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Outline

• Intro: Anderson localization in interacting systems

• Strong localization of disordered bosons? 

Locator expansion for bosons

• Magnetoresistance of fermionic versus

bosonic insulators? 

Strong, opposite effect due to quantum statistics

Structure of localized wavefunctions

• Localization and superfluid transition?

Mobility edges in Bose insulators?



“Dirty bosons”

• Superconductors with preformed pairs

* Exp. systems: InOx, PbTe, and others 

* Models: - negative U Hubbard model 

- Ma&Lee/Anderson pseudospin model

• Granular superconductors / Josephson junction arrays

• Cold bosonic atoms (+disorder potential)

• Helium in disordered media (e.g. porous silica)

• Disordered quantum spin systems



Localization: single/many particle

Delocalization transition

(insulator → metal)

= Percolation of resonances

Resonance = Δε < hopping t

Anderson localization (1958) [single particle]

H = eini - t ci
+c j + h.c.( )
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Localization: single/many particle

H = eini - t ci
+c j + h.c.( )

i, j

å
i

å

Anderson localization (1958) [single particle]

Mobility edge: separates delocalized (higher DOS) from localized states (low 

DOS) 



Localization: single/many particle

Anderson localization [many particle]

H = eana - Vabgd ca
+cb

+cg cd + h.c.( )
a ,b ,g ,d

å
a
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Interaction (short range) –

→ hopping in Fock space
Disorder-localized 

single particle 

levels

(Anderson, Fleishman 80’s, 

Altshuler, Gefen, Kamenev, Levitov 90’s

Aleiner, Basko, Mirlin, Gornyi… 2005)



Phases and phenomena I

Non-interacting fermions + NOTHING ELSE 

(no bath of any sort: no phonons, no EM fields)

Transport as a function of 

temperature and disorder?



Phases and phenomena I

Δ

T

0

All states localized (on a lattice):

No transport, no diffusion

D(T) = σ(T) = 0

No arrow of time

Non-interacting fermions + NOTHING ELSE 

(no bath of any sort: no phonons, no EM fields)

Δc

(some) extended 

states

Finite transport

(metallic or 

activated)



Phases and phenomena I

Δ

T

0

All states localized (on a lattice):

No transport, no diffusion

D(T) = σ(T) = 0

No arrow of time

Non-interacting fermions + NOTHING ELSE 

(no bath of any sort: no phonons, no EM fields)

Δc

(some) extended 

states

Finite transport

(metallic or 

activated)

Role of dimension:      = 0 in d=1,2 (without special symmetries)

FULLY UNDERSTOOD! (for physicists)

Δc



Phases and phenomena II

Δ

T

0

No transport, no diffusion

D(T) = σ(T) = 0

No arrow of time:

Quantum non-ergodic phase

Interacting particles of finite density + NOTHING ELSE 

(no bath of any sort: no phonons, no EM fields)

Finite transport

(metallic or 

activated)

Delocalized

Ergodicity!

HARDLY ANY ASPECT IS FULLY UNDERSTOOD!

Berkovits, Shklovskii; V. Oganesyan, D. Huse

Basko, Aleiner, Altshuler, 
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Role of dimension? Can a finite T transition occur in high d??



Phases and phenomena II
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Quantum non-ergodic phase

Interacting particles of finite density + NOTHING ELSE 
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Finite transport
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?

Non-ergodic

but diffusive?

Number and nature of the transitions??

?



Phases and phenomena II
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Phases and phenomena II

Δ

E

0

Interacting particles of finite density + NOTHING ELSE 

(no bath of any sort: no phonons, no EM fields)

Delocalized

Excitations at 

E=0

[superfluid or 
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Phases and phenomena II

Δ

E
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Finite excitations 

above GS?

localized
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1. Mobility edge at finite E 

closing at MIT/SIT?

Delocalized

Excitations at 

E=0 in the GS

[superfluid or 

metal]



Phases and phenomena II

Δ

E

0

Interacting particles of finite density + NOTHING ELSE 

(no bath of any sort: no phonons, no EM fields)

HARDLY ANY ASPECT IS FULLY UNDERSTOOD!

Berkovits, Shklovskii; V. Oganesyan, D. Huse

Finite excitations 

above GS?

localized

deloc

2. Mobility edge at finite E, 

non-closing?

Delocalized

Excitations at 

E=0 in the GS

[superfluid or 

metal]



Phases and phenomena II

Δ

E

0

Interacting particles of finite density + NOTHING ELSE 

(no bath of any sort: no phonons, no EM fields)

HARDLY ANY ASPECT IS FULLY UNDERSTOOD!

Berkovits, Shklovskii; V. Oganesyan, D. Huse

Finite excitations 

above GS?

localized

3. Mobility edge E ~ Volume,  

finite T transition

Delocalized

Excitations at 

E=0 in the GS

[superfluid or 

metal]



Phases and phenomena II

Δ

T

0

No transport, no diffusion

D(T) = σ(T) = 0

Interacting particles of finite density + NOTHING ELSE 

(no bath of any sort: no phonons, no EM fields)

Finite transport

(metallic or 

activated)

Delocalized

HARDLY ANY ASPECT IS FULLY UNDERSTOOD!

This talk: approach from deep insulator at T = 0

Result for bosons: scenario 2 or 3 are found!



Questions

• Effects of quantum statistics in insulators?

• Strong localization of interacting disordered   

systems (especially: dirty bosons)? 

Locator expansion (applicability to many other systems)

• Approach to delocalization (superfluid   

transition)?



Disordered insulators: 

Simplest model: hopping+disorder

Giant positive magnetoresistance and localization in bosonic insulators
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We study the strong localization of disordered bosons, motivated by recent experiments that

suggest a bosonic superconductor-insulator transition instrongly disordered films. In the insulator,
unlike for fermions, nearly all scattering paths between low-energy sites contribute constructively

interfering amplitudes to hopping matrix elements. The localization length of bosonic excitations

shrinks as the constructive interference is suppressed by amagnetic field, entailing a giant positive
magnetoresistance, opposite to the analogous effect in strongly localized fermions. Inzero field, both
the localization length and the density of states are predicted to increase with decreasing energy.

Applied to hard core bosons on the Bethe lattice, our method shows that the superfluid emerges

out of an insulator without the closing of a mobility gap.

PACS numbers: 73.50.Jt, 74.81.Bd, 05.30.Jp, 72.20.Ee, 71.55.Jv

H=

i

εini −

i,j

tij(b
†
jbi+b

†
ibj), ni =b

†
ibi. (1)

[bi,bj] =0, [b
†
i,bj] =δij(2ni − 1) (2)

{bi,bj}=0, , {b
†
i,bj}=δij (3)

tij →te− iφij (4)

GR
i,0(t− t )=−iΘ(t− t ) [bi(t),b

†
0(t )]B . (5)

i
d

dt
GR
i,0(t− t ) = δ(t− t )δi,0 [b0(0),b

†
0(0)]B (6)

−iΘ(t− t ) [[bi(t),H],b
†
0(t )]B .

[bi(t),H] = εibi(t)− (−1)Bni(t)

j∈ ∂i

tijbj(t), (7)

(−1)ni(t) ≈ sign(εi) (8)

GR
i,0(ω)=

∞

−∞

GR
i,0(t)e

iωtdt (9)

ξ(ω)− 1 =− lim
ri→∞

ln[|GR
i,0(ω)/G

R
0,0(ω)|]/|ri − r0| (10)

GR
i,0(ω)

GR
0,0(ω)

=

P ={j0=0,...,j =i} p=1

tjp− 1 ,jp [sgn(εjp )]
B

εjp − ω

The difference is simple to understand. In order to

observea particle at site i, in response to inserting apar-

ticle at 0, all the nP ≡ j=1 nj ≈ j=1(1− sgn(εj))/2

particles onthepathP havetomove to thenextnegative

energy site closer to site i, cf. Fig. ??. Upon removing

the particle at site i, a ring exchange of nP particles

has been carried out in the ground state, which causes

the signdifference (−1)nP betweenbosonicandfermionic

amplitudes. This difference has important consequences

and will shed new light not only on strong localized in-

sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy

excitations ω→ 0, in the absence of a magnetic field,

all paths contribute with apositive amplitude and there-

fore interfere constructively, unlike fermions. This differ-

ence manifests itself in completely opposite response to

amagnetic field. It is well known that hopping fermions

experience a negative MR due to the suppression of de-

structive interference [3, 5]. In contrast, we find the MR

of bosons to be strongly positive in the hopping regime

due to the phases in the hoppingamplitudes. Indeed, the

latter reduce the constructive interference of paths that

connect low energy sites relevant for transport.

The replica scaling arguments of Ref. [4], mapping the

forward scattering problemto directed polymers, should

apply also to the bosonic case. Here it predicts a neg-

ative perturbative correction to the hopping probability

scaling asBr
3/2

hop, where rhop is the hopping distance. At

larger magnetic field, one finds a reduction of the boson

localization length, whose effect on the MR is exponen-

tially amplified in the hopping regime.

