Localization, condensation & the role of quantum statistics in strongly interacting Bose glasses

Markus Müller

Trieste

Xiaoquan Yu (SISSA)

Anirban Gangopadhyay, Victor Galitski (U. Maryland)

Victor Bapst (ENS Paris)

KITP, Quantum Dynamics Workshop, 26 Sep 2012

Outline

- Intro: Anderson localization in interacting systems
- Strong localization of disordered bosons?
 Locator expansion for bosons
- Magnetoresistance of fermionic versus bosonic insulators?
 Strong, opposite effect due to quantum statistics Structure of localized wavefunctions
- Localization and superfluid transition?
 Mobility edges in Bose insulators?

"Dirty bosons"

- Superconductors with preformed pairs
 - * Exp. systems: InOx, PbTe, and others
 - * Models: negative U Hubbard model
 - Ma&Lee/Anderson pseudospin model
- Granular superconductors / Josephson junction arrays
- Cold bosonic atoms (+disorder potential)
- Helium in disordered media (e.g. porous silica)
- Disordered quantum spin systems

Localization: single/many particle

Anderson localization (1958) [single particle]

$$H = \mathop{\mathring{a}}_{i} e_{i} n_{i} - t \mathop{\mathring{a}}_{\langle i,j \rangle} \left(c_{i}^{\dagger} c_{j} + \text{h.c.} \right)$$

Resonance = $\Delta \varepsilon$ < hopping t

Delocalization transition

 $(insulator \rightarrow metal)$

= Percolation of resonances

Localization: single/many particle

Anderson localization (1958) [single particle]

$$H = \mathop{\mathring{a}}_{i} e_{i} n_{i} - t \mathop{\mathring{a}}_{\langle i,j \rangle} \left(c_{i}^{+} c_{j} + \text{h.c.} \right)$$

Mobility edge: separates delocalized (higher DOS) from localized states (low DOS)

Localization: single/many particle

Anderson localization [many particle] (Anderson, Fleishman 80's,
Altshuler, Gefen, Kamenev, Levitov 90's
Aleiner, Basko, Mirlin, Gornyi... 2005)

$$H = \mathop{\mathring{a}}_{a} e_{a} n_{a} - \mathop{\mathring{a}}_{a,b,g,d} V_{abgd} \left(c_{a}^{\dagger} c_{b}^{\dagger} c_{g} c_{d} + \text{h.c.} \right)$$

Disorder-localized single particle levels

Interaction (short range) −
→ hopping in Fock space

$$\frac{\delta_{\zeta}}{\epsilon_{F}} = \frac{\delta_{\zeta}}{\epsilon_{F}} + \frac{\delta_{\zeta}}{\epsilon_{F}} - \xi_{\alpha} \quad \text{energy mismatch}$$

Non-interacting fermions + NOTHING ELSE (no bath of any sort: no phonons, no EM fields)

Transport as a function of temperature and disorder?

Non-interacting fermions + NOTHING ELSE (no bath of any sort: no phonons, no EM fields)

Non-interacting fermions + NOTHING ELSE (no bath of any sort: no phonons, no EM fields)

Role of dimension: $\Delta_c = 0$ in d=1,2 (without special symmetries)

FULLY UNDERSTOOD! (for physicists)

Interacting particles of finite density + NOTHING ELSE (no bath of any sort: no phonons, no EM fields)

Interacting particles of finite density + NOTHING ELSE (no bath of any sort: no phonons, no EM fields)

Role of dimension? Can a finite T transition occur in high d??

Interacting particles of finite density + NOTHING ELSE (no bath of any sort: no phonons, no EM fields)

Berkovits, Shklovskii; V. Oganesyan, D. Huse

Number and nature of the transitions??

Interacting particles of finite density + NOTHING ELSE (no bath of any sort: no phonons, no EM fields)

Interacting particles of finite density + NOTHING ELSE (no bath of any sort: no phonons, no EM fields)

Berkovits, Shklovskii; V. Oganesyan, D. Huse

Interacting particles of finite density + NOTHING ELSE (no bath of any sort: no phonons, no EM fields)

Interacting particles of finite density + NOTHING ELSE (no bath of any sort: no phonons, no EM fields)

Interacting particles of finite density + NOTHING ELSE (no bath of any sort: no phonons, no EM fields)

Interacting particles of finite density + NOTHING ELSE (no bath of any sort: no phonons, no EM fields)

This talk: approach from deep insulator at T = 0Result for bosons: scenario 2 or 3 are found!

Questions

- Effects of quantum statistics in insulators?
- Strong localization of interacting disordered systems (especially: dirty bosons)?

Locator expansion (applicability to many other systems)

 Approach to delocalization (superfluid transition)?

Disordered insulators: Simplest model: hopping+disorder

$$H \!=\! \sum_{i} \mathbf{\epsilon}_{i} n_{i} - \sum_{\langle i^{\varsigma}j
angle} t_{ij} (b_{j}^{\dagger}b_{i} + b_{i}^{\dagger}b_{j})^{\varsigma} \quad n_{i} = b_{i}^{\dagger}b_{i}$$
P

Fermions

$$\P b_i$$
° b_j $\Diamond = 0$ °° $\P b_i$ ° b_j $\Diamond = \delta_{ij}$

P. W. Anderson (1958)

Disordered insulators: Simplest model: hopping+disorder

$$H = \sum_i \mathbf{\epsilon}_i n_i - \sum_{\langle i^{\scriptscriptstyle c} j
angle} t_{ij} (b_j^{\dagger} b_i + b_i^{\dagger} b_j)^{\scriptscriptstyle c} \quad n_i = b_i^{\dagger} b_i {\scriptscriptstyle D}$$

