

1		
-	and the second s	
S	G	0.0012007

- Hydrodynamics is the EFT for transport, serves as target
- Universality classes of thermalization:
 Quasiparticle theory vs Membrane theory
- Derived the membrane theory of entanglement dynamics from holography. Evidence for universality from CMT

- Uncovered interplay with hydro, chaos and TNs:
 - Membrane couples to hydrodynamics
 - \blacktriangleright Key role of v_B , bounds on entropy, operator EE picture
 - Membrane is a cut through TN, TN is obtained after solving bulk EoMs

1		
-	and the second s	
S	S	6.114.7

- Hydrodynamics is the EFT for transport, serves as target
- Universality classes of thermalization:
 Quasiparticle theory vs Membrane theory
- Derived the membrane theory of entanglement dynamics from holography. Evidence for universality from CMT

- Uncovered interplay with hydro, chaos and TNs:
 - Membrane couples to hydrodynamics
 - \blacktriangleright Key role of v_B , bounds on entropy, operator EE picture
 - Membrane is a cut through TN, TN is obtained after solving bulk EoMs
- Rich applications
 - Entropy cone inequalities generalized to time dependent settings. [Hayden, Headrick, Maloney; Bao et al.; Bao, MM]
 Bit threads reformulation. [Freedman, Headrick; Agon, MM]
- Membrane theory has all the features to be a universal theory.

Open questions and outlook for gravity

Open questions and some hints

• What does the membrane theory imply for holographic RG? Hint: The metric inside the horizon does not seems to be organized by scale.

Open questions and outlook for gravity

Open questions and some hints

• What does the membrane theory imply for holographic RG? Hint: The metric inside the horizon does not seems to be organized by scale.

• Are new quantum extremal surfaces, islands be captured by the membrane theory? Hint: It looks plausible that 1/N corrections can be captured by the membrane theory. It may be that we get multiple minimal membranes for evaporating BH.

Open questions and outlook for gravity

Open questions and some hints

• What does the membrane theory imply for holographic RG? Hint: The metric inside the horizon does not seems to be organized by scale.

- Are new quantum extremal surfaces, islands be captured by the membrane theory? Hint: It looks plausible that 1/N corrections can be captured by the membrane theory. It may be that we get multiple minimal membranes for evaporating BH.
- Is the membrane theory a good starting point to getting gravitational dynamics out of entanglement?
 Hint: Slogan: "Gravity is the hydrodynamics of entanglement." May have to go to shorter times and distances in CFT to see dynamical geometry.

Backup slides

Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs, subsequently travel freely at the speed of light isotropically.

- Leads to linear growth with $v_E = 1$ in 2d.
- Higher dimensions: entanglement spreading depends on entanglement pattern on the light cone μ[L_Σ].
 Contribution from each light cone has to be added.
 [Casini, Liu, MM]

Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs, subsequently travel freely at the speed of light isotropically.

- Leads to linear growth with $v_E = 1$ in 2d.
- Higher dimensions: entanglement spreading depends on entanglement pattern on the light cone μ[L_Σ].
 Contribution from each light cone has to be added.
 [Casini, Liu, MM]

2t

Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs, subsequently travel freely at the speed of light isotropically.

- Leads to linear growth with $v_E = 1$ in 2d.
- Higher dimensions: entanglement spreading depends on entanglement pattern on the light cone μ[L_Σ].
 Contribution from each light cone has to be added.
 [Casini, Liu, MM]

Bound on the entanglement speed from SSA:

$$v_E \le v_E^{(\text{EPR})} = \frac{\Gamma(\frac{d-1}{2})}{\sqrt{\pi}\Gamma(\frac{d}{2})} < v_E^{(\text{SBH})}$$

Slower than holography.

2t

Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs, subsequently travel freely at the speed of light isotropically.

- Leads to linear growth with $v_E = 1$ in 2d.
- Higher dimensions: entanglement spreading depends on entanglement pattern on the light cone μ[L_Σ].
 Contribution from each light cone has to be added.
 [Casini, Liu, MM]

Bound on the entanglement speed from SSA:

$$v_E \le v_E^{(\text{EPR})} = \frac{\Gamma(\frac{d-1}{2})}{\sqrt{\pi}\Gamma(\frac{d}{2})} < v_E^{(\text{SBH})}$$

Slower than holography.

- In strongly coupled systems, entanglement grows faster than what's possible for free particles streaming at the speed of light!
- Consider the effect of interactions: tensor network picture emerging from scattering particles is natural. [Hartman, Maldacena; Casini, Liu, MM]

In a free theory for Gaussian states we can use the correlation matrix to compute EE.

• Time evolution of a Gaussian initial state is Gaussian (with time dependent complex kernel).

In a free theory for Gaussian states we can use the correlation matrix to compute EE.