We believe that the opposite interference behavior of

bosons and fermions is key to understanding the giant

MRpeak in disordered films with remnant superconduc-

tive pairing. As long as the magnetic field does not
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FIG. 1: In the configuration on the right, 2n (n= 4) paths

contribute to the Green’s function GR
ij between low energy

sites i,j. We compute the transmission amplitudes inn’th or-

der perturbation theory, summing over all paths. The sign of

fermion amplitudes depends on the number of occupied sites

on the path, whereas the paths for bosonic low energy excita-

tions always come with positive amplitudes. Amagnetic field
suppresses their constructive interference, leading to positive

magnetoresistance, while fermions display the opposite effect.

by a homogeneous tunneling amplitude tij = t between

nearest neighbors,

H=

i

εini −

i,j

tij(b
†
jbi+b

†
ibj), ni =b

†
ibi. (1)

b
†
i, bi are creation and annihilation operators of fermions

or hard core bosons, resp. They satisfy the commutation

relations [bi, bj]B = 0, [b
†
i , bj]B = δij[1 − 2B(1 − ni)],

where [.,.]B is the commutator or the anticommutator

for bosons (B = 1) or fermions (B = 0), resp. In the

presenceof amagneticfield, thehoppingacquiresaphase

tij =te
− iφij , the sumof phases aroundaplaquette being

proportional to the flux threading it.

We focus on the strongly insulating regime t W,

where hopping transport is expected at low tempera-

tures. Akeyelement characterizingdisordered insulators

is the localization length, ξ. For non-interacting fermions

it is well-defined as the (log-averaged) inverse spatial de-

cay rate of single particle wavefunction amplitudes. In

contrast, hard core bosons are inherently interacting, re-

quiring a generalization of this single particle concept.

In the limit t=0single particle excitations correspond

totheadditionor removal of aparticleongivensites. For

small hopping t/W 1, these excitations adiabatically

deform into dressed quasiparticle excitations, which are

still well localized in space. In fact, one may expect that

all low energy excitations remain discrete and localized

in this limit [13, 23, 24]. The spatial properties of such

a quasiparticle-excitations are best captured by the re-

tardedGreen’s function,

GR
i,0(t− t )=−iΘ(t− t ) [bi(t), b

†
0(t )]B . (2)

It describes the amplitude, at site i and after time t,

of the excitation created by adding a particle at site 0.

Here, A(t) =eiHtA(0)e− iHt, as usual.

As in early studies of the Hubbard model [31, 32], we

consider the equation of motion of the Green’s function

i
d

dt
GR
i,0(t− t ) = δ(t− t )δi,0 [b0(0), b

†
0(0)]B (3)

−iΘ(t− t ) [[bi(t),H], b
†
0(t )]B .

This is the starting point for a locator expansion in pow-

ers of the hopping t/W [2]. It is easy to show that

[bi(t),H] = εibi(t)− (−1)Bni(t)

j∈ ∂i

tijbj(t), (4)

where the sum runs over the neighbors of i. We are in-

terested in the decay of the correlation function at large

distance. In analogy to the fermionic (single particle)

study by Nguyen et al. [3], we may restrict ourselves to

forwardscatteringpaths to leadingorder int/W. Hence,

we retain only the neighbors j, which are closest to 0,

cf. Fig. 1. Furthermore, to the same order, we may

neglect the time dependence of ni(t) and approximate

(−1)ni(t) ≈ sign(εi)+O((t/W)2).

To characterize the spatial decay of an excitation of

given energy, it is preferable to work in frequency space,

GR
i,0(ω)=

∞

−∞

GR
i,0(t)e

iωtdt, (5)

and to define the boson localization length as the (log-

averaged) inverse decay rate ofGR(ω) with distance,

ξ(ω)− 1 =− lim
ri→∞

ln[|GR
i,0(ω)/G

R
0,0(ω)|]/|ri − r0|. (6)

As we will see below, for bosons this decay rate has a

strongfrequencydependence, unlike fermions . Note that

the transition to the superfluid is signalled by the diver-

gence of ξ(ω= 0), where the bosons condense into a

delocalized state forming at the chemical potential.

To leading order in t the above equations furnish a

simple recursion relation for the Green’s functions at in-

creasingdistance. Upon iteration, the forwardscattering

approximation yields the final result as a sum over all

shortest paths P (of length ) between the sites 0 and i,

GR
i,0(ω)

GR
0,0(ω)

=

P ={j0=0,...,j =i} p=1

tjp− 1 ,jp [sgn(εjp )]
B

εjp − ω
. (7)

Settingω= ε0 we find the ”wavefunction” of the quasi-

particle excitation, which is adiabatically connected to

the boson insertion/removal at site 0 in the non-hopping

limit (by extracting the residue of the correspondingpole

inGR). The forwardscatteringapproximation, themany

body events on a path and their interference are illus-

trated in Fig. 1.

For fermions, Eq. (7) reproduces the result of the single

particle locator expansion [2, 3]. Hard core bosons differ

Fermions P. W. Anderson (1958)

…..

Model 
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The difference is simple to understand. In order to

observea particle at site i, in response to inserting apar-

ticle at 0, all the nP ≡ j=1 nj ≈ j=1(1− sgn(εj))/2

particles onthepathP havetomoveto thenextnegative

energy site closer to site i, cf. Fig. ??. Upon removing

the particle at site i, a ring exchange of nP particles

has been carried out in the ground state, which causes

the signdifference (−1)nP betweenbosonicandfermionic

amplitudes. This difference has important consequences

and will shed new light not only on strong localized in-

sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy

excitations ω→ 0, in the absence of a magnetic field,

all paths contribute with a positive amplitude and there-

fore interfere constructively, unlike fermions. This differ-

ence manifests itself in completely opposite response to

amagnetic field. It is well known that hopping fermions

experience a negative MR due to the suppression of de-

structive interference [3, 5]. In contrast, we find the MR

of bosons to be strongly positive in the hopping regime

due to thephases in the hoppingamplitudes. Indeed, the

latter reduce the constructive interference of paths that

connect low energy sites relevant for transport.

The replica scaling arguments of Ref. [4], mapping the

forward scattering problemto directed polymers, should

apply also to the bosonic case. Here it predicts a neg-

ative perturbative correction to the hopping probability

scaling asBr
3/2

hop, where rhop is the hopping distance. At

larger magnetic field, one finds a reduction of the boson

localization length, whose effect on the MR is exponen-

tially amplified in the hopping regime.

We believe that the opposite interference behavior of

bosons and fermions is key to understanding the giant

MRpeak in disordered films with remnant superconduc-

tive pairing. As long as the magnetic field does not
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FIG. 1: In the configuration on the right, 2n (n= 4) paths

contribute to the Green’s function GR
ij between low energy

sites i,j. We compute the transmission amplitudes inn’th or-

der perturbation theory, summing over all paths. The sign of

fermion amplitudes depends on the number of occupied sites

on the path, whereas the paths for bosonic low energy excita-

tions always come with positive amplitudes. Amagnetic field
suppresses their constructive interference, leading to positive

magnetoresistance, while fermions display the opposite effect.
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all low energy excitations remain discrete and localized

in this limit [13, 23, 24]. The spatial properties of such

a quasiparticle-excitations are best captured by the re-

tardedGreen’s function,

GR
i,0(t− t )=−iΘ(t− t ) [bi(t), b

†
0(t )]B . (2)

It describes the amplitude, at site i and after time t,

of the excitation created by adding a particle at site 0.

Here, A(t) =eiHtA(0)e− iHt, as usual.

As in early studies of the Hubbard model [31, 32], we

consider the equation of motion of the Green’s function

i
d

dt
GR
i,0(t− t ) = δ(t− t )δi,0 [b0(0), b

†
0(0)]B (3)

−iΘ(t− t ) [[bi(t),H], b
†
0(t )]B .

This is the starting point for a locator expansion in pow-

ers of the hopping t/W [2]. It is easy to show that

[bi(t),H] = εibi(t)− (−1)Bni(t)

j∈ ∂i

tijbj(t), (4)

where the sum runs over the neighbors of i. We are in-

terested in the decay of the correlation function at large

distance. In analogy to the fermionic (single particle)

study by Nguyen et al. [3], we may restrict ourselves to

forwardscatteringpaths to leadingorder int/W. Hence,

we retain only the neighbors j, which are closest to 0,

cf. Fig. 1. Furthermore, to the same order, we may

neglect the time dependence of ni(t) and approximate

(−1)ni(t) ≈ sign(εi)+O((t/W)2).

To characterize the spatial decay of an excitation of

given energy, it is preferable to work in frequency space,

GR
i,0(ω)=

∞

−∞

GR
i,0(t)e

iωtdt, (5)

and to define the boson localization length as the (log-

averaged) inverse decay rate ofGR(ω) with distance,

ξ(ω)− 1 =− lim
ri→∞

ln[|GR
i,0(ω)/G

R
0,0(ω)|]/|ri − r0|. (6)

As we will see below, for bosons this decay rate has a

strongfrequencydependence, unlike fermions . Note that

the transition to the superfluid is signalled by the diver-

gence of ξ(ω= 0), where the bosons condense into a

delocalized state forming at the chemical potential.

To leading order in t the above equations furnish a

simple recursion relation for the Green’s functions at in-

creasingdistance. Upon iteration, the forwardscattering

approximation yields the final result as a sum over all

shortest paths P (of length ) between the sites 0 and i,

GR
i,0(ω)

GR
0,0(ω)

=

P ={j0=0,...,j =i} p=1

tjp− 1 ,jp [sgn(εjp )]
B

εjp − ω
. (7)

Settingω= ε0 we find the ”wavefunction” of the quasi-

particle excitation, which is adiabatically connected to

the boson insertion/removal at site 0 in the non-hopping

limit (by extracting the residue of the correspondingpole

inGR). The forwardscatteringapproximation, themany

body events on a path and their interference are illus-

trated in Fig. 1.

