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A quantum quench

Start initially in a state ‘CDHi> which is the ground state of some Hamiltonian Hi

Drive the system out of equilibrium by a sudden change in parameters of
the Hamiltonian  Hj > Hf

Explore the time-evolution and the long-time behavior.

a). Is the system thermal at long times?
b). What does it mean to be thermal for an isolated quantum system in

a pure state?
c). “Glassy behavior” with intermediate long-lived metastable states?

d). New kinds of nonequilibrium phase transitions?

Some experimental motivation first: 2



Cold atomic gases W,y o = LK
cold—atoms

Alkali w ~10*K
atoms:

solids

Bosons: ' Rb,”Na,’Li
Fermions: K, Li
Unique features:

1. Possible to realize almost
ideal (isolated from the
surroundings) condensed matter
systems. More often than not the
systems are out of equilibrium.
Easier to study dynamics as they

occur on much lower energy-scales.
Electric fields in a laser induce a dipole moment

which interacts with the field: schematic of
a potential felt by the atoms

2. Highly tunable systems where the interaction between particles and
the external potentials acting on them can be tuned easily and rapidly, the
former by using Feshbach resonances.



Quench= Unitary time-evolution from a nonequilibrium initial state

Ultra-fast Optical Pump Probe methods:

Fausti et al, Science 2011 (Hamburg)

Ultra-fast lasers can probe dynamics

on femto-second time scales,

much faster than times needed to
thermalize via coupling to a reservoir
such as lattice vibrations (pico seconds).


http://mpsd-cmd.cfel.de/research/inducedsuper/fausti-cavalleri-small-900.jpg�

Optically induced phase-transitions

Control of the electronic phase of a manganite by

mode-selective vibrational excitation Electron kinetic energy: w = f ()
Matteo Rini', Ra'anan Tobey?, Nicky Dean?, liro ltatani"®, Yasuhide Tomioka®, Yoshinori Tokura®?,
Robert W. Schoenlein' & Andrea Cavalleri®® Nature, 2007 . U
Optical control over:
Buckling angle : @ W

Metastable metallic state
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By optically exciting the Mn-O stretching mode, the band-width W is modified via the

buckling angle, and a transition to a metallic phase is observed.
The phase persists for ~100 ps

Other examples: .
Optically induced magnetic-paramagnetic phase transitions, Rasing et al, PRL 2009



Road-map for the talk

1. Quenches involving free theories:
Interaction quench in a 1D Bose gas (Luttinger liquid) .

lucci and Cazalilla, 2009

_ _ | )
Result: Nonequilibrium steady state. Lancaster and Mitra, PRE 2010

//\/\/\/\\

2. How does the nonequilibrium state of the Luttinger liquid respond to a

periodic potential? Results in the superfluid phase: role of irrelevant operators.
Mitra and Giamarchi, PRL 2011, PRB 2012

Tavora and Mitra (in preparation).

3. Quenches from the superfluid to the Mott-insulator phase:

A new kind of dynamical phase transition, one that occurs as a function of time.
A. Mitra, arXiv: 1207.3777

4. The situation with fermions: Magnetic field quench in an XX spin-chain

(free fermions on a lattice). Modified GGE. Effect of weak interactions.

Lancaster and Mitra, PRE 2010
Lancaster, Giamarchi and Mitra, PRB 2011



Equilibrium and low-energy properties of 1D Interacting Bose gas

H; = % dz {I{ (nT(z))? + % (8,0(x))>
. . = ulp|yiy
1D interacting Bose gas ; ’
characterized by an interaction parameter K:
K = 1/(Interaction Strength) Hard
ard-core
boSONS Long range
Free bosons 1 interactions
OO( Superfluid | charge-density-wave 0
K | (crystal) >
Increasing
_ interactions
W Boson creation operator
Due to quantum-fluctuations, only
,O(r) Boson density at r=(x,t) quasi-long range order

1
Density-density correlator: <,0(X),0(O)> ~ XTCOS(Zﬂ,OOX)

ﬁDual fields
1

Boson propagator <w(r)w+(0)> ~ K 7
(superfluid order parameter):




Generating an out of equilibrium state via an interaction quench

Hard-core Long range
n ) . )
Free bosons bosons Interactions K
O _ xSuperfde" | charge-density-wave g Ko
K ! (crystal) >
Increasing >
K Ko Interactions time

Hi : Bosons with interaction Ko
Hf : Bosons with interaction K

<(DH, ‘ iH tAe—int

‘(DHi,Hf > Ground-state of Hi, Hf

What connection does
-=>» this have with

(@, (A, )