- Time evolution of a Gaussian initial state is Gaussian (with time dependent complex kernel).
- Correlation matrix determines all correlation functions due to Wick's theorem:

$$\chi_I = \begin{pmatrix} \phi_i \\ \pi_i \end{pmatrix}, \qquad [\chi_I, \chi_J] = i J_{IJ}$$
$$\Gamma_{IJ} = \frac{1}{2} \langle \psi | \{ \chi_I, \chi_J \} | \psi \rangle$$

In a free theory for Gaussian states we can use the correlation matrix to compute EE.

- Time evolution of a Gaussian initial state is Gaussian (with time dependent complex kernel).
- Correlation matrix determines all correlation functions due to Wick's theorem:

$$\chi_I = \begin{pmatrix} \phi_i \\ \pi_i \end{pmatrix}, \qquad [\chi_I, \chi_J] = i J_I,$$
$$\Gamma_{IJ} = \frac{1}{2} \langle \psi | \{\chi_I, \chi_J\} | \psi \rangle$$

 The symplectic eigenvalues of the correlation matrix give the eigenvalues of the reduced density matrix:

$$\begin{split} \tilde{\chi} &= S\chi \,, \qquad SJS^T = J \,, \\ \tilde{\Gamma} &= S\Gamma S^T = \begin{pmatrix} \operatorname{diag}\left(\gamma_k\right) & 0 \\ 0 & \operatorname{diag}\left(\gamma_k\right) \end{pmatrix} \end{split}$$

In a free theory for Gaussian states we can use the correlation matrix to compute EE.

- Time evolution of a Gaussian initial state is Gaussian (with time dependent complex kernel).
- Correlation matrix determines all correlation functions due to Wick's theorem:

$$\chi_I = \begin{pmatrix} \phi_i \\ \pi_i \end{pmatrix}, \qquad [\chi_I, \chi_J] = i J_I,$$
$$\Gamma_{IJ} = \frac{1}{2} \langle \psi | \{ \chi_I, \chi_J \} | \psi \rangle$$

• The symplectic eigenvalues of the correlation matrix give the eigenvalues of the reduced density matrix:

$$\begin{split} \tilde{\chi} &= S\chi \,, \qquad SJS^T = J \,, \\ \tilde{\Gamma} &= S\Gamma S^T = \begin{pmatrix} \operatorname{diag}\left(\gamma_k\right) & 0 \\ 0 & \operatorname{diag}\left(\gamma_k\right) \end{pmatrix} \end{split}$$

 Numerical results for 3d boundary state quench for scalar field. [Cotler, Hertzberg, MM, Mueller]

Entropy cone

Entanglement entropy in static holographic states obeys inequalities, that are not true in general in QM.

• The best known one is the monogamy of mutual information. [Hayden, Headrick, Maloney] It can be proven using the same steps as in the proof of SSA.

 $S(AB) + S(BC) + S(AC) \geq S(A) + S(B) + S(C) + S(ABC)$

Entropy cone

Entanglement entropy in static holographic states obeys inequalities, that are not true in general in QM.

• The best known one is the monogamy of mutual information. [Hayden, Headrick, Maloney] It can be proven using the same steps as in the proof of SSA.

 $S(AB) + S(BC) + S(AC) \geq S(A) + S(B) + S(C) + S(ABC)$

The inclusion-exclusion proof method can be used to derive many-party inequalities.
 [Bao et al.] Holography is not essential, only need that the entropy is proportional to a partionable geometric minimization problem.

Entropy cone

Entanglement entropy in static holographic states obeys inequalities, that are not true in general in QM.

• The best known one is the monogamy of mutual information. [Hayden, Headrick, Maloney] It can be proven using the same steps as in the proof of SSA.

 $S(AB) + S(BC) + S(AC) \ge S(A) + S(B) + S(C) + S(ABC)$

- The inclusion-exclusion proof method can be used to derive many-party inequalities.
 [Bao et al.] Holography is not essential, only need that the entropy is proportional to a partionable geometric minimization problem.
- HRT is an extremization of codimension-2 surface, no proof (or counterexample) is known for many-party inequalities. Inclusion-exclusion applies to the membrane theory, hence proof for time dependent states (large regions, late times). [Bao, MM]

Bit threads

The Ryu-Takayanagi prescription can be reformulated in the language of bit threads. [Freedman, Headrick]

[Freedman, Headrick] • Maximize $\int_A \sqrt{h} n_\mu w^\mu$

Constraints: $\nabla_{\mu}w^{\mu} = 0$, $1 - |w^{\mu}| \ge 0$

• Covariant generalization to HRT [Headrick, Hubeny]

Bit threads

The Ryu-Takayanagi prescription can be reformulated in the language of bit threads. [Freedman, Headrick]