For fermions, Eq. (7) reproduces the result of the single

particle locator expansion [2, 3]. Hard core bosons differ
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H=

i

εini −

i,j

tij(b
†
jbi+b

†
ibj), ni =b

†
ibi. (1)

[bi, bj] =0, [b
†
i, bj] =δij(2ni − 1) (2)

{bi, bj}=0, , {b
†
i, bj}=δij (3)

tij →te− iφij (4)

GR
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†
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†
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[bi(t),H] = εibi(t)− (−1)Bni(t)

j∈ ∂i

tijbj(t), (8)

(−1)ni(t) ≈ sign(εi) (9)

GR
i,0(ω)=

∞

−∞

GR
i,0(t)e

iωtdt (10)

ξ(ω)− 1 =− lim
ri→∞

ln[|GR
i,0(ω)/G

R
0,0(ω)|]/|ri − r0| (11)

GR
i,0(ω)

GR
0,0(ω)

=

P ={j0=0,...,j =i} p=1

tjp− 1 ,jp [sgn(εjp )]
B

εjp − ω

The difference is simple to understand. In order to

observea particle at site i, in response to inserting apar-

ticle at 0, all the nP ≡ j=1 nj ≈ j=1(1− sgn(εj))/2

particles onthepathP havetomove to thenext negative

energy site closer to site i, cf. Fig. ??. Upon removing

the particle at site i, a ring exchange of nP particles

has been carried out in the ground state, which causes

the signdifference (−1)nP betweenbosonicandfermionic

amplitudes. This difference has important consequences

and will shed new light not only on strong localized in-

sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy

excitations ω→ 0, in the absence of a magnetic field,

all paths contributewith a positive amplitude and there-

fore interfere constructively, unlike fermions. This differ-

ence manifests itself in completely opposite response to

amagnetic field. It is well known that hopping fermions

experience a negative MR due to the suppression of de-

structive interference [3, 5]. In contrast, we find the MR

of bosons to be strongly positive in the hopping regime

due to the phases in the hoppingamplitudes. Indeed, the

latter reduce the constructive interference of paths that

connect low energy sites relevant for transport.

The replica scaling arguments of Ref. [4], mapping the

forward scattering problemto directed polymers, should

apply also to the bosonic case. Here it predicts a neg-

ative perturbative correction to the hopping probability

scaling asBr
3/2

hop, where rhop is the hopping distance. At

larger magnetic field, one finds a reduction of the boson

localization length, whose effect on the MR is exponen-

tially amplified in the hopping regime.
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The difference is simple to understand. In order to

observea particle at site i, in response to inserting apar-

ticle at 0, all the nP ≡ j=1 nj ≈ j=1(1− sgn(εj))/2

particles onthepathP havetomoveto thenextnegative

energy site closer to site i, cf. Fig. ??. Upon removing

the particle at site i, a ring exchange of nP particles

has been carried out in the ground state, which causes

the signdifference (−1)nP betweenbosonicandfermionic

amplitudes. This difference has important consequences

and will shed new light not only on strong localized in-

sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy

excitations ω→ 0, in the absence of a magnetic field,

all paths contribute with a positive amplitude and there-

fore interfere constructively, unlike fermions. This differ-

ence manifests itself in completely opposite response to

amagnetic field. It is well known that hopping fermions

experience a negative MR due to the suppression of de-

structive interference [3, 5]. In contrast, we find the MR

of bosons to be strongly positive in the hopping regime

due to the phases in the hoppingamplitudes. Indeed, the

latter reduce the constructive interference of paths that

connect low energy sites relevant for transport.

The replica scaling arguments of Ref. [4], mapping the

forward scattering problemto directed polymers, should

apply also to the bosonic case. Here it predicts a neg-

ative perturbative correction to the hopping probability

scaling asBr
3/2

hop, where rhop is the hopping distance. At

larger magnetic field, one finds a reduction of the boson

localization length, whose effect on the MR is exponen-

tially amplified in the hopping regime.
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FIG. 1: In the configuration on the right, 2n (n= 4) paths

contribute to the Green’s function GR
ij between low energy

sites i,j. We compute the transmission amplitudes inn’th or-

der perturbation theory, summing over all paths. The sign of

fermion amplitudes depends on the number of occupied sites

on the path, whereas the paths for bosonic low energy excita-

tions always come with positive amplitudes. Amagnetic field
suppresses their constructive interference, leading to positive

magnetoresistance, while fermions display the opposite effect.

by a homogeneous tunneling amplitude tij = t between

nearest neighbors,

H=

i

εini −

i,j

tij(b
†
jbi+b

†
ibj), ni =b

†
ibi. (1)

b
†
i, bi are creation and annihilation operators of fermions

or hard core bosons, resp. They satisfy the commutation

relations [bi, bj]B = 0, [b
†
i , bj]B = δij[1 − 2B(1 − ni)],

where [.,.]B is the commutator or the anticommutator

for bosons (B = 1) or fermions (B = 0), resp. In the

presenceof amagneticfield, thehoppingacquiresaphase

tij =te
− iφij , the sumof phases aroundaplaquette being

proportional to the flux threading it.

We focus on the strongly insulating regime t W,

where hopping transport is expected at low tempera-

tures. Akeyelement characterizingdisordered insulators

is the localization length, ξ. For non-interacting fermions

it is well-defined as the (log-averaged) inverse spatial de-

cay rate of single particle wavefunction amplitudes. In

contrast, hard core bosons are inherently interacting, re-

quiring a generalization of this single particle concept.

In the limit t=0single particle excitations correspond

to theadditionor removal of aparticleongivensites. For

small hopping t/W 1, these excitations adiabatically

deform into dressed quasiparticle excitations, which are

still well localized in space. In fact, onemay expect that

all low energy excitations remain discrete and localized

in this limit [13, 23, 24]. The spatial properties of such

a quasiparticle-excitations are best captured by the re-

tardedGreen’s function,

GR
i,0(t− t )=−iΘ(t− t ) [bi(t), b

†
0(t )]B . (2)

It describes the amplitude, at site i and after time t,

of the excitation created by adding a particle at site 0.

Here, A(t) =eiHtA(0)e− iHt, as usual.

As in early studies of the Hubbard model [31, 32], we

consider the equation of motion of the Green’s function

i
d

dt
GR
i,0(t− t ) = δ(t− t )δi,0 [b0(0), b

†
0(0)]B (3)

−iΘ(t− t ) [[bi(t),H], b
†
0(t )]B .

This is the starting point for a locator expansion in pow-

ers of the hopping t/W [2]. It is easy to show that

[bi(t),H] = εibi(t)− (−1)Bni(t)

j∈ ∂i

tijbj(t), (4)

where the sum runs over the neighbors of i. We are in-

terested in the decay of the correlation function at large

distance. In analogy to the fermionic (single particle)

study by Nguyen et al. [3], we may restrict ourselves to

forwardscatteringpaths to leadingorder int/W. Hence,

we retain only the neighbors j, which are closest to 0,

cf. Fig. 1. Furthermore, to the same order, we may

neglect the time dependence of ni(t) and approximate

(−1)ni(t) ≈ sign(εi)+O((t/W)2).

To characterize the spatial decay of an excitation of

given energy, it is preferable to work in frequency space,

GR
i,0(ω)=

∞

−∞

GR
i,0(t)e

iωtdt, (5)

and to define the boson localization length as the (log-

averaged) inverse decay rate ofGR(ω) with distance,

ξ(ω)− 1 =− lim
ri→∞

ln[|GR
i,0(ω)/G

R
0,0(ω)|]/|ri − r0|. (6)

As we will see below, for bosons this decay rate has a

strongfrequencydependence, unlike fermions . Note that

the transition to the superfluid is signalled by the diver-

gence of ξ(ω= 0), where the bosons condense into a

delocalized state forming at the chemical potential.

To leading order in t the above equations furnish a

simple recursion relation for the Green’s functions at in-

creasingdistance. Upon iteration, the forwardscattering

approximation yields the final result as a sum over all

shortest paths P (of length ) between the sites 0 and i,

GR
i,0(ω)

GR
0,0(ω)

=

P ={j0=0,...,j =i} p=1

tjp− 1 ,jp [sgn(εjp )]
B

εjp − ω
. (7)

Settingω= ε0 we find the ”wavefunction” of the quasi-

particle excitation, which is adiabatically connected to

the boson insertion/removal at site 0 in the non-hopping

limit (by extracting the residue of the correspondingpole

inGR). The forwardscatteringapproximation, themany

body events on a path and their interference are illus-

trated in Fig. 1.

For fermions, Eq. (7) reproduces the result of the single

particle locator expansion [2, 3]. Hard core bosons differ
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d

dt
GR
i,0(t− t ) = δ(t− t )δi,0 [b0(0), b

†
0(0)]B (7)

−iΘ(t− t ) [[bi(t),H], b
†
0(t )]B .