Fermions

$$\P b_i$$
° b_j $\Diamond = 0$ °° $\P b_i^\dagger$ ° b_j $\Diamond = \delta_{ij}$

$$\P b_i^{\dagger_{\mathsf{c}}} b_j \lozenge = \mathsf{d}_{ij}$$

P. W. Anderson (1958)

Hard core bosons

M. Ma and P. A. Lee (1985), Kapitulnik and Kotliar (1985)

$$[b_i{}^{\scriptscriptstyle\mathsf{c}}\,b_j] = 0^{\scriptscriptstyle\mathsf{c}} \quad [b_i^{\dagger_{\scriptscriptstyle\mathsf{c}}}\,b_j] = \delta_{ij}(2n_i - 1)$$

[Anyons (in 2d): interpolate smoothly $F \leftrightarrow B$]

Krauth, Trivedi, Randeria; Feigelman, Ioffe, Kravtsov Ioffe, Mézard, Feigelman Syzranov, Moor, Efetov

Localization length

Strong insulators: Hopping transport! - Localization length ξ?

Localization length

Strong insulators: Hopping transport! - Localization length ξ?

Fermions

$$G_{i^{\circ}0}^{R}(t-t') = -i\Theta(t-t')\langle \P b_{i}(t)^{\circ} b_{0}^{\dagger}(t') \rangle \rangle$$

Bosons

$$G_{i \circ 0}^R(t-t') = -i\Theta(t-t')\langle [b_i(t) \circ b_0^{\dagger}(t')] \rangle$$

Localization length

Strong insulators: Hopping transport! - Localization length ξ?

Fermions

$$G_{i \circ 0}^R(t-t') = -i\Theta(t-t')\langle \P b_i(t) \circ b_0^{\dagger}(t') \rangle \rangle$$

Bosons

$$G^R_{i \circ 0}(t-t') = -i\Theta(t-t')\langle [b_i(t) \circ b_0^{\dagger}(t')] \rangle$$

Generalized localization length (also interacting)

$$\xi(\omega)^{-1} = -\lim_{\vec{r}_i o \infty} \overline{\ln[\mathbf{A}G^R_{i \cdot 0}(\omega) \triangleleft G^R_{0 \cdot 0}(\omega)]}$$

Free fermions: no features near E_F , $\xi(\omega) \sim \text{const.}$ - What about bosons?

Fermions

J. Hubbard (1963): Equation of motion for Green's function!

$$egin{aligned} \left(irac{d}{dt}-oldsymbol{arepsilon}_{i}
ight)G_{i\cdot0}^{R}(t) & i\dot{b}_{i}\left(t
ight) \ = \delta(t)\delta_{i\cdot0}+i\Theta(t-t')\left\langle\left\{\sum_{j\in\partial i}t_{ij}b_{j}(t)^{\epsilon}b_{0}^{\dagger}(t')
ight\}
ight
angle \ = \delta(t)\delta_{i\cdot0}-\sum_{j\in\partial i}t_{ij}G_{j\cdot0}^{R}(t) \end{aligned}$$

Fermions

J. Hubbard (1963): Equation of motion for Green's function!

$$egin{aligned} \left(irac{d}{dt}-oldsymbol{arepsilon}_{i}
ight)G_{i\cdot 0}^{R}(t) & i\dot{b}_{i}\left(t
ight) \ = &\delta(t)\delta_{i\cdot 0}+i\Theta(t-t')\left\langle\left\{\sum_{j\in\partial i}t_{ij}b_{j}(t)^{\epsilon}b_{0}^{\dagger}(t')
ight\}
ight
angle \ = &\delta(t)\delta_{i\cdot 0}-\sum_{j\in\partial i}t_{ij}G_{j\cdot 0}^{R}(t) \end{aligned}$$

Fourier transform → Anderson's sum over paths

Anderson (1958)

$$rac{G^R_{i^{\epsilon_0}}(\omega)}{G^R_{0^{\epsilon_0}}(\omega)} = \sum_{\mathcal{P} = \P j_0 = 0 imes j_\ell = i \lozenge p = 1} \prod_{p=1}^\ell t_{j_{p-1}{}^{\epsilon_j} j_p} rac{1}{\mathbf{\epsilon}_{j_p} - \omega}$$

Fermions

J. Hubbard (1963): Equation of motion for Green's function!

$$egin{aligned} \left(irac{d}{dt}-oldsymbol{arepsilon}_{i}
ight)G_{i^{\epsilon}0}^{R}(t) & i\dot{b}_{i}\left(t
ight) \ &=\delta(t)\delta_{i^{\epsilon}0}+i\Theta(t-t')\left\langle \left\{\sum_{j\in\partial i}t_{ij}b_{j}(t)^{\epsilon}b_{0}^{\dagger}(t')
ight\}
ight
angle \ &=\delta(t)\delta_{i^{\epsilon}0}-\sum_{j\in\partial i}t_{ij}G_{j^{\epsilon}0}^{R}(t) \end{aligned}$$

Fourier transform → Anderson's sum over paths

Anderson (1958)

Forward scattering approximation: sum over shortest paths!

Spivak, Shklovskii, Nguyen (1983)

$$rac{G^R_{i^{\scriptscriptstyle c}0}(\omega)}{G^R_{0^{\scriptscriptstyle c}0}(\omega)} = \sum_{\mathcal{P} = \P_{j_0} = 0 imes j_\ell = i \lozenge } \prod_{p=1}^\ell t_{j_{p-1}{}^{\scriptscriptstyle c}j_p} rac{1}{oldsymbol{arepsilon}_{j_p} - \omega}$$

Fermions

Magnetoresistance: negative (Nguyen, Spivak, Shklovskii)

Path amplitudes: real with random signs!

