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1 Bit threads

In this talk: holographic theory dual to classical Einstein gravity; static bulk spacetime; pure state

Bit threads are unoriented 1d objects in bulk
1. Don't split or join, end only on boundary
2. Density < 1/4Gy (threads have Planckian thickness)

- i: 1
Ryu-Takayanagi S(A) = —— min area(m) = max N 4.5
4G m~A .

A _
N 4.1 = # threads connecting A to A

Max thread configuration seems to represent distilled A-A entanglement; 1 thread = 1 Bell pair
Casini-Huerta-Magan-Pontello '19: Threads are intertwiners between algebras of observables in A and A

Riemannian max flow-min cut theorem [Federer '74, Strang '83, Headrick-Hubeny '17]
Intuition: Add threads until tightly packed on minimal surface m(A)
Proof: Maximizing N 4.1 can be written as convex problem; strongly dual to:
Minimize [ /g A for function X subject to A >0, [, dsA > 1 for any curve C from A to A
Solution: A = d-function on m(A) = max Ny, 1 = [ /g = area(m(A))



2 Three boundary regions
What if we divide boundary into 3 regions and try to connect them with as many threads as possible?

Na.p+ Na.c = Ny 5 < S(A)
Na.p+ Np.c = Np.g < S(B)
NA:C +NA:C = NC:C' S S(C)

Theorem: These bounds are collectively tight; there exists a thread configuration such that
NA:A:S(A)ﬂ NB:B:S(B)7 NCC_':S(C)

Proof for networks: Kupershtokh '71, Lovasz '76, Cherkassky '77
Proof for Riemannian manifolds: Cui-Hayden-He-MH-Stoica-Walter '18

1
Ntot = NA:B + NA:C + NB:C < 5 (S(A) + S<B) + S(C))

B,
Maximizing Niot can be written as convex program; strongly dual to:
Minimize [ /g X subject to A > 0,
Jods X > 1 for any path C connecting different regions
Solution is %5—function on each RT surface: A

1 1
A= 3 CntayHompyomc) = maxNiw = [ VGA= 3 (S(4)+ S(B) + 5(C))

Theorem generalizes to any number of regions...



3 Four boundary regions & MMI

There exists a thread configuration that computes S for each region: B
S(A) = Nz = Nap + Nac + Na:p
S(B) = Np.p = Na:p + Np.c + Nep Nag BC
S(C) = N¢.c = Na.c + Np:.c + Newp
S(D) = Np.p = Na.p + Np.p+ Ne.p g
A Nac

However, composite regions are not necessarily saturated:

S(AB) >Nap.cp = Na.c + Ng.c + Na.p + Np.p
S(AC) >Nac:p = Na.p + Np.c + Na.p + Nc-p
S(AD) ZNAD:BC’ == NA:B + NA:C’ + NB:D + NC:D

>
>

Summing:
S(AB) + S(AC) + S(AD) > S(A)+ S(B) + S(C) + S(D)

monogamy of mutual information (MMI) [Hayden-MH-Maloney '11]

(See [Hubeny '18] for alternative proof, [Agon-de Boer-Pedraza '18] for explicit constructions)



4 Higher inequalities

Generalizations [MH-Held-Herman, forthcoming]:

The good news:
Consider a set of composite regions R, that do not cross (partially overlap); e.g. A, B, C, D, AB, ABC

Theorem 1: There exists a thread configuration saturating all the Rq:
NRQ:RQ = S(Ra)

A bundle consists of all threads connecting two elementary regions
Theorem 2: Bundles can be chosen not to overlap
Proves conjecture by Hubeny '18

The bad news:
When regions cross (e.g. AB, BC), a saturating configuration does not necessarily exist
(Statements true on graphs do not hold on manifolds)

Higher entropy-cone inequalities [Bao et al '15] have crossing regions on RHS; e.g. 5-party dihedral inequality

S(ABC) + S(BCD) + S(CDE) + S(DEA) + S(EAB)
> S(AB) + S(BC) + S(CD) + S(DE) + S(EA) + S(ABCDE)

Therefore RHS is not calculated by any single thread configuration

Understanding such inequalities in terms of bit threads requires something more complicated



5 Entanglement wedge cross sections
[Harper-MH '19; see also Du-Chen-Shu '19; Bao-Chatwin-Davies-Pollack-Remmen '19]

E,(A:B):=
minimal cross section of AB homology region (entanglement wedge)

Conjectured to equal

e entanglement of purification
[Takayanagi-Umemoto '17, Nguyen-Devakul-Halbasch-Zaletel-Swingle '17]

e entanglement negativity [Kudler-Flam-Ryu '18]

e odd entropy [Tamaoka '18]

e reflected entropy [Dutta-Faulkner '19]

Can be computed by threads, not allowing threads to end on m(AB)

All geometric properties of E,, follow simply




6 Multi-region cross sections

Conjectured to equal multipartite entanglement of purification
[Umemoto-Zhou '18; see also Bao-Cheng '19 for alternative conjecture]:

Ep({4i}) == min > S(¢a,a) Note: E,({Ai}) > ZEp(Ai D Ay)

purification

[¥) %
To calculate with threads:

e Different “species” of thread for each boundary region

Threads of different species do not interact in bulk

Threads can attach to m({A;}) — but only all species together

Number of A; threads attached to A; equals E,(4; : A;)

Rest of threads are attached to m({A;}); may represent “truly
multipartite” part of E,({4;})




7 Bipartite dominance

For 2 regions, threads can be thought of Bell pairs after
entanglement distillation:

Nas = S(A) = S(B) = %I(A . B)

For 3 regions,

1 1 1
C Napg = 5I(A :B), Nac = 5I(A . 0), Np.c = 5I(B . O)

Three-party distillation into Bell pairs?
A Possible only if state contains only bipartite (no tripartite) entanglement
(up to order-1 corrections)
— no matter how boundary is decomposed into A, B,C
“Bipartite dominance”

Do there exist quantum states with this property? Yes:
Simple example: 4-party perfect tensor (4PT)
More interesting: Random stabilizer tensor networks [Nezami-Walter '16]

Bipartite dominance implies that, for any 4-region decomposition, there is only bipartite + 4PT entanglement
Simplest non-trivial entanglement structure consistent with MMI



8 Bipartite dominance vs. cross sections
Bipartite dominance implies I(A : B) is entirely due to entanglement (no classical correlations)
This fixes both entanglement of purification & reflected entropy:

1 1

But typically
Ey(A:B) > %I(A : B) (at order in Gy)
Thus conjectures relating E,, to EOP/RE apparently contradict bipartite dominance
Three ways out:
e Bipartite dominance is wrong
e F, # EOP, RE

e Order-1 corrections in bipartite dominance spoil (1)
Akers-Rath '19 argued against this on grounds of continuity