[bi(t),H] = εibi(t)− (−1)Bni(t)

j∈ ∂i

tijbj(t), (8)

(−1)ni(t) ≈ sign(εi) (9)

GR
i,0(ω)=

∞

−∞

GR
i,0(t)e

iωtdt (10)

ξ(ω)− 1 =− lim
ri→∞

ln[|GR
i,0(ω)/G

R
0,0(ω)|]/|ri − r0| (11)

GR
i,0(ω)

GR
0,0(ω)

=

P ={j0=0,...,j =i} p=1

tjp− 1 ,jp [sgn(εjp )]
B

εjp − ω

The difference is simple to understand. In order to

observea particle at site i, in response to inserting apar-

ticle at 0, all the nP ≡ j=1 nj ≈ j=1(1− sgn(εj))/2

particles onthepathP havetomove to thenext negative

energy site closer to site i, cf. Fig. ??. Upon removing

the particle at site i, a ring exchange of nP particles

has been carried out in the ground state, which causes

the signdifference (−1)nP betweenbosonicandfermionic

amplitudes. This difference has important consequences

and will shed new light not only on strong localized in-

sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy

excitations ω→ 0, in the absence of a magnetic field,

all paths contributewith a positive amplitude and there-

fore interfere constructively, unlike fermions. This differ-

ence manifests itself in completely opposite response to

amagnetic field. It is well known that hopping fermions

experience a negative MR due to the suppression of de-

structive interference [3, 5]. In contrast, we find the MR

of bosons to be strongly positive in the hopping regime

due to the phases in the hoppingamplitudes. Indeed, the

latter reduce the constructive interference of paths that

connect low energy sites relevant for transport.

The replica scaling arguments of Ref. [4], mapping the

forward scattering problemto directed polymers, should

apply also to the bosonic case. Here it predicts a neg-

ative perturbative correction to the hopping probability

scaling asBr
3/2

hop, where rhop is the hopping distance. At

larger magnetic field, one finds a reduction of the boson

localization length, whose effect on the MR is exponen-

tially amplified in the hopping regime.
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observea particle at site i, in response to inserting apar-
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has been carried out in the ground state, which causes
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Most importantly, Eq. (??) shows that for low energy

excitations ω→ 0, in the absence of a magnetic field,

all paths contribute with a positive amplitude and there-

fore interfere constructively, unlike fermions. This differ-

ence manifests itself in completely opposite response to

amagnetic field. It is well known that hopping fermions

experience a negative MR due to the suppression of de-

structive interference [3, 5]. In contrast, we find the MR

of bosons to be strongly positive in the hopping regime

due to the phases in the hoppingamplitudes. Indeed, the

latter reduce the constructive interference of paths that

connect low energy sites relevant for transport.

The replica scaling arguments of Ref. [4], mapping the

forward scattering problemto directed polymers, should
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ative perturbative correction to the hopping probability
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particles on the pathP havetomove to the next negative

J. Hubbard (1963):
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The difference is simple to understand. In order to

observe a particle at site i, in response to inserting apar-

ticle at 0, all the nP ≡ j=1 nj ≈ j=1(1− sgn(εj))/2

particles onthepathP havetomove to thenext negative

energy site closer to site i, cf. Fig. ??. Upon removing

the particle at site i, a ring exchange of nP particles

has been carried out in the ground state, which causes

the signdifference (−1)nP betweenbosonicandfermionic

amplitudes. This difference has important consequences

and will shed new light not only on strong localized in-

sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy

excitations ω→ 0, in the absence of a magnetic field,

all paths contribute with a positive amplitude and there-

fore interfere constructively, unlike fermions. This differ-

ence manifests itself in completely opposite response to

amagnetic field. It is well known that hopping fermions

experience a negative MR due to the suppression of de-

structive interference [3, 5]. In contrast, we find the MR

of bosons to be strongly positive in the hopping regime

due to the phases in the hoppingamplitudes. Indeed, the

latter reduce the constructive interference of paths that

connect low energy sites relevant for transport.
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amplitudes. This difference has important consequences

and will shed new light not only on strong localized in-
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Spivak, Shklovskii, Nguyen (1983)
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the particle at site i, a ring exchange of nP particles

has been carried out in the ground state, which causes
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amplitudes. This difference has important consequences

and will shed new light not only on strong localized in-

sulators, but also on the approach to delocalization.
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all paths contribute with a positive amplitude and there-
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ence manifests itself in completely opposite response to
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experience a negative MR due to the suppression of de-

structive interference [3, 5]. In contrast, we find the MR

of bosons to be strongly positive in the hopping regime

due to the phases in the hoppingamplitudes. Indeed, the

latter reduce the constructive interference of paths that

connect low energy sites relevant for transport.
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ticle at 0, all the nP ≡ j=1 nj ≈ j=1(1− sgn(εj))/2

particles onthepathP havetomove to thenextnegative
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the particle at site i, a ring exchange of nP particles

has been carried out in the ground state, which causes

the signdifference (−1)nP betweenbosonicandfermionic

amplitudes. This difference has important consequences

and will shed new light not only on strong localized in-

sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy

excitations ω→ 0, in the absence of a magnetic field,

all paths contribute with a positive amplitude and there-

fore interfere constructively, unlike fermions. This differ-

ence manifests itself in completely opposite response to

amagnetic field. It is well known that hopping fermions

experience a negative MR due to the suppression of de-

structive interference [3, 5]. In contrast, we find the MR

of bosons to be strongly positive in the hopping regime

due to the phases in the hoppingamplitudes. Indeed, the

latter reduce the constructive interference of paths that

connect low energy sites relevant for transport.

0 i0 i



Locator expansion and forward 

scattering

Giant positive magnetoresistance and localization in bosonic insulators

Markus Müller1

1The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy

(Dated: September 4, 2011)

We study the strong localization of disordered bosons, motivated by recent experiments that

suggest a bosonic superconductor-insulator transition instrongly disordered films. In the insulator,
unlike for fermions, nearly all scattering paths between low-energy sites contribute constructively

interfering amplitudes to hopping matrix elements. The localization length of bosonic excitations

shrinks as the constructive interference is suppressed by amagnetic field, entailing a giant positive
magnetoresistance, opposite to the analogous effect in strongly localized fermions. In zero field, both
the localization length and the density of states are predicted to increase with decreasing energy.

Applied to hard core bosons on the Bethe lattice, our method shows that the superfluid emerges

out of an insulator without the closing of a mobility gap.

PACS numbers: 73.50.Jt, 74.81.Bd, 05.30.Jp, 72.20.Ee, 71.55.Jv

H=

i

εini −

i,j

tij(b
†
jbi+b

†
ibj), ni =b

†
ibi. (1)

[bi, bj] =0, [b
†
i , bj] =δij(2ni − 1) (2)

{bi, bj}=0, , {b
†
i , bj}=δij (3)

tij →te− iφij (4)

GR
i,0(t− t ) =−iΘ(t− t ) [bi(t), b

†
0(t )] (5)

GR
i,0(t− t ) =−iΘ(t− t ) {bi(t), b

†
0(t )} (6)

i
d

dt
GR
i,0(t− t ) = δ(t− t )δi,0 [b0(0), b

†
0(0)] (7)

−iΘ(t− t ) [[bi(t),H], b
†
0(t )] .

i
d

dt
− εi GR

i,0(t) =δ(t)δi,0(1− 2 n0 )

+iΘ(t− t ) (−1)ni(t)

j∈ ∂i

tijbj(t), b
†
0(t )

≈ δ(t)δi,0(1− 2 n0 )− sgn(εi)

j∈ ∂i

tijG
R
j,0(t)

i
d

dt
− εi GR

i,0(t)

=δ(t)δi,0 +iΘ(t− t )

j∈ ∂i

tijbj(t), b
†
0(t )

=δ(t)δi,0 −

j∈ ∂i

tijG
R
j,0(t)

[bi(t),H] = εibi(t)− (−1)ni(t)

j∈ ∂i

tijbj(t), (8)

(−1)ni(t) ≈ sign(εi) (9)

GR
i,0(ω) =

∞

−∞

GR
i,0(t)e

iωtdt (10)

ξ(ω)− 1 =− lim
ri→∞

ln[|GR
i,0(ω)/G

R
0,0(ω)|]/|ri − r0| (11)

GR
i,0(ω)

GR
0,0(ω)

=

P ={j0=0,...,j =i} p=1

tjp− 1 ,jp

1

εjp − ω

GR
i,0(ω)

GR
0,0(ω)

=

P ={j0=0,...,j =i} p=1

tjp− 1 ,jp

sgn(εjp )

εjp − ω

ξB(ω<t)> ξF (12)

ξB(ω=0)> ξB(ω t) ≈ ξF ≈ const. (13)

Bosons

(hard core)

Forward scattering:  Sum over shortest paths, lowest order in t! MM (2011)

Giant positive magnetoresistance and localization in bosonic insulators

Markus Müller1

1The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy

(Dated: August 19, 2011)

We study the strong localization of disordered bosons, motivated by recent experiments that

suggest a bosonic superconductor-insulator transition instrongly disordered films. In the insulator,
unlike for fermions, nearly all scattering paths between low-energy sites contribute constructively

interfering amplitudes to hopping matrix elements. The localization length of bosonic excitations

shrinks as the constructive interference is suppressed by amagnetic field, entailing a giant positive
magnetoresistance, opposite to the analogous effect in strongly localized fermions. In zero field, both
the localization length and the density of states are predicted to increase with decreasing energy.

Applied to hard core bosons on the Bethe lattice, our method shows that the superfluid emerges

out of an insulator without the closing of a mobility gap.