B-field: $t_{ij} \rightarrow te^{-i\varphi_{ij}}$ makes destructive interference less likely $\rightarrow \xi$ and 1/R increase.

Forward scattering approximation: sum over shortest paths!

Spivak, Shklovskii, Nguyen (1983)

$$rac{G^R_{i^c0}(\omega)}{G^R_{0^c0}(\omega)} = \sum_{\mathcal{P} = \P j_0 = 0 ext{ only}} \prod_{j_\ell = i \lozenge p = 1}^\ell t_{j_{p-1} \circ j_p} rac{1}{\mathbf{\epsilon}_{j_p} - \omega}$$

Bosons (hard core)

$$\left(i\frac{d}{dt} - \mathbf{e}_{i}\right) G_{i \cdot 0}^{R}(t) = \mathbf{\delta}(t) \mathbf{\delta}_{i \cdot 0} (1 - 2\langle n_{0}\rangle)$$

$$+i\Theta(t - t') \left\langle \left[(-1)^{n_{i}(t)} \sum_{j \in \partial i} t_{ij} b_{j}(t) \cdot b_{0}^{\dagger}(t') \right] \right\rangle$$

$$\mathbf{\delta}(t) \mathbf{\delta}_{i \cdot 0} (1 - 2\langle n_{0}\rangle) - \left(\operatorname{sgn}(\mathbf{e}_{i}) \sum_{j \in \partial i} t_{ij} G_{j \cdot 0}^{R}(t) \right)$$

Bosons (hard core)

$$\left(i\frac{d}{dt} - \mathbf{e}_{i}\right) G_{i \cdot 0}^{R}(t) = \mathbf{\delta}(t) \mathbf{\delta}_{i \cdot 0} (1 - 2\langle n_{0} \rangle)$$

$$+ i \mathbf{\Theta}(t - t') \left\langle \left[(-1)^{n_{i}(t)} \sum_{j \in \partial i} t_{ij} b_{j}(t)^{\epsilon} b_{0}^{\dagger}(t') \right] \right\rangle$$

$$\mathbf{\delta}(t) \mathbf{\delta}_{i \cdot 0} (1 - 2\langle n_{0} \rangle) - \left(\operatorname{sgn}(\mathbf{e}_{i}) \sum_{j \in \partial i} t_{ij} G_{j \cdot 0}^{R}(t) \right)$$

Forward scattering: Sum over shortest paths, lowest order in t!

MM (2011)

$$rac{G^R_{i ildot 0}(oldsymbol{\omega})}{G^R_{0 ildot 0}(oldsymbol{\omega})} = \sum_{\mathcal{P} = \P j_0 = 0 imes j_\ell = i \lozenge } \prod_{p=1}^\ell t_{j_{p-1} ildot j_p} \underbrace{ \operatorname{sgn}(oldsymbol{\epsilon}_{j_p})}_{oldsymbol{\epsilon}_{j_p} = i \lozenge}$$

Bosons (hard core)

$$\left(i\frac{d}{dt} - \mathbf{e}_{i}\right) G_{i \cdot 0}^{R}(t) = \mathbf{\delta}(t) \mathbf{\delta}_{i \cdot 0} (1 - 2\langle n_{0} \rangle)$$

$$+i \mathbf{\Theta}(t - t') \left\langle \left[(-1)^{n_{i}(t)} \sum_{j \in \partial i} t_{ij} b_{j}(t)^{c} b_{0}^{\dagger}(t') \right] \right\rangle$$

$$\approx \mathbf{\delta}(t) \mathbf{\delta}_{i \cdot 0} (1 - 2\langle n_{0} \rangle) - \left(\operatorname{sgn}(\mathbf{\epsilon}_{i}) \sum_{j \in \partial i} t_{ij} G_{j \cdot 0}^{R}(t) \right)$$

Forward scattering: Sum over shortest paths, lowest order in t!

MM (2011)

Sign difference Bosons/Fermions:

Loop of two paths:

Ring exchange of particles

$$rac{G_{i^{arepsilon_0}}^R(\omega)}{G_{0^{arepsilon_0}}^R(\omega)} = \sum_{\substack{\mathcal{P} = \P_{j_0} = 0 < \bowtie \geqslant j_\ell = i \lozenge \ p=1}} \prod_{p=1}^\ell t_{j_{p-1} \cdot j_p} \underbrace{\operatorname{sgn}(\mathbf{\epsilon}_{j_p})}_{\mathbf{\epsilon}_{j_p} - \omega}$$

Bosons (hard core)

Magnetoresistance: **positive** cf also Zhou, Spivak

cf also Zhou, Spivak (1991)Syzranov et al (2012)

Path amplitudes: all positive at $(\omega \rightarrow 0)$!

B-field: $t_{ij} \rightarrow te^{-i\phi_{ij}}$ destroys constructive interference, ξ and 1/R decrease.

Forward scattering: Sum over shortest paths, lowest order in t!