(DH>t—>oo




Equal time correlations at long times after the quench from Ko=2>K
Ko=1, lucci and Cazalilla, 2009

1

ensity-densit | r t —I O t
Density-d >C — eﬂ”( )e 7(0( ) R

{ >
9

correlator: neg
4% I
ﬁ Dual fields
Boson |]/0(r t) —|}/9(O t t —> OO0 1
propagator: C — e e -> 0
99 r2Kneq
]/ZK K2 7/ K
Kneq = . 1+—2 > Keq
8 K 4
0 Compare with Kieg > Keg
equilibrium , ,
(K=Ko) , Kneq > Keq
2 2
0 /4 K, Ke =2
Kneq 8K [1_'_',(2} ) . 4K

All correlations always decay faster after the quench as
compared to the decay in the ground state of Hf.

In some sense like an effective-temperature,

yet decay is still a power-law



REASON BEHIND NEW EXPONENTS: Infinite number of conserved quantities

Density modes of the Bose gas

. . . o a _I_
Initial state is ground state of ———s H, =) egaa, —— Don°!ty modes of !

r
Density modes of the Bose gas

Time-evolution is dueto ~—> g, = ng@bp —> o iteraction K
P

b, = cosh©,a, + sinh @paip
., . . —+
Initial state a ground state of Hi <apap> =0

Hence the initial distribution function which is also conserved
during the dynamic is (bb,) = sinh®©,

Generalized Gibbs Ensemble can recover new exponents
M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys.

_Z Bot,bib, Rev. Lett. 98, 050405 (2007).
=——8F g + +
IOGGE ZGGE where <(D| bpbp|q)i> :Tr[pGGEbpbp]
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NEXT: What happens in the presence of non-linearities that take the system away
from exact solvability?

| will consider a non-linearity in the form of a commensurate periodic potential.

See also: Mathey and Polkovnikov

Sabio and Kehrein 1



Ground state properties: Interacting bosons in a periodic potential

AVAVAVAVEANE

/ \
e e = SO VAW /AVVaN

Superfluid Mott-Insulator
Berezinskii-Kosterlitz-Thouless Flows

Ao

Critical line

> Increasing
Kc interactions

L e
Line of stable fixed points (GQLRO)
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Approach 1: After an initial quench from Ko ---> K, assume bosons have
reached a nonequilibrium steady-state characterized by a GGE.
Perturbatively study the effect of the periodic potential on the GGE.

Technically simpler as the system is time-translationally invariant.

A Mitra and Giamarchi, PRL 2011, PRB 2012
K__System dephases

Ko
; time o
Z, = LtTrle ™ poee™ |
t—o

Approach 2: At an initial time, not only the interaction is being quenched from
Ko - K, but also the lattice potential is being switched on suddenly. Study

time evolution from the initial pure state. Problem no longer time-
translationally invariant.

A. Mitra, arXiv: 1207.3777
A Tavora and Mitra (in preparation)
K +

m _Tr{e Hit ><cpi ‘eintJ
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RG procedure to study the effect of a periodic potential: Approach 1,
Initial state is GGE. —iH ¢t iH ¢t
Z = LtTrle ™" pee™]

t—o0
Keldysh Action GGE implies oscillations
Zg = ]I}[ﬁfﬁd:qﬁq]ei(g“ﬁwi‘ dueto e—iulgl(t+t)

_ have been averaged out
Quadratic Part

L B 1 0 (w—18)% — u?q? der(q, w)

g,

Cosine Potential
Ssg =9 /dﬂ:‘ [dt [cosyop_ — cosyo ]

Split fields into slow and fast modes in momentum space

O+ = ¢T + 0%
Goa = GGa_gn + Gi_aan  GoO=Correlators for the slow
and fast fields
p _ dGo,,
G.&—d.&,ﬁ —dﬁ%

Integrate fast modes perturbatively in g, then rescale action in g and w. 14



Generation of dissipation and noise

. . 0 w? — inw — u?q? :
So=_ (du(a.w) d5(qw) ( | Yo K‘z e )(@cz(q@))

- TKu \w? +inw — u’q 2in|w| 75 (1 + Ej'f) Oq(q,w)

@ —>0
: 0] -
2i new coth| — > A1nT
! (2T) L
So = JdR [duT)-g |6q (0% — Oops) det + be (0% — Oop ) &4
Under RG usual corrections to K and g. In addition the following terms generated:
4Teffi'}' KD KZ (2
08 = de/ uT {qu“']"‘@d +1 Y 1+ K_§ oy

~

Dissipation*Temperature
Dissipation

15



dg

dinl
di—1

RG equations

2 New location
[2 _ %I{n{l K2 ,ff{g}] g — 2

dInl
1 du

w2 () K, K?
= Tod (?) 2 \Ifxz)lx

:ﬂ—g? i QK_D 1_|_E Iu
Kudlnl 4ot \ 2 2 K2

dn
dinl

d(Tesm)

dlnl

2 2 2 2
Tg Ku [ Ky K
T o (7) 7 TRz

2 272 2y 2
mgru K= [~
:216 _ e I
1 4oyt (2) r

of the critical point

When K=Ko, usual BKT
flow equations

I, =0

16



EFFECT 1: CHANGE IN THE LOCATION OF THE CRITICAL POINT.