PACS numbers: 73.50.Jt, 74.81.Bd, 05.30.Jp, 72.20.Ee, 71.55.Jv

H=

i

εini −

i,j

tij(b
†
jbi+b

†
ibj), ni =b

†
ibi. (1)

[bi, bj] =0, [b
†
i, bj] =δij(2ni − 1) (2)

{bi, bj}=0, , {b
†
i, bj}=δij (3)

tij →te− iφij (4)

GR
i,0(t− t )=−iΘ(t− t ) [bi(t), b

†
0(t )] (5)

GR
i,0(t− t ) =−iΘ(t− t ) {bi(t), b

†
0(t )} (6)

i
d

dt
GR
i,0(t− t ) = δ(t− t )δi,0 [b0(0), b

†
0(0)] (7)

−iΘ(t− t ) [[bi(t),H], b
†
0(t )] .

i
d

dt
− εi GR

i,0(t)=δ(t)δi,0(1− 2 n0 )

+iΘ(t− t ) [(−1)ni(t)

j∈ ∂i

tijbj(t), b
†
0(t )]

[bi(t),H] = εibi(t)− (−1)ni(t)

j∈ ∂i

tijbj(t), (8)

(−1)ni(t) ≈ sign(εi) (9)

GR
i,0(ω)=

∞

−∞

GR
i,0(t)e

iωtdt (10)

ξ(ω)− 1 =− lim
ri→∞

ln[|GR
i,0(ω)/G

R
0,0(ω)|]/|ri − r0| (11)

GR
i,0(ω)

GR
0,0(ω)

=

P ={j0=0,...,j =i} p=1

tjp− 1 ,jp

1

εjp − ω

GR
i,0(ω)

GR
0,0(ω)

=

P ={j0=0,...,j =i} p=1

tjp− 1 ,jp

sgn(εjp )

εjp − ω

The difference is simple to understand. In order to

observea particle at site i, in response to inserting apar-
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energy site closer to site i, cf. Fig. ??. Upon removing

the particle at site i, a ring exchange of nP particles

has been carried out in the ground state, which causes

the signdifference (−1)nP betweenbosonicandfermionic

amplitudes. This difference has important consequences

and will shed new light not only on strong localized in-

sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy

excitations ω→ 0, in the absence of a magnetic field,

all paths contribute with a positive amplitude and there-

fore interfere constructively, unlike fermions. This differ-

ence manifests itself in completely opposite response to

amagnetic field. It is well known that hopping fermions

experience a negative MR due to the suppression of de-

structive interference [3, 5]. In contrast, we find the MR

of bosons to be strongly positive in the hopping regime

due to the phases in the hoppingamplitudes. Indeed, the

latter reduce the constructive interference of paths that

connect low energy sites relevant for transport.
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The difference is simple to understand. In order to

observe a particle at site i, in response to inserting apar-

ticle at 0, all the nP ≡ j=1 nj ≈ j=1(1− sgn(εj))/2

particles onthepathP havetomove to thenextnegative

energy site closer to site i, cf. Fig. ??. Upon removing

the particle at site i, a ring exchange of nP particles

has been carried out in the ground state, which causes

the signdifference (−1)nP betweenbosonicandfermionic

amplitudes. This difference has important consequences

and will shed new light not only on strong localized in-

sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy

excitations ω→ 0, in the absence of a magnetic field,

all paths contribute with a positive amplitude and there-

fore interfere constructively, unlike fermions. This differ-

ence manifests itself in completely opposite response to

amagnetic field. It is well known that hopping fermions

experience a negative MR due to the suppression of de-

structive interference [3, 5]. In contrast, we find the MR

of bosons to be strongly positive in the hopping regime

due to the phases in the hoppingamplitudes. Indeed, the

latter reduce the constructive interference of paths that

connect low energy sites relevant for transport.

Magnetoresistance: positive cf also Zhou, Spivak

(1991)Syzranov et al (2012)



Magnetoresistance peak

Local pairs = bosons 

→ exponentially positive MR

Unpaired fermions

→ exponentially negative MR

Sambandamurthy, Shahar 

et al. (2005) - InOx

A key ingredient to the MR peak:

Baturina et al. (2007) TiN

Hebard+Palaanen, 

Gantmakher et al., 

Shahar et al, 

Baturina et al, W. Wu, 

Valles et al., Goldman et al. 
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Magnetoresistance more quantitatively? Fermions vs. bosons? ξ(B)?



Magnetoresistance quantitaively

Past studies:

• Mostly numerics (fermions) Medina+Kardar, Spivak et al

Directed paths in random media: Kardar’s book: Stat. Physics of Fields 

Data fitting:
long distance r

D lnG(r) = +const ´ Bg r

α,γ = ??
(Kardar:

α = 3/2,

γ =1/2)

small B or r

D lnG(r) = +const ´ Bra



Magnetoresistance quantitaively

Past studies:

• Mostly numerics (fermions) Medina+Kardar, Spivak et al

Directed paths in random media: Kardar’s book: Stat. Physics of Fields 

Data fitting:

• Analytical studies of phases of complex interference sums in 

simplified models (Bethe/hierarchical lattices): Derrida, Cook, Spohn

α,γ = ??
(Kardar:

α = 3/2,

γ =1/2)

long distance r

D lnG(r) = +const ´ Bg r

small B or r

D lnG(r) = +const ´ Bra



Magnetoresistance quantitaively

Our numerical studies: 

• Apparent different scalings of bosons and fermions

(γ appeared bigger for bosons than for fermions – why?)

• No satisfactory scaling collapse for values in the fermion 

literature

long distance r

D lnG(r) = +const ´ Bg r



Magnetoresistance quantitaively

Typical relevant paths form droplets:

Exactly like directed polymers in random media!
(Monthus, Garel; Ortuno, Prior, Somoza)



Simplified hierarchical model
A. Gangopadhyay, V. Galitski, MM (in prep)

Sum over directed positive weight paths = 

Partition function of directed polymer 

(cf. Hwa,

Fisher+Huse’s

droplet theory 

for directed 

polymers, 

1994)



Simplified hierarchical model
A. Gangopadhyay, V. Galitski, MM (in prep)

(cf. Hwa,

Fisher+Huse’s

droplet theory 

for directed 

polymers, 

1994)

Interference sum 

S recursively 

defined



Simplified hierarchical model

Advantage: Analytically tractable model: 

Virial expansion: small B            low density of interfering loops  

Numerics: exponents (in finite size) are very similar to full model

A. Gangopadhyay, V. Galitski, MM (in prep)



Virial expansion for droplet model

Larkin scale (disorder dominates entropy)

→ interfering loops are NOT random walks!

Lc » alattice  =1

Disorder is strong!
A. Gangopadhyay, V. Galitski, MM (in prep)
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Virial expansion for droplet model

B B B

z =1  ®   B = B-1 1+z

Size of interfering regions (“magnetic length”) 

Larkin scale (disorder dominates entropy)

→ interfering loops are NOT random walks!

Lc » alattice  =1

Disorder is strong!

llζζ = 2/3

Probability of significant interference

Pinterf µ  B

-q
θ = 1/3 

A. Gangopadhyay, V. Galitski, MM (in prep)
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Virial expansion for droplet model
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Larger 

apparent 

exponent!



Num. confirmation: Full lattice model

short distance N

D lnG(N ) ~ -B2N 3

long distance N

D lnG(N ) = -B0.8N



Quantum Statistics : 

modified localization length

Bosons: localization much more strongly enhanced

than it is diminished for fermions 

Predict: R(B)/R(0) ~ O(100) in strong insulators and fields



Back to B = 0

Approach to delocalization ?

Boseglass-to-superfluid transition 

? = ? 

boson delocalization + condensation



1d and 2d case

Calculations and conjectures about the phase diagram of 

soft core bosons in 1d and 2d:

1d

0

0

Genuine finite T phase transition in 1d! 

conjectured

(Aleiner, Altshuler, Shlyapnikov 2009)



1d and 2d case

2d

Calculations and conjectures about the phase diagram of 

soft core bosons in 1d and 2d:

Conjecture for 2d: Direct transition from superfluid to a many body 

localized phase, with full localization up to finite T

1d

0

0

0

0



Genuine finite T phase transition in 1d! 

conjectured

(Aleiner, Altshuler, Shlyapnikov, 2009)



Higher dimensions?

Closing of a (many body) mobility gap? 

Hertz, Anderson, Fleishman (1979) “Marginal bose glass”

Scenario for the ordering 

transitions in  

• Disordered magnets

• Spin glasses

• Dirty superfluids (SI transition)

→ Idea: transition when 

extended Hartree-Fock

state reaches chemical 

potential → condensation



Higher dimensions?

Closing of a (many body) mobility gap? 

Bethe lattice of large connectivity N  [→ approach close to transition possible]

(like Abou-Chacra-Anderson-Thouless (1973) for fermions)

Hard core bosons on a Bethe lattice (“d = ∞”)

N = 2

Ioffe, Mézard; &Feigelman (’09,‘11);
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Higher dimensions?
Interference terms in finite dimensions give opposite trend! 