MM (2011)

Sign difference Bosons/Fermions:

Loop of two paths:

Ring exchange of particles

$$rac{G^R_{i^c\!0}(\omega)}{G^R_{0^c\!0}(\omega)} = \sum_{\mathcal{P} = \P j_0 = 0 < \bowtie \!\!\!> j_\ell = i \lozenge} \prod_{p=1}^\ell t_{j_{p-1} \cdot j_p} \underbrace{\operatorname{sgn}(\mathbf{\epsilon}_{j_p})}_{\mathbf{\epsilon}_{j_p} - \omega}$$

Magnetoresistance peak

Hebard+Palaanen, Gantmakher et al., Shahar et al, Baturina et al, W. Wu, Valles et al., Goldman et al.

A key ingredient to the MR peak:

Local pairs = bosons

→ exponentially positive MR

Unpaired fermions

→ exponentially negative MR

Sambandamurthy, Shahar et al. (2005) - InO_x

Magnetoresistance peak

Hebard+Palaanen, Gantmakher et al., Shahar et al, Baturina et al, W. Wu, Valles et al., Goldman et al.

A key ingredient to the MR peak:

0.5

Baturina et al. (2007) TiN

Magnetoresistance more quantitatively? Fermions vs. bosons? $\xi(B)$?

B (T)

Magnetoresistance quantitaively

Past studies:

Mostly numerics (fermions) Medina+Kardar, Spivak et al
 Directed paths in random media: Kardar's book: Stat. Physics of Fields

Data fitting:

Magnetoresistance quantitaively

Past studies:

Mostly numerics (fermions) Medina+Kardar, Spivak et al
 Directed paths in random media: Kardar's book: Stat. Physics of Fields

Data fitting:

 Analytical studies of phases of complex interference sums in simplified models (Bethe/hierarchical lattices): Derrida, Cook, Spohn

Magnetoresistance quantitaively

Our numerical studies:

Apparent different scalings of bosons and fermions
 (γ appeared bigger for bosons than for fermions – why?)

long distance
$$r$$

$$D \ln G(r) = + \text{const } \times B^g r$$

 No satisfactory scaling collapse for values in the fermion literature

Magnetoresistance quantitaively

Typical relevant paths form droplets:

Exactly like directed polymers in random media! (Monthus, Garel; Ortuno, Prior, Somoza)

Simplified hierarchical model

A. Gangopadhyay, V. Galitski, MM (in prep)

(cf. *Hwa*, *Fisher+Huse's* droplet theory for directed polymers, 1994)

Sum over directed positive weight paths = Partition function of directed polymer

Simplified hierarchical model

A. Gangopadhyay, V. Galitski, MM (in prep)

(cf. *Hwa*, *Fisher+Huse's* droplet theory for directed polymers, 1994)

$$S_{\mathcal{L}}^{k} = S_{\mathcal{L}_{1}'}^{k+1} S_{\mathcal{L}_{2}'}^{k+1} + e^{-f_{\mathcal{L}}L_{k}^{\theta}} e^{ia_{\mathcal{L}}BL_{k}^{1+\zeta}} S_{\mathcal{L}_{1}''}^{k+1} S_{\mathcal{L}_{2}''}^{k+1}$$

Interference sum S recursively defined

Simplified hierarchical model

A. Gangopadhyay, V. Galitski, MM (in prep)

Advantage: Analytically tractable model:

Virial expansion: small B \to low density of interfering loops

Numerics: exponents (in finite size) are very similar to full model

Virial expansion for droplet model A. Gangopadhyay, V. Galitski, MM (in prep)

Disorder is strong!

Larkin scale (disorder dominates entropy) $L_c \gg a_{lattice} = 1$ \rightarrow interfering loops are NOT random walks!

A. Gangopadhyay, V. Galitski, MM (in prep)

Disorder is strong!

Larkin scale (disorder dominates entropy) $L_c \gg a_{lattice} = 1$

→ interfering loops are NOT random walks!

Size of interfering regions ("magnetic length")

$$B\ell_B\ell_B^Z = 1 \rightarrow \ell_B = B^{-1/1+Z} \qquad \zeta = 2/3$$

A. Gangopadhyay, V. Galitski, MM (in prep)

Disorder is strong!

Larkin scale (disorder dominates entropy) $L_c \gg a_{lattice} = 1$

→ interfering loops are NOT random walks!

Size of interfering regions ("magnetic length")

$$B\ell_B\ell_B^Z = 1 \rightarrow \ell_B = B^{-1/1+Z} \qquad \zeta = 2/3$$

Probability of significant interference

$$P_{\text{interf}} \ \ \cup \ \ \ell_B^{-q} \qquad \theta = 1/3$$

A. Gangopadhyay, V. Galitski, MM (in prep)

Disorder is strong!

Larkin scale (disorder dominates entropy) $L_c \gg a_{lattice} = 1$

$$L_c \gg a_{lattice} = 1$$

→ interfering loops are NOT random walks!

Size of interfering regions ("magnetic length")

$$B\ell_B\ell_B^Z = 1 \rightarrow \ell_B = B^{-1/1+Z} \qquad \zeta = 2/3$$

Probability of significant interference

$$P_{\text{interf}} \ \ \ \cup \ \ \ell_B^{-q} \qquad \quad \theta = 1/3$$

Virial expansion

rial expansion
$$D\left(\frac{L}{X}\right) \sim \frac{L}{\ell_B} \left(\frac{1}{\ell_B^q} + \frac{1}{\ell_B^{2q}} + ...\right) \sim B^c \left(1 + B^a + ...\right)$$

$$= \frac{q}{1 + Z} = \frac{1 + 1/3}{1 + 2/3} = \frac{4}{5}$$

$$= \frac{q}{1 + Z} = \frac{1}{5}$$

$$C = \frac{1+q}{1+Z} = \frac{1+1/3}{1+2/3} = \frac{4}{5}$$

$$A = \frac{q}{1+Z} = \frac{1}{5}$$

$$\begin{array}{c}
 \downarrow \\
 \downarrow$$

A. Gangopadhyay, V. Galitski, MM (in prep)

Disorder is strong!

Larkin scale (disorder dominates entropy)

$$L_c \gg a_{lattice} = 1$$

→ interfering loops are NOT random walks!

Size of interfering regions ("magnetic length")

$$B\ell_B\ell_B^Z = 1 \rightarrow \ell_B = B^{-1/1+Z} \qquad \zeta = 2/3$$

Probability of significant interference

Virial expansion

rial expansion
$$D\left(\frac{L}{X}\right) \sim \frac{L}{\ell_{B}} \left(\frac{1}{\ell_{B}^{q}} + \frac{1}{\ell_{B}^{2q}} + ...\right) \sim B^{c} \left(1 + B^{a} + ...\right)$$

$$Z = \frac{1 + q}{1 + Z} = \frac{1 + 1/3}{1 + 2/3} = \frac{4}{5}$$

$$A = \frac{q}{1 + Z} = \frac{1}{5}$$

$$C = \frac{1+q}{1+Z} = \frac{1+1/3}{1+2/3} = \frac{4}{5}$$

$$A = \frac{q}{1+Z} = \frac{1}{5}$$

Larger

Num. confirmation: Full lattice model

long distance N $D \ln G(N) = -B^{0.8}N$

Quantum Statistics: modified localization length

Bosons: localization much more strongly enhanced

than it is diminished for fermions

Predict: $R(B)/R(0) \sim O(100)$ in strong insulators and fields

Back to B = 0

Approach to delocalization?

Boseglass-to-superfluid transition ? = ?

boson delocalization + condensation

1d and 2d case

(Aleiner, Altshuler, Shlyapnikov 2009)

Calculations and conjectures about the phase diagram of soft core bosons in 1d and 2d:

Genuine finite T phase transition in 1d!

1d and 2d case

(Aleiner, Altshuler, Shlyapnikov, 2009)

Calculations and conjectures about the phase diagram of soft core bosons in 1d and 2d:

Conjecture for 2d: Direct transition from superfluid to a many body localized phase, with full localization up to finite T

Closing of a (many body) mobility gap?

Hertz, Anderson, Fleishman (1979) "Marginal bose glass"

FIG. 1. Hartree-Fock density of states at three different temperatures (schematic): (a) For high T, $\rho^{HF} \approx \rho$ = density of eigenvalues of \underline{J} ; (b) for intermediate T, tail of localized states moves to keep to the left of T; (c) for T reaching the mobility edge, no localized states remain.

Scenario for the ordering transitions in

- Disordered magnets
- Spin glasses
- Dirty superfluids (SI transition)

→ Idea: transition when extended Hartree-Fock state reaches chemical potential → condensation

Closing of a (many body) mobility gap?

Ioffe, Mézard; & Feigelman ('09, '11);

Hard core bosons on a Bethe lattice (" $d = \infty$ ")

$$H_{XY} = \sum_{i} \epsilon_{i} n_{i} - t \sum_{\langle i,j \rangle} \left(b_{i}^{\dagger} b_{j} + b_{j}^{\dagger} b_{i} \right)$$

Bethe lattice of **large** connectivity N [\rightarrow approach close to transition possible] (like Abou-Chacra-Anderson-Thouless (1973) for fermions)

Closing of a (many body) mobility gap?

Ioffe, Mézard; & Feigelman ('09, '11);

Hard core bosons on a Bethe lattice (" $d = \infty$ ")

$$H_{XY} = \sum_{i} \epsilon_{i} n_{i} - t \sum_{\langle i,j \rangle} \left(b_{i}^{\dagger} b_{j} + b_{j}^{\dagger} b_{i} \right)$$

Bethe lattice of **large** connectivity N [\rightarrow approach close to transition possible] (like Abou-Chacra-Anderson-Thouless (1973) for fermions)

Closing of a (many body) mobility gap?

Ioffe, Mézard; & Feigelman ('09, '11);

Hard core bosons on a Bethe lattice (" $d = \infty$ ")

$$H_{XY} = \sum_{i} \epsilon_{i} n_{i} - t \sum_{\langle i, j \rangle} \left(b_{i}^{\dagger} b_{j} + b_{j}^{\dagger} b_{i} \right)$$

Reported phase diagram:

Bethe lattice of **large** connectivity $N \rightarrow \text{approach close to transition possible} (like Abou-Chacra-Anderson-Thouless (1973) for fermions)$

Interference terms in finite dimensions give opposite trend!

$$rac{G_{i^{\epsilon_0}}^R(\pmb{\omega})}{G_{0^{\epsilon_0}}^R(\pmb{\omega})} = \sum_{\mathcal{P} = \P j_0 = 0 < oldsymbol{arphi} > j_\ell = i \lozenge } \prod_{p=1}^\ell t_{j_{p-1} ` j_p} rac{\operatorname{sgn}(\pmb{\epsilon}_{j_p})}{\pmb{\epsilon}_{j_p} - \pmb{\omega}}$$

Delocalization **strongest** at lowest energies: $\xi(0) > \xi(\omega)!$

→ Bosons delocalize first at zero energy! No closing mobility edge!

Interference terms in finite dimensions give opposite trend!

$$rac{G^R_{i ext{ iny 0}}(oldsymbol{\omega})}{G^R_{0 ext{ iny 0}}(oldsymbol{\omega})} = \sum_{eta = \P j_0 = 0 ext{ iny 0}} \prod_{j_\ell = i\lozenge}^\ell t_{j_{p-1} ext{ iny 0}} rac{ ext{sgn}(oldsymbol{\epsilon}_{j_p})}{oldsymbol{\epsilon}_{j_p} - oldsymbol{\omega}}$$

Delocalization **strongest** at lowest energies: $\xi(0) > \xi(\omega)!$

→ Bosons delocalize first at zero energy! No closing mobility edge!

Similar as related exact results in 1d! Random transverse field Ising chain:

Map to free fermions [class BDI]: most delocalized at $\omega = 0$!

Is there never a mobility edge in bose insulators?

Are "bose glasses" always "many body localized"?

Not necessarily!

Trivial case: DOS increases with energy above chemical potential

Less trivial: interaction-frustrated (glassy) bosons

SIT

X. Yu, MM in prep

$$H = -\sum_{\langle i \cdot j \rangle} \sqrt[4]{\frac{j_{ij}}{N}} n_i n_j - \frac{t}{N} \sum_{\langle i \cdot j \rangle} (b_j^{\dagger} b_i + b_i^{\dagger} b_j)$$

Random n.n.-interactions (spin glass like)

Unfrustrated hopping of hard core bosons

SIT

X. Yu, MM in prep

$$H = -\sum_{\langle i \cdot j \rangle} \sqrt[4]{\frac{j_{ij}}{N}} n_i n_j - \frac{t}{N} \sum_{\langle i \cdot j \rangle} (b_j^{\dagger} b_i + b_i^{\dagger} b_j)$$

Unfrustrated hopping of hard core bosons

SIT

X. Yu, MM in prep

$$H = -\sum_{\langle i \cdot j \rangle} \sqrt[4]{\frac{J_{ij}}{N}} n_i n_j - \frac{t}{N} \sum_{\langle i \cdot j \rangle} (b_j^{\dagger} b_i + b_i^{\dagger} b_j)$$

SIT

X. Yu, MM in prep

SIT

X. Yu, MM in prep

$$E_i = -\sum_{j \in \partial i} \sqrt[4]{\frac{J_{ij}}{N}} n_j$$

- \rightarrow Suppresses superfluidity (at $\omega = 0$)
- \rightarrow Higher ω modes remain delocalized in insulator!

SIT

X. Yu, MM in prep

$$E_i = -\sum_{j \in \partial i} \sqrt[4]{\frac{j_{ij}}{N}} n_j$$

- \rightarrow Suppresses superfluidity (at $\omega = 0$)
- \rightarrow Higher ω modes remain delocalized in insulator!
- \rightarrow Finite, but non-critical mobility edge at $\omega \sim 1/log(N)!$

SIT

X. Yu, MM in prep

$$E_i = -\sum_{j \in \partial i} \sqrt[4]{\frac{J_{ij}}{N}} n_j$$

- \rightarrow Suppresses superfluidity (at $\omega = 0$)
- \rightarrow Higher ω modes remain delocalized in insulator!
- \rightarrow Finite, but non-critical mobility edge at $\omega \sim 1/log(N)!$
- → Coulomb gap: mobility edge tracks the chem. potential!

(cf. exp by Yazdani et al)

Mobility edge at glassy SIT

Mobility edge at glassy SIT

Solvable model of a glassy SI transition: Superfluid emerges without closing mobility gap E_c!

Actual calculations

$$H = -\frac{t}{N} \mathop{\mathring{a}}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{\mathring{a}}_{\langle i,j \rangle} S_i^z J_{ij} S_j^z$$
 (J – model)

$$H = -\frac{t}{N} \mathop{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{a}_{\langle i,j \rangle} e_i S_i^z$$
 (\varepsilon - model)

Localization? Level width with weak coupling to bath?

$$G_{0,0}(t) \equiv -i\Theta(t)_b \langle \mathrm{GS}|\sigma_0^+(t)\sigma_0^-|\mathrm{GS}\rangle_b$$

P(y)

0.12

0.10

0.08

0.06

0.04

0.02

5

SI transition

$$H = -\frac{t}{N} \mathop{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{a}_{\langle i,j \rangle} S_i^z J_{ij} S_j^z$$
 (J – model)

→ non-glassy model:

$$H = -\frac{t}{N} \mathop{\mathring{a}}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{\mathring{a}}_{\langle i,j \rangle} e_i S_i^z$$
 (\varepsilon - \text{model})

Localization? Level width with weak coupling to bath?

$$G_{0,0}(t) \equiv -i\Theta(t)_b \langle GS|\sigma_0^+(t)\sigma_0^-|GS\rangle_b$$

$$G_{0,0}(\omega) \approx \sum_n \frac{|\langle GS|\sigma_0^+|E_n\rangle|^2}{\omega + E_{GS} - E_n + i\Gamma_n/2}$$

$$\Gamma_n = 2\pi \sum_{l \in \partial M} \left[J(E_n - E_{GS}) |\langle GS | \sigma_l^x | E_n \rangle|^2 + \sum_{E_{GS} < E_m < E_n} J(E_n - E_m) |\langle E_m | \sigma_l^x | E_n \rangle|^2 \right]$$

P(y)

0.12

0.10

0.08

0.06

0.04

0.02

5

SI transition

$$H = -\frac{t}{N} \mathop{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{a}_{\langle i,j \rangle} S_i^z J_{ij} S_j^z$$
 (J – model)

→ non-glassy model:

$$H = -\frac{t}{N} \mathop{\mathring{a}}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{\mathring{a}}_{\langle i,j \rangle} e_i S_i^z$$
 (\varepsilon - model)