• Maximize $\int_A \sqrt{h} n_\mu w^\mu$

Constraints: $\nabla_{\mu}w^{\mu} = 0$, $1 - |w^{\mu}| \ge 0$

- Covariant generalization to HRT [Headrick, Hubeny]
- Membrane theory can also be similarly reformulated without reference to holography. Only one constraint changes [Agon, MM]

 $\nabla_{\mu}w^{\mu} = 0, \quad H(w_t) - |\vec{w}| \ge 0$

 $H(w_t)$ is the Legendre transform of $\mathcal{E}(v)$:

 $H(w_t) \equiv \mathcal{E}(v) - v \,\mathcal{E}'(v), \quad w_t \equiv -\mathcal{E}'(v)$

Bit threads

The Ryu-Takayanagi prescription can be reformulated in the language of bit threads. [Freedman, Headrick]

• Maximize $\int_A \sqrt{h} n_\mu w^\mu$

Constraints: $\nabla_{\mu}w^{\mu} = 0$, $1 - |w^{\mu}| \ge 0$

- Covariant generalization to HRT [Headrick, Hubeny]
- Membrane theory can also be similarly reformulated without reference to holography. Only one constraint changes [Agon, MM]

$$abla_{\mu} w^{\mu} = 0, \quad H(w_t) - |\vec{w}| \ge 0$$

 $H(w_t)$ is the Legendre transform of $\mathcal{E}(v)$:

 $H(w_t) \equiv \mathcal{E}(v) - v \,\mathcal{E}'(v), \quad w_t \equiv -\mathcal{E}'(v)$

- The map that reconstructs the HRT surface from the minimal membrane can be used to push the membrane theory bit thread into the bulk.
- Membrane theory is versatile, has connections to operator growth and hydrodynamics, and has all the features to be a universal theory.

Entanglement entropy obeys inequalities, natural to consider bounds in the quench setup.

• $v_E \leq 1$ can be proven using Lorentz invariance and the SSA inequality, [Casini, Liu, MM] or the monotonicity of relative entropy. [Afkhami-Jeddi, Hartman]

Entanglement entropy obeys inequalities, natural to consider bounds in the quench setup.

- $v_E \leq 1$ can be proven using Lorentz invariance and the SSA inequality, [Casini, Liu, MM] or the monotonicity of relative entropy. [Afkhami-Jeddi, Hartman]
- Monotonicity of (thermal) relative entropy for subsystems combined with emergent v_B light cones at finite temperature in chaotic systems:

 $S[A(t)] \le S[A'(t')] + s_{\rm th} \left(V[A(t)] - V[A'(t')] \right)$

Gives bound for all times. Can be combined with another proposed inequality. [MM, Stanford]

Entanglement entropy obeys inequalities, natural to consider bounds in the quench setup.

- $v_E \leq 1$ can be proven using Lorentz invariance and the SSA inequality, [Casini, Liu, MM] or the monotonicity of relative entropy. [Afkhami-Jeddi, Hartman]
- Monotonicity of (thermal) relative entropy for subsystems combined with emergent v_B light cones at finite temperature in chaotic systems:

$$S[A(t)] \le S[A'(t')] + s_{\rm th} \left(V[A(t)] - V[A'(t')] \right)$$

Gives bound for all times. Can be combined with another proposed inequality. [MM, Stanford]

Consequences:

$$v_E \le v_B \,, \quad t_S \ge \frac{R_{\text{insc}}}{v_B}$$

A(t)

In holography, for spheres saturation is often as fast as possible. [Liu, Suh; MM, Stanford; MM₁]

Entanglement entropy obeys inequalities, natural to consider bounds in the quench setup.

- $v_E \leq 1$ can be proven using Lorentz invariance and the SSA inequality, [Casini, Liu, MM] or the monotonicity of relative entropy. [Afkhami-Jeddi, Hartman]
- Monotonicity of (thermal) relative entropy for subsystems combined with emergent v_B light cones at finite temperature in chaotic systems:

$$S[A(t)] \le S[A'(t')] + s_{\rm th} \left(V[A(t)] - V[A'(t')] \right)$$

Gives bound for all times. Can be combined with another proposed inequality. [MM, Stanford]

Consequences:

$$v_E \le v_B \,, \quad t_S \ge \frac{R_{
m insc}}{v_B}$$

In holography, for spheres saturation is often as fast as possible. [Liu, Suh; MM, Stanford; MM₁]

• Membrane theory proof: there exists a maximal membrane tension compatible with the general properties discussed before.

$$\mathcal{E}_{\max}(v) = v_E + \left(1 - \frac{v_E}{v_B}\right)|v| \qquad (|v| \le v_B)$$

The resulting minimal membrane is a combination of a cylinder and the cone saturating the combined inequalities. $[MM_2]$