Giant positive magnetoresistance and localization in bosonic insulators

Markus Müller1

1The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy

(Dated: August 19, 2011)

We study the strong localization of disordered bosons, motivated by recent experiments that

suggest a bosonic superconductor-insulator transition instrongly disordered films. In the insulator,
unlike for fermions, nearly all scattering paths between low-energy sites contribute constructively

interfering amplitudes to hopping matrix elements. The localization length of bosonic excitations

shrinks as the constructive interference is suppressed by amagnetic field, entailing a giant positive
magnetoresistance, opposite to the analogous effect in strongly localized fermions. In zero field, both
the localization length and the density of states are predicted to increase with decreasing energy.

Applied to hard core bosons on the Bethe lattice, our method shows that the superfluid emerges

out of an insulator without the closing of a mobility gap.

PACS numbers: 73.50.Jt, 74.81.Bd, 05.30.Jp, 72.20.Ee, 71.55.Jv
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†
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(−1)ni(t) ≈ sign(εi) (9)
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εjp − ω

The difference is simple to understand. In order to

observea particle at site i, in response to inserting apar-

ticle at 0, all the nP ≡ j=1 nj ≈ j=1(1− sgn(εj))/2

particles onthepathP havetomove to thenextnegative

energy site closer to site i, cf. Fig. ??. Upon removing

the particle at site i, a ring exchange of nP particles

has been carried out in the ground state, which causes

the signdifference (−1)nP betweenbosonicandfermionic

amplitudes. This difference has important consequences

and will shed new light not only on strong localized in-

sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy

excitations ω→ 0, in the absence of a magnetic field,

all paths contribute with a positive amplitude and there-

fore interfere constructively, unlike fermions. This differ-

ence manifests itself in completely opposite response to

amagnetic field. It is well known that hopping fermions

experience a negative MR due to the suppression of de-

structive interference [3, 5]. In contrast, we find the MR

of bosons to be strongly positive in the hopping regime

due to the phases in the hoppingamplitudes. Indeed, the

latter reduce the constructive interference of paths that

connect low energy sites relevant for transport.

ξ

ω0

Delocalization strongest at lowest energies: ξ(0) > ξ(ω)!

→ Bosons delocalize first at zero energy! No closing mobility edge!
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amplitudes. This difference has important consequences
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sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy

excitations ω→ 0, in the absence of a magnetic field,

all paths contribute with a positive amplitude and there-

fore interfere constructively, unlike fermions. This differ-

ence manifests itself in completely opposite response to

amagnetic field. It is well known that hopping fermions

experience a negative MR due to the suppression of de-

structive interference [3, 5]. In contrast, we find the MR

of bosons to be strongly positive in the hopping regime

due to the phases in the hoppingamplitudes. Indeed, the

latter reduce the constructive interference of paths that

connect low energy sites relevant for transport.

ξ

ω0

Delocalization strongest at lowest energies: ξ(0) > ξ(ω)!

→ Bosons delocalize first at zero energy! No closing mobility edge!

Similar as related exact results in 1d! 

Random transverse field Ising chain:

Map to free fermions [class BDI]: most delocalized at ω = 0!

Interference terms in finite dimensions give opposite trend! 



Is there never a mobility edge 

in bose insulators?

Are “bose glasses” always “many body localized”?

Not necessarily! 

Trivial case: DOS increases with energy above 

chemical potential

Less trivial: interaction-frustrated (glassy) bosons



An exactly solvable model of a glassy 

SIT 
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Random n.n.-interactions 

(spin glass like)

Unfrustrated 

hopping of hard 

core bosons

}
N

X. Yu, MM in prep
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The difference is simple to understand. In order to

observea particle at site i, in response to inserting apar-

ticle at 0, all the nP ≡ j=1 nj ≈ j=1(1− sgn(εj))/2

particles onthepathP havetomove to thenextnegative

energy site closer to site i, cf. Fig. ??. Upon removing

the particle at site i, a ring exchange of nP particles

has been carried out in the ground state, which causes

the signdifference (−1)nP betweenbosonicandfermionic

amplitudes. This difference has important consequences

and will shed new light not only on strong localized in-

sulators, but also on the approach to delocalization.
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We study the strong localization of disordered bosons, motivated by recent experiments that

suggest a bosonic superconductor-insulator transition instrongly disordered films. In the insulator,
unlike for fermions, nearly all scattering paths between low-energy sites contribute constructively

interfering amplitudes to hopping matrix elements. The localization length of bosonic excitations

shrinks as the constructive interference is suppressed by amagnetic field, entailing a giant positive
magnetoresistance, opposite to the analogous effect in strongly localized fermions. In zero field, both
the localization length and the density of states are predicted to increase with decreasing energy.

Applied to hard core bosons on the Bethe lattice, our method shows that the superfluid emerges

out of an insulator without the closing of a mobility gap.
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The difference is simple to understand. In order to

observea particle at site i, in response to inserting apar-

ticle at 0, all the nP ≡ j=1 nj ≈ j=1(1− sgn(εj))/2

particles onthepathP havetomove to thenextnegative

energy site closer to site i, cf. Fig. ??. Upon removing

the particle at site i, a ring exchange of nP particles

has been carried out in the ground state, which causes

the signdifference (−1)nP betweenbosonicandfermionic

amplitudes. This difference has important consequences

and will shed new light not only on strong localized in-

sulators, but also on the approach to delocalization.
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The difference is simple to understand. In order to

observe a particle at site i, in response to inserting a par-

ticle at 0, all the nP ≡ j=1 nj ≈ j=1(1− sgn(εj))/2

particles onthepathP have tomove to the next negative

energy site closer to site i, cf. Fig. ??. Upon removing

the particle at site i, a ring exchange of nP particles

has been carried out in the ground state, which causes

the signdifference (−1)nP betweenbosonicand fermionic

amplitudes. This difference has important consequences

and will shed new light not only on strong localized in-

sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy

excitations ω→ 0, in the absence of a magnetic field,

all paths contribute with a positive amplitude and there-

fore interfere constructively, unlike fermions. This differ-

ence manifests itself in completely opposite response to

a magnetic field. It is well known that hopping fermions

experience a negative MR due to the suppression of de-

structive interference [? ? ]. In contrast, we find theMR

of bosons to be strongly positive in the hopping regime

due to the phases in the hopping amplitudes. Indeed, the

latter reduce the constructive interference of paths that

connect low energy sites relevant for transport.

The replica scalingarguments ofRef. [? ], mapping the

forward scattering problemto directed polymers, should

apply also to the bosonic case. Here it predicts a neg-

ative perturbative correction to the hopping probability

scaling asBr
3/2

hop, where rhop is the hopping distance. At

larger magnetic field, one finds a reduction of the boson

localization length, whose effect on the MR is exponen-

tially amplified in the hopping regime.

We believe that the opposite interference behavior of

bosons and fermions is key to understanding the giant

MRpeak in disordered films with remnant superconduc-

tive pairing. As long as the magnetic field does not de-

stroy the localized Cooper pairs, it mainly reduces the

localization length of the pairs. Upon destruction of the

pairs, e.g., by the Zeeman effect, the predominant car-

riers in the insulator are fermions, for which a negative

MR due to increased localization length is predicted [?

? ]. Once the latter becomes large, the physics of loops

(neglected in the forward scattering approximation) and

weak antilocalization is likely to play a role in the neg-

ative MR, as well. Effects of Coulomb interaction may

enhance this tendency further [? ].

The enhancement of forward scattering due to con-

structive interference implies that hard core bosons have

a larger localization length than fermions, when subject

to the same hopping and disorder. However, this is true

only at low energies, where exchange matters. High en-

ergy excitations ω∼ W instead behave essentially like

free particles, the statistics being irrelevant, since paths

passing throughoccupiedsites only contribute negligibly.

Which observables distinguish bosonic from fermionic

insulators? The beautiful series of experiments on pe-

riodically patterned films provided a first answer [? ],

receiving theoretical support here: The Aharonov-Bohm

oscillations in the MR start with an upturn, rather than

a downturn at low fields. Further, from Eq. (??) it is

easy to see that ξ(ω) has a non-trivial energy depen-

dence aroundω=0, reaching a maximumat the chem-

ical potential ω= 0. The presence of other bosons en-

hances the delocalization tendency of an extra particle,

whereas non-interacting fermions are essentially insen-

sitive to the presence of the Fermi sea. Similarly, the

density of states of fermions is hardly affected by weak

hopping, since self-energy corrections to the on-site ener-

gies (from loops renormalizing the forward scattering [?

]) have arbitrarysigns. In contrast, the samekindof cor-

rections for bosons systematically decrease the absolute

value of effective site energies, εefi =εi+Σi(ω≈ 0), with

the self-energy Σi = −sgn(εi) j∈ ∂i t
2
ij/|εj|+O(t

4) for

lowenergy processes. This suggests an increased density

of states at lowest energy, which may be observable in

spectral functions or the specific heat.

Our finding of reduced localization at low energy con-

tradicts the predictions of Refs. [? ? ]. Those argued

that the presence of hard core bosons impedes the prop-

agation of an injected boson or a spin flip. While the ar-

guments of [? ] apply to a distinguishable extra particle,

they neglect the exchange effects of identical particles,

which in fact lead to the opposite conclusion. In Ref. [?

] a similar error occurred in the study of bosons on a

Bethe lattice. The perturbation series in twas restricted

to the subset of intermediate one particle excited states,

which yields a result in conflict with (??).