Localization? Level width with weak coupling to bath?

$$G_{0,0}(t) \equiv -i\Theta(t)_b \langle GS|\sigma_0^+(t)\sigma_0^-|GS\rangle_b$$

$$G_{0,0}(\omega) \approx \sum_n \frac{|\langle GS|\sigma_0^+|E_n\rangle|^2}{\omega + E_{GS} - E_n + i\Gamma_n/2}$$

Residue of two point function!

$$\Gamma_n = 2\pi \sum_{l \in \partial M} \left[J(E_n - E_{GS}) |\langle GS | \sigma_l^x | E_n \rangle|^2 + \sum_{E_{GS} < E_m < E_n} J(E_n - E_m) |\langle E_m | \sigma_l^x | E_n \rangle|^2 \right]$$

P(y)

SI transition

$$H = -\frac{t}{N} \mathop{\mathring{a}}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{\mathring{a}}_{\langle i,j \rangle} S_i^z J_{ij} S_j^z$$
 (J – model)

$$H = -\frac{t}{N} \mathop{\mathring{a}}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{\mathring{a}}_{\langle i,j \rangle} e_i S_i^z$$
 (\varepsilon - model)

Localization? Level width with weak coupling to bath?

$$G_{0,0}(t) \equiv -i\Theta(t)_b \langle \mathrm{GS} | \sigma_0^+(t) \sigma_0^- | \mathrm{GS} \rangle_b$$

$$-|\langle \mathrm{GS} | \sigma_0^+ | E_0 \rangle|^2$$

$$G_{0,0}(\omega) \approx \sum_{n} \frac{|\langle GS | \sigma_0^+ | E_n \rangle|^2}{\omega + E_{GS} - E_n + i\Gamma_n/2}$$

Residue of two point function!

$$\Gamma_n = 2\pi \sum_{l \in \partial M} \left[J(E_n - E_{GS}) |\langle GS | \sigma_l^x | E_n \rangle|^2 \right]$$

P(y)

SI transition

$$H = -\frac{t}{N} \mathop{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{a}_{\langle i,j \rangle} S_i^z J_{ij} S_j^z$$
 (J – model)

$$H = -\frac{t}{N} \mathop{\mathring{a}}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{\mathring{a}}_{\langle i,j \rangle} e_i S_i^z$$
 (\varepsilon - \model)

Localization? Level width with weak coupling to bath?

$$G_{0,0}(t) \equiv -i\Theta(t)_b \langle \text{GS}|\sigma_0^+(t)\sigma_0^-|\text{GS}\rangle_b$$

$$G_{0,0}(\omega) \approx \sum_n \frac{|\langle \text{GS}|\sigma_0^+|E_n\rangle|^2}{\omega + E_{\text{GS}} - E_n + i\Gamma_n/2}$$

Residue of two point function!

$$G_{0,0}(\omega) \approx \sum_{n} \frac{|\langle \mathrm{GS}|\sigma_{0}^{+}|E_{n}\rangle|^{2}}{\omega + E_{\mathrm{GS}} - E_{n} + i\Gamma_{n}/2}$$

$$\Gamma_{n} = 2\pi \sum_{l \in \partial M} \left[J(E_{n} - E_{\mathrm{GS}})|\langle \mathrm{GS}|\sigma_{l}^{x}|E_{n}\rangle|^{2}\right]$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{\mathrm{GS}})|\langle \mathrm{GS}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{n} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{m} - E_{m})|\langle E_{m}|\sigma_{l}^{x}|E_{n}\rangle|^{2}$$

$$+ \sum_{l \in \partial M} J(E_{m} - E_{m})|\langle E_{m}|\sigma_{l}$$

Needed:
$$\chi_{\omega} = \prod_{p=1}^{t} \frac{t}{N} \frac{\operatorname{sign}(\epsilon_{p})}{\epsilon_{p} - \omega}$$

$$\left(\leftrightarrow\prod_{l}rac{t}{N}rac{1}{|\epsilon_{n}|-\omega} \quad extit{\it Ioffe-M\'ezard}
ight)$$

Quantum transport at the glassy P(y)SI transition

$$H = -\frac{t}{N} \mathop{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{a}_{\langle i,j \rangle} S_i^z J_{ij} S_j^z$$
 (J – model)

$$(J - model)$$

$$\leftrightarrow$$
 non-glassy model: $H = -\frac{t}{N} \mathring{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathring{a}_{\langle i,j \rangle} e_i S_i^z$ (\varepsilon - model)

1. Superfluid transition?
$$\rightarrow \left\langle S_i^+ \right\rangle \stackrel{1}{=} 0$$

(J):
$$t_c = J$$
 (ϵ): $t_c = c/\log(N)$

Quantum transport at the glassy SI transition P(y)

$$H = -\frac{t}{N} \mathop{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{a}_{\langle i,j \rangle} S_i^z J_{ij} S_j^z$$
 (J – model)

$$H = -\frac{t}{N} \mathop{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{a}_{\langle i,j \rangle} \mathcal{C}_i S_i^z$$
 (\varepsilon - model)

1. Superfluid transition? $\rightarrow \left| \left\langle S_i^+ \right\rangle \right| = 0$

(J):
$$t_c = J$$
 (\varepsilon): $t_c = c/log(N)$

Same value as for free fermions (in "upper limit" approximation: neglecting self-energies) (Abou Chacra et al)

Quantum transport at the glassy SI transition P(y)

$$H = -\frac{t}{N} \mathop{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{a}_{\langle i,j \rangle} S_i^z J_{ij} S_j^z$$
 (J – model)

$$\leftrightarrow$$
 non-glassy model: $H = -\frac{t}{N} \mathring{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathring{a}_{\langle i,j \rangle} e_i S_i^z$ (\varepsilon - model)

1. Superfluid transition? $\rightarrow \left| \left\langle S_i^+ \right\rangle \right| \downarrow 0$

Condensate: propagation of transverse fields!

Large N: like directed polymer! (Sol: Derrida+Spohn)

← fractal condensate!

P(y)

SI transition

$$H = -\frac{t}{N} \mathop{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{a}_{\langle i,j \rangle} S_i^z J_{ij} S_j^z$$
 (J – model)

$$\leftrightarrow$$
 non-glassy model: $H = -\frac{t}{N} \mathring{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathring{a}_{\langle i,j \rangle} e_i S_i^z$ (ε – model)

1. Superfluid transition? $\rightarrow \left| \left\langle S_i^+ \right\rangle \right| \downarrow 0$

Condensate: propagation of transverse fields!

Large N: like directed polymer problem!

(J):
$$C_{bdy} = \mathring{\text{a}} \tilde{O} \frac{t}{Ny_i} = Z_{pol}^{eff}$$
 NOT only rare paths! \leftrightarrow reduced fractality in finite dimensions?

finite dimensions?

Quantum transport at the glassy SI transition P(y)

$$H = -\frac{t}{N} \mathop{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{a}_{\langle i,j \rangle} S_i^z J_{ij} S_j^z$$
 (J – model)

$$(J-model)$$

$$H = -\frac{t}{N} \mathop{\mathring{a}}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{\mathring{a}}_{\langle i,j \rangle} \mathcal{C}_i S_i^z$$
 (\varepsilon - model)

2. Localization of spin flip excitations in the insulator?

Quantum transport at the glassy P(y) SI transition

P(y)

0.12

0.10

0.08

0.06

0.04

0.02

5

$$H = -\frac{t}{N} \mathop{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{a}_{\langle i,j \rangle} S_i^z J_{ij} S_j^z$$
 (J – model)

 \leftrightarrow non-glassy model: $H = -\frac{t}{N} \mathring{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathring{a}_{\langle i,j \rangle} e_i S_i^z$ (ε – model)

2. Localization of spin flip excitations in the insulator?

(E):
$$C^{(2)}(W) = \sum_{\text{paths } P} \prod_{i \in P} \left(\frac{t \operatorname{sgn}(e_i)}{N(e_i - W)} \right)^2$$

$$C^{(2)}(W_{mob}) = 1$$
Mobility edge

P(y)

SI transition

$$H = -\frac{t}{N} \mathop{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{a}_{\langle i,j \rangle} S_i^z J_{ij} S_j^z$$
 (J – model)

$$\leftrightarrow$$
 non-glassy model: $H = -\frac{t}{N} \mathring{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathring{a}_{\langle i,j \rangle} e_i S_i^z$ (ε – model)

2. Localization of spin flip excitations in the insulator?

(E):
$$C^{(2)}(W) = \sum_{\text{paths } P} \prod_{i \in P} \left(\frac{t \operatorname{sgn}(e_i)}{N(e_i - W)} \right)^2$$

$$C^{(2)}(W_{mob}) = 1$$
Mobility edge

Rare paths dominate.

- NO mobility edge in the insulator!
- "Many body localized bosons"!(?)

Quantum transport at the glassy SI transition P(y)

$$H = -\frac{t}{N} \mathop{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{a}_{\langle i,j \rangle} S_i^z J_{ij} S_j^z$$
 (J – model)

$$\leftrightarrow$$
 non-glassy model: $H = -\frac{t}{N} \mathring{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathring{a}_{\langle i,j \rangle} e_i S_i^z$ (\varepsilon - model)

2. Localization of spin flip excitations in the insulator?

(J):
$$C^{(2)}(W) = \sum_{\text{paths } P} \prod_{i \in P} \left(\frac{t \operatorname{sgn}(y_i)}{N(y_i - W)} \right)^2$$

$$C^{(2)}(W_{mob}) = 1$$
Mobility edge

P(y)

SI transition

$$H = -\frac{t}{N} \mathop{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathop{a}_{\langle i,j \rangle} S_i^z J_{ij} S_j^z$$
 (J – model)

$$\leftrightarrow$$
 non-glassy model: $H = -\frac{t}{N} \mathring{a}_{\langle i,j \rangle} \left(S_i^+ S_j^- + \text{h.c.} \right) - \mathring{a}_{\langle i,j \rangle} e_i S_i^z$ (ε – model)

2. Localization of spin flip excitations in the insulator?

(J):
$$C^{(2)}(W) = \sum_{\text{paths } P} \prod_{i \in P} \left(\frac{t \operatorname{sgn}(y_i)}{N(y_i - W)} \right)^2$$

$$C^{(2)}(W_{mob}) = 1$$
Mobility edge

Rare paths dominate. - Due to "Coulomb" gap: THERE IS a mobility edge! $\omega_{mob} = 0.45/\log(N)$

Conclusions

- Locator expansion for interacting systems in random fields: Interference at low-energy always constructive.
- ξ of bosons shrinks under a B field
 → strong positive magnetoresistance, opposite to fermions.
- $\xi(\omega)$ decreases with energy (where controllable).

- Not so if Coulomb gap counteracts this:
 - \rightarrow Finite mobility edge at low E in Bose glass (d>2 but d = 2??)
- But even so: Superfluid emerges without the closing of a mobility gap in general.
- Work in progress: finite T, higher order expansion, resummation