Phase diagram is still separable into two regimes, one where the periodic potential
IS “Irrelevant” in the sense that perturbation theory is valid. And another phase
" in that perturbation theory breaks down.

where the periodic potential is “releva;l‘t’

“Irrelevant”

weak coupling

P

2

<

K

Kneq >

K

g

N

neq&)[uKKe{j <p(r)/0(0)> t —> oo

N

“Relevant”
strong coupling
N
2
neq
Kc (KO)
However, since the nonequilibrium
1 system is more disordered (faster
—2x., decay of correlations) ,the periodic

potential is less effective in
localizing the system.

Thus critical point for the Mott transition in the nonequilibrium system is
shifted to larger values of interactions.

17



Naive expectation when the periodic S
potential is irrelevant. The same AN
quadratic theory but with slightly S o
renormalized parameters: \\\
N
1 1 2 2 )
S=——=[d =(00f -u@.0) | = N
27K u lrrelevant “so Relgvant
K

Instead a quadratic theory with qualitatively different features:
Generation of dissipation (over-damped boson density modes):

1|1 .
F[Gatz(ﬂ—wi(ﬂ—ﬂ at¢i| =0

and also a temperature, which is strictly speaking defined in the classical
limit of mode frequency << temperature

18



Low frequency, long-wavelength properties near the
nonequilibrium fixed-point: 5= (¢n o

¢;) ——
" cl Q)W}i*u

lﬁ*ﬂd . 'UE{IE AiT* n*ﬁ (1 1+ K*g) ((p )
< 107 Quench from Ko=3 2K eff'l 2K+ KZ ¥

1.5

. ——g =005

- '\.\:-—g =01

\ Non-monotonic dependence of
the dissipation on quench amplitude

— |
8] T B 0 10
K
¢ K
Ko 9 Ipvmvqu
>
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Dissipation => Inelastic scattering results in E —_—
energy exchange between low frequency et
modes and high frequency modes. e
( -
Thus as the high frequency modes are gradually et
Integrated out via RG, they act as a .
reservoir for the low-frequency modes giving it - \/\)
a damping. ; i
N - - —
. : . Teff K—-—-—
System effectively acts as its own reservoir. M oo
@ @

Classical analog of the Fluctuation-Dissipation-Theorem is obeyed. Low-frequency
part is subjected to a “noise” due to the integrated out high-frequency modes:

w—>0

2nw Coth(zﬁ_l_j > 477Teff

20



Consequences
Density-density correlators now decay exponentially fast (as compared to a power-law):

Unequal positions: * Unequal times: K™

—Tegt K—|X— | T =1t
)oly)=e ™" (plt)ol0) e
Dissipation=0, but finite temperature would have

o(w)
implied an infinitely long-lived current
carrying state, and hence an infinite dc conductivity.

a(a)) =Do (a))+ o 0,
>
Dissipation implies finite dc conductivity A O_(w)
D 7
O-(a)) — 2 2 + Greg
7wTn + k
Q)
Dissipation is also generated in equilibrium and finite >

temperature, see example Sirker et al, PRL 2009 21



Approach 2: At an initial time, not only the interaction is being quenched from
Ko = K, but also the lattice potential is being switched on suddenly. Problem
no longer time-translationally invariant. Study the time-evolution

perturbatively in the periodic potential.

A. Mitra, arXiv: 1207.3777
A

Tavora and Mitra (in preparation)
K +

m —Tr{e Hit ><(I)i |eintJ

>

Ko

time

Zx = /D[@cf r:E'J] I{SIH-ng]I

Seq=2% [*°_day [} dt [cos{yd_(1)} — cos{vos (1)}]

Split fields into slow and fast modes in momentum space
$r = ¢ + @31

Go=Correlators for the slow
Goa = Goa_an + GR_aaa

and fast fields

= _ dGo, A
GA —dMA. A _dﬁ dA

Integrate fast modes perturbatively in g, then rescale action in position and time.

This leads to corrections to the quadratