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Conclusions
Using a classical to quantum mapping and, in particular, 
a new general relation regarding dynamical correlations, 
it is possible to prove, as a matter of principle, the 
existence of 

Glassy dynamics, quantum dynamical heterogeneities, 
quantum critical jamming, quantum turbulence, and 
many transitions
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Conclusions

Dynamical heterogeneities appear on length scales that 
diverge as these systems approach transitions. In glass 
transitions, there are usually no easy to ascertain 
standard divergent static correlation lengths. Relaxation 
times increase far more rapidly than natural length 
scales. 
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The idea in a nutshell:

Classical  viscous 
system

Quantum many body  
system

Old idea mentioned in statistical field theory textbooks by G. Parisi, J. Zinn-Justin.  More recently 
looked anew by, e.g., G. Biroli, C. Chamon, and F. Zamponi, Phys. Rev. B 78, 224306 (2008) 

and others. Mostly treated as a mathematical curiosity. 
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γi
dxi

dt
= − ∂

∂�xi
VN(�x1, ..., �xN ) + �ηi(t)

Classical first order differential equations of 
motion 
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The idea in a nutshell:
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∂P
∂t

= −HFPP

First order Schrodinger like equation
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The idea in a nutshell:

HFP → H = e
VN/(2T )

HFP e
−VN/(2T )
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Transform to a bona fide many body quantum 
problem 

HFP → H = e
VN/(2T )

HFP e
−VN/(2T )
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The idea in a nutshell:
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The idea in a nutshell:

Classical system: Zero temperature quantum 
system:

VQuantum({�x}) =
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Potential energy:
Effective mass:

  Potential energy:
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Dictionary:
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The idea in a nutshell:

Classical system: Zero temperature quantum 
system:Tcl ≥ 0Temperature

P equil({x}, t) =
1

ZN
e−βVN({�x}) Ψ0({�x}) =

1√
ZN

exp(− 1
2T

VN({�x}))

VN({�x})For a symmetric
this is a bosonic wave-function
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The idea in a nutshell:

Classical system: Zero temperature quantum 
system:Tcl ≥ 0Temperature

�O1(t)O2(0)�
= �0|etH

O1(t)e−tH
O2(0)|0�

Classical correlation function (assuming initial equilibrium) can be written as 
an expectation value in quantum ground state. H is the quantum Hamiltonian.

�O1(t)O2(0)�
= �0|eiHt

O1(0)e−iHt
O2(0)|0�

Assuming that at  time t=0, the quantum system is in its 
ground state              |0�
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For time dependent H, the exponentials are time ordered
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Exact Wick rotation (no path integral type increase in dimensionality)
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The idea in a nutshell:
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The idea in a nutshell:

Classical system: Zero temperature quantum 
system:Tcl ≥ 0Temperature

Classical Response function  Quantum response function  

GQuantum(t) =
1
2
(Gclassical(it) + Gclassical(−it)).
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The idea in a nutshell:

Classical system: Zero temperature quantum 
system:Tcl ≥ 0Temperature

GQuantum(t) =
1
2
(Gclassical(it) + Gclassical(−it)).

Gclassical = A exp[−(t/τ)a]
GQuantum = Ae(− t

τ )a cos πa
2

× cos
�
(
t

τ
)a sin

πa

2

�
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Example:

Classical system: Zero temperature quantum 
system:Tcl ≥ 0Temperature
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The idea in a nutshell:

Classical system: Zero temperature quantum 
system:Tcl ≥ 0Temperature

An identical                   substitution in time ordered exponentials follows for all multiple 
order correlation functions       

t→ it
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Physical consequences for quantum systems:

Classical system:

L. Berthier and G. Biroli, RMP 83, 587 (2011) 

C(t) = �δφ(x, 0)δφ(x, t)�

G4(x − y, t) = �δφ(x, t)δφ(x, 0)δφ(y, t)δφ(y, 0)�
− C2(t)

Sclassical
4 (�q, t) =

χ4(t)
1 + q2ξ4(t)2

18
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Dynamical Heterogeneities:
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Classical system:

O(t) = φq(t)φ−q(0) − �φq(t)��φ−q(0)

G4(q, t) = �O(t)O(0)�

Set

then

Physical consequences for quantum systems:
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Quantum system:
O(t) = φq(t)φ−q(0) − �φq(t)��φ−q(0)

Set

G4 Quantum(t) = �G4 classical(it)

Dynamical heterogeneity density wave

e−r/ξ4 ∼ e−r/τ1/z

→ cos(
r

τ1/z
sin

π

2z
)e−

r

τ1/z cos π
2z

Physical consequences for quantum systems:

21



Dynamical Heterogeneities:

Quantum system:
O(t) = φq(t)φ−q(0) − �φq(t)��φ−q(0)

Set

G4 Quantum(t) = �G4 classical(it)

Dynamical heterogeneity density wave

e−r/ξ4 ∼ e−r/τ1/z

→ cos(
r

τ1/z
sin

π

2z
)e−

r

τ1/z cos π
2z

Physical consequences for quantum systems:

21



Dynamical Heterogeneities:

Quantum system:
O(t) = φq(t)φ−q(0) − �φq(t)��φ−q(0)

Set

G4 Quantum(t) = �G4 classical(it)

Dynamical heterogeneity density wave

e−r/ξ4 ∼ e−r/τ1/z

→ cos(
r

τ1/z
sin

π

2z
)e−

r

τ1/z cos π
2z

21



Empirically, in models of classical glass formers:

Physical consequences for quantum systems:

τ ∼ exp(kξθ)

θ � 1.3

τ ∼ ξz
4

z � 10.8
Alternate empirical fit:

K. Mizuno and R. Yamamoto PRE 84, 011506 (2011)   
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Dynamical Heterogeneities:

Empirically, in models of classical glass formers: τ ∼ exp(kξθ)

θ � 1.3

τ ∼ ξz
4

z � 10.8
Alternate empirical fit:

K. Mizuno and R. Yamamoto PRE 84, 011506 (2011)   

Bottom line: a much more dramatic increase in time scales than length scales 
23



Physical consequences for quantum systems:

L. M. Martinez and C. A. Angell, Nature 410, 663 (2001)

Empirical Vogel-Fulcher-Tamman law for 
relaxation times

τ(T ) = τ0 e∆/(T−T0)

Classical glass formers:

Gclassical = A exp[−(t/τ)a]

24
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Physical consequences for quantum systems:
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By mapping to quantum system, 
an identical form as the effective mass

    is increased  mi =
γi

2Tcl
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Physical consequences for quantum systems:

 

A. J. Liu and S. R. Nagel, Nature 396, 21 (1998)   τ ∼ ξz, z � 4.6

T. Hatano, PRE 79, 050301 (R) (2009) 

ξ ∼ (ρJ − ρ)−0.7,

τ ∼ (ρJ − ρ)−3.3

Thus,
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Classical jamming of hard particles:
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Physical consequences for quantum systems:

 

A. J. Liu and S. R. Nagel, Nature 396, 21 (1998)   τ ∼ ξz, z � 4.6

By our mapping for the 
dynamics, similar results 
appear for the dual zero 
temperature quantum 

system of hard core bosons. 
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Physical consequences for quantum systems:

 

Also appears in lattice systems where particles have an effective core.

 Z. Rotman and E. Eisenberg, PRL 105, 225503 (2010); H. Levit, Z. Rotman, and E. Eisenberg, PRE 85, 011502 (2012)

(“2DN3”, “3DN2” models)
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Physical consequences for quantum systems:
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From our mapping the square (or cubic) lattice systems

may have a similar transition

U →∞, Vij →∞ for lattice sites i and j that are less than four (or three steps apart) 

Bose Hubbard type model with no external disorder
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Physical consequences for quantum systems:
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Hard core bosons may be mapped to spins, orbital pseudo-spins, ...
Spins can be expressed as fermi bilinears, ...,
Quantum critical jamming of BEC dimers, ...

Bose Hubbard type model with no external disorder
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 Quantum critical jamming:
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Physical consequences for quantum systems:

 

Our mapping may be invoked also for standard 
equilibrium classical transitions with dynamical 
exponents to derive zero temperature quantum 

counterparts. Similarly, classical turbulence and other 
dynamic phenomenon have quantum counterparts. 
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 Turbulence, standard transitions, et al. :

Our mapping may be invoked also for standard 
equilibrium classical transitions with dynamical 
exponents to derive zero temperature quantum 

counterparts. Similarly, classical turbulence and other 
dynamic phenomenon have quantum counterparts. 
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Conclusions
Using a classical to quantum mapping and, in particular, 
a new general relation regarding dynamical correlations, 
it is possible to prove, as a matter of principle, the 
existence of 

Glassy dynamics, quantum dynamical heterogeneities, 
quantum critical jamming, quantum turbulence, and 
many transitions
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Conclusions

Dynamical heterogeneities appear on length scales that 
diverge as these systems approach transitions. In glass 
transitions, there are usually no easy to ascertain 
standard divergent static correlation lengths. Relaxation 
times increase far more rapidly than natural length 
scales. 
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