It is interestingto revisit theanalysis [? ] forhardcore

bosons, but with expression (??), which requires only

minimal modifications. On the Bethe lattice, only a sin-

gle shortest path connects two sites. Hence there are no

interference phenomena to leading order. Indeed statis-

tics shouldbe irrelevant, sinceparticle exchangesaresub-

leading. In the limit of large connectivityK of the sites,

one can push the forward scattering approximation al-

mostall thewaytothe superfluidtransition[? ]. The lat-

ter takesplace at the same ratio (t/W)c =O(1/K ln(K))

as the fermion (single particle) delocalization [? ]. How-

ever, on the insulating side, all bosonic excitations re-

main localized. At the superfluid transition, the bosons

condense into the delocalized state occurring at ω= 0.

Neglecting self-energyandexchangecorrections of higher

order in (t/W), the wavefunction of the condensate cor-

responds to a critical wavefunction at the single particle
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The difference is simple to understand. In order to

observe a particle at site i, in response to inserting a par-

ticle at 0, all the nP ≡ j=1 nj ≈ j=1(1− sgn(εj))/2

particles onthepathP have tomove to the next negative

energy site closer to site i, cf. Fig. ??. Upon removing

the particle at site i, a ring exchange of nP particles

has been carried out in the ground state, which causes

the signdifference (−1)nP betweenbosonicand fermionic

amplitudes. This difference has important consequences

and will shed new light not only on strong localized in-

sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy

excitations ω→ 0, in the absence of a magnetic field,

all paths contribute with a positive amplitude and there-

fore interfere constructively, unlike fermions. This differ-

ence manifests itself in completely opposite response to

a magnetic field. It is well known that hopping fermions

experience a negative MR due to the suppression of de-

structive interference [? ? ]. In contrast, we find theMR

of bosons to be strongly positive in the hopping regime

due to the phases in the hopping amplitudes. Indeed, the

latter reduce the constructive interference of paths that

connect low energy sites relevant for transport.

The replica scalingarguments ofRef. [? ], mapping the

forward scattering problemto directed polymers, should

apply also to the bosonic case. Here it predicts a neg-

ative perturbative correction to the hopping probability

scaling asBr
3/2

hop, where rhop is the hopping distance. At

larger magnetic field, one finds a reduction of the boson

localization length, whose effect on the MR is exponen-

tially amplified in the hopping regime.

We believe that the opposite interference behavior of

bosons and fermions is key to understanding the giant

MRpeak in disordered films with remnant superconduc-

tive pairing. As long as the magnetic field does not de-

stroy the localized Cooper pairs, it mainly reduces the

localization length of the pairs. Upon destruction of the

pairs, e.g., by the Zeeman effect, the predominant car-

riers in the insulator are fermions, for which a negative

MR due to increased localization length is predicted [?

? ]. Once the latter becomes large, the physics of loops

(neglected in the forward scattering approximation) and

weak antilocalization is likely to play a role in the neg-

ative MR, as well. Effects of Coulomb interaction may

enhance this tendency further [? ].

The enhancement of forward scattering due to con-

structive interference implies that hard core bosons have

a larger localization length than fermions, when subject

to the same hopping and disorder. However, this is true

only at low energies, where exchange matters. High en-

ergy excitations ω∼ W instead behave essentially like

free particles, the statistics being irrelevant, since paths

passing throughoccupiedsites only contribute negligibly.

Which observables distinguish bosonic from fermionic

insulators? The beautiful series of experiments on pe-

riodically patterned films provided a first answer [? ],

receiving theoretical support here: The Aharonov-Bohm

oscillations in the MR start with an upturn, rather than

a downturn at low fields. Further, from Eq. (??) it is

easy to see that ξ(ω) has a non-trivial energy depen-

dence aroundω=0, reaching a maximumat the chem-

ical potential ω= 0. The presence of other bosons en-

hances the delocalization tendency of an extra particle,

whereas non-interacting fermions are essentially insen-

sitive to the presence of the Fermi sea. Similarly, the

density of states of fermions is hardly affected by weak

hopping, since self-energy corrections to the on-site ener-

gies (from loops renormalizing the forward scattering [?

]) have arbitrarysigns. In contrast, the samekindof cor-

rections for bosons systematically decrease the absolute

value of effective site energies, εefi =εi+Σi(ω≈ 0), with

the self-energy Σi = −sgn(εi) j∈ ∂i t
2
ij/|εj|+O(t

4) for

lowenergy processes. This suggests an increased density

of states at lowest energy, which may be observable in

spectral functions or the specific heat.

Our finding of reduced localization at low energy con-

tradicts the predictions of Refs. [? ? ]. Those argued

that the presence of hard core bosons impedes the prop-

agation of an injected boson or a spin flip. While the ar-

guments of [? ] apply to a distinguishable extra particle,

they neglect the exchange effects of identical particles,

which in fact lead to the opposite conclusion. In Ref. [?

] a similar error occurred in the study of bosons on a

Bethe lattice. The perturbation series in twas restricted

to the subset of intermediate one particle excited states,

which yields a result in conflict with (??).

It is interestingto revisit theanalysis [? ] forhardcore

bosons, but with expression (??), which requires only

minimal modifications. On the Bethe lattice, only a sin-

gle shortest path connects two sites. Hence there are no

interference phenomena to leading order. Indeed statis-

tics shouldbe irrelevant, sinceparticle exchangesaresub-

leading. In the limit of large connectivityK of the sites,

one can push the forward scattering approximation al-

mostall thewaytothe superfluidtransition[? ]. The lat-

ter takesplace at the same ratio (t/W)c =O(1/K ln(K))

as the fermion (single particle) delocalization [? ]. How-

ever, on the insulating side, all bosonic excitations re-

main localized. At the superfluid transition, the bosons

condense into the delocalized state occurring at ω= 0.

Neglecting self-energyandexchangecorrections of higher

order in (t/W), the wavefunction of the condensate cor-

responds to a critical wavefunction at the single particle
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The difference is simple to understand. In order to

observe a particle at site i, in response to inserting a par-

ticle at 0, all the nP ≡ j=1 nj ≈ j=1(1− sgn(εj))/2

particles onthepathP have tomove to the next negative

energy site closer to site i, cf. Fig. ??. Upon removing

the particle at site i, a ring exchange of nP particles

has been carried out in the ground state, which causes

the signdifference (−1)nP betweenbosonicand fermionic

amplitudes. This difference has important consequences

and will shed new light not only on strong localized in-

sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy

excitations ω→ 0, in the absence of a magnetic field,

all paths contribute with a positive amplitude and there-

fore interfere constructively, unlike fermions. This differ-

ence manifests itself in completely opposite response to

a magnetic field. It is well known that hopping fermions

experience a negative MR due to the suppression of de-

structive interference [? ? ]. In contrast, we find theMR

of bosons to be strongly positive in the hopping regime

due to the phases in the hopping amplitudes. Indeed, the

latter reduce the constructive interference of paths that

connect low energy sites relevant for transport.

The replica scalingarguments ofRef. [? ], mapping the

forward scattering problemto directed polymers, should

apply also to the bosonic case. Here it predicts a neg-

ative perturbative correction to the hopping probability

scaling asBr
3/2

hop, where rhop is the hopping distance. At

larger magnetic field, one finds a reduction of the boson

localization length, whose effect on the MR is exponen-

tially amplified in the hopping regime.

We believe that the opposite interference behavior of

bosons and fermions is key to understanding the giant

MRpeak in disordered films with remnant superconduc-

tive pairing. As long as the magnetic field does not de-

stroy the localized Cooper pairs, it mainly reduces the

localization length of the pairs. Upon destruction of the

pairs, e.g., by the Zeeman effect, the predominant car-

riers in the insulator are fermions, for which a negative

MR due to increased localization length is predicted [?

? ]. Once the latter becomes large, the physics of loops

(neglected in the forward scattering approximation) and

weak antilocalization is likely to play a role in the neg-

ative MR, as well. Effects of Coulomb interaction may

enhance this tendency further [? ].

The enhancement of forward scattering due to con-

structive interference implies that hard core bosons have

a larger localization length than fermions, when subject

to the same hopping and disorder. However, this is true

only at low energies, where exchange matters. High en-

ergy excitations ω∼ W instead behave essentially like

free particles, the statistics being irrelevant, since paths

passing throughoccupiedsites only contribute negligibly.

Which observables distinguish bosonic from fermionic

insulators? The beautiful series of experiments on pe-

riodically patterned films provided a first answer [? ],

receiving theoretical support here: The Aharonov-Bohm

oscillations in the MR start with an upturn, rather than

a downturn at low fields. Further, from Eq. (??) it is

easy to see that ξ(ω) has a non-trivial energy depen-

dence aroundω=0, reaching a maximumat the chem-

ical potential ω= 0. The presence of other bosons en-

hances the delocalization tendency of an extra particle,

whereas non-interacting fermions are essentially insen-

sitive to the presence of the Fermi sea. Similarly, the

density of states of fermions is hardly affected by weak

hopping, since self-energy corrections to the on-site ener-

gies (from loops renormalizing the forward scattering [?

]) have arbitrarysigns. In contrast, the samekindof cor-

rections for bosons systematically decrease the absolute

value of effective site energies, εefi =εi+Σi(ω≈ 0), with

the self-energy Σi = −sgn(εi) j∈ ∂i t
2
ij/|εj|+O(t

4) for

lowenergy processes. This suggests an increased density

of states at lowest energy, which may be observable in

spectral functions or the specific heat.

Our finding of reduced localization at low energy con-

tradicts the predictions of Refs. [? ? ]. Those argued

that the presence of hard core bosons impedes the prop-

agation of an injected boson or a spin flip. While the ar-

guments of [? ] apply to a distinguishable extra particle,

they neglect the exchange effects of identical particles,

which in fact lead to the opposite conclusion. In Ref. [?

] a similar error occurred in the study of bosons on a

Bethe lattice. The perturbation series in twas restricted

to the subset of intermediate one particle excited states,

which yields a result in conflict with (??).

It is interestingto revisit theanalysis [? ] forhardcore

bosons, but with expression (??), which requires only

minimal modifications. On the Bethe lattice, only a sin-

gle shortest path connects two sites. Hence there are no

interference phenomena to leading order. Indeed statis-

tics shouldbe irrelevant, sinceparticle exchangesaresub-

leading. In the limit of large connectivityK of the sites,

one can push the forward scattering approximation al-

mostall thewaytothe superfluidtransition[? ]. The lat-

ter takesplace at the same ratio (t/W)c =O(1/K ln(K))

as the fermion (single particle) delocalization [? ]. How-

ever, on the insulating side, all bosonic excitations re-

main localized. At the superfluid transition, the bosons

condense into the delocalized state occurring at ω= 0.

Neglecting self-energyandexchangecorrections of higher

order in (t/W), the wavefunction of the condensate cor-

responds to a critical wavefunction at the single particle
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The difference is simple to understand. In order to

observe a particle at site i, in response to inserting a par-

ticle at 0, all the nP ≡ j=1 nj ≈ j=1(1− sgn(εj))/2

particles onthepathP have tomove to the next negative

energy site closer to site i, cf. Fig. ??. Upon removing

the particle at site i, a ring exchange of nP particles

has been carried out in the ground state, which causes

the signdifference (−1)nP betweenbosonicand fermionic

amplitudes. This difference has important consequences

and will shed new light not only on strong localized in-

sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy

excitations ω→ 0, in the absence of a magnetic field,

all paths contribute with a positive amplitude and there-

fore interfere constructively, unlike fermions. This differ-

ence manifests itself in completely opposite response to

a magnetic field. It is well known that hopping fermions

experience a negative MR due to the suppression of de-

structive interference [? ? ]. In contrast, we find theMR

of bosons to be strongly positive in the hopping regime

due to the phases in the hopping amplitudes. Indeed, the

latter reduce the constructive interference of paths that

connect low energy sites relevant for transport.

The replica scalingarguments ofRef. [? ], mapping the

forward scattering problemto directed polymers, should

apply also to the bosonic case. Here it predicts a neg-

ative perturbative correction to the hopping probability

scaling asBr
3/2

hop, where rhop is the hopping distance. At

larger magnetic field, one finds a reduction of the boson

localization length, whose effect on the MR is exponen-

tially amplified in the hopping regime.

We believe that the opposite interference behavior of

bosons and fermions is key to understanding the giant

MRpeak in disordered films with remnant superconduc-

tive pairing. As long as the magnetic field does not de-

stroy the localized Cooper pairs, it mainly reduces the

localization length of the pairs. Upon destruction of the

pairs, e.g., by the Zeeman effect, the predominant car-

riers in the insulator are fermions, for which a negative

MR due to increased localization length is predicted [?

? ]. Once the latter becomes large, the physics of loops

(neglected in the forward scattering approximation) and

weak antilocalization is likely to play a role in the neg-

ative MR, as well. Effects of Coulomb interaction may

enhance this tendency further [? ].

The enhancement of forward scattering due to con-

structive interference implies that hard core bosons have

a larger localization length than fermions, when subject

to the same hopping and disorder. However, this is true

only at low energies, where exchange matters. High en-

ergy excitations ω∼ W instead behave essentially like

free particles, the statistics being irrelevant, since paths

passing throughoccupiedsites only contribute negligibly.

Which observables distinguish bosonic from fermionic

insulators? The beautiful series of experiments on pe-

riodically patterned films provided a first answer [? ],

receiving theoretical support here: The Aharonov-Bohm

oscillations in the MR start with an upturn, rather than

a downturn at low fields. Further, from Eq. (??) it is

easy to see that ξ(ω) has a non-trivial energy depen-

dence aroundω=0, reaching a maximumat the chem-

ical potential ω= 0. The presence of other bosons en-

hances the delocalization tendency of an extra particle,

whereas non-interacting fermions are essentially insen-

sitive to the presence of the Fermi sea. Similarly, the

density of states of fermions is hardly affected by weak

hopping, since self-energy corrections to the on-site ener-

gies (from loops renormalizing the forward scattering [?

]) have arbitrarysigns. In contrast, the samekindof cor-

rections for bosons systematically decrease the absolute

value of effective site energies, εefi =εi+Σi(ω≈ 0), with

the self-energy Σi = −sgn(εi) j∈ ∂i t
2
ij/|εj|+O(t

4) for

lowenergy processes. This suggests an increased density

of states at lowest energy, which may be observable in

spectral functions or the specific heat.

Our finding of reduced localization at low energy con-

tradicts the predictions of Refs. [? ? ]. Those argued

that the presence of hard core bosons impedes the prop-

agation of an injected boson or a spin flip. While the ar-

guments of [? ] apply to a distinguishable extra particle,

they neglect the exchange effects of identical particles,

which in fact lead to the opposite conclusion. In Ref. [?

] a similar error occurred in the study of bosons on a

Bethe lattice. The perturbation series in twas restricted

to the subset of intermediate one particle excited states,

which yields a result in conflict with (??).

It is interestingto revisit theanalysis [? ] forhardcore

bosons, but with expression (??), which requires only

minimal modifications. On the Bethe lattice, only a sin-

gle shortest path connects two sites. Hence there are no

interference phenomena to leading order. Indeed statis-

tics shouldbe irrelevant, sinceparticle exchangesaresub-

leading. In the limit of large connectivityK of the sites,

one can push the forward scattering approximation al-

mostall thewaytothe superfluidtransition[? ]. The lat-

ter takesplace at the same ratio (t/W)c =O(1/K ln(K))

as the fermion (single particle) delocalization [? ]. How-

ever, on the insulating side, all bosonic excitations re-

main localized. At the superfluid transition, the bosons

condense into the delocalized state occurring at ω= 0.

Neglecting self-energyandexchangecorrections of higher

order in (t/W), the wavefunction of the condensate cor-

responds to a critical wavefunction at the single particle

Boson glass: “Coulomb gap” 

(linear) in the local DOS!

X. Yu, MM in prep

(cf. exp by 

Yazdani et al)
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Mobility edge at glassy SIT

Solvable model of a glassy SI transition:

Superfluid emerges without closing mobility gap Ec!

Localized

Delocalized excitations

Mobility edge 

tracks chem. 

Potential:

Ec ~ 1/log(N)!
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1. Superfluid transition? →   s i

+ ¹ 0

(J):  tc = J (ε): tc = c/log(N)
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Quantum transport at the glassy 

SI transition 

1. Superfluid transition? →   s i

+ ¹ 0

(J):  tc = J (ε): tc = c/log(N)

Same value as for free fermions 

(in ”upper limit” approximation: 

neglecting self-energies) 
(Abou Chacra et al)
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Quantum transport at the glassy 

SI transition 

1. Superfluid transition? →   s i

+ ¹ 0

Condensate: propagation of transverse fields!

Large N: like directed polymer! (Sol: Derrida+Spohn)

cbdy =
t

Ne iiÎP

Õ
paths P

å = Zpol
eff

(ε): Rare paths dominate! 

↔ fractal condensate!

H = -
t

N
s i

+s j

- + h.c.( )
i, j

å - s i

zJijs j

z

i, j

å

↔ non-glassy model: 

P(y)

y

(J – model)

(ε – model)H = -
t

N
s i

+s j

- + h.c.( )
i, j

å - eis i

z

i, j

å



Quantum transport at the glassy 

SI transition 

cbdy =
t

NyiiÎP

Õ
paths P

å = Zpol
eff

(J):
NOT only rare paths!

↔ reduced fractality in 

finite dimensions?
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Quantum transport at the glassy 

SI transition 

2. Localization of spin flip excitations in the insulator?    
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Quantum transport at the glassy 

SI transition 

2. Localization of spin flip excitations in the insulator?    

c (2)(w ) =
t sgn ei( )
N(ei -w )

æ

èç
ö
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2

iÎP

Õ
paths P

å

Rare paths dominate.

- NO mobility edge in the insulator!

- “Many body localized bosons”!(?)
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Quantum transport at the glassy 
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Quantum transport at the glassy 

SI transition 

2. Localization of spin flip excitations in the insulator?    

Rare paths dominate. - Due to ”Coulomb” gap:

THERE IS a mobility edge! 
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Conclusions

• Locator expansion for interacting systems in random fields:

Interference at low-energy always constructive.

• ξ of bosons shrinks under a B field 

→ strong positive magnetoresistance, opposite to fermions.

• ξ(ω) decreases with energy (where controllable).

• Not so if Coulomb gap counteracts this:

→  Finite mobility edge at low E in Bose glass (d>2 but d = 2??)

• But even so: Superfluid emerges without the closing 

of a mobility gap in general. 

• Work in progress: finite T, higher order expansion, resummation

ω

ξ

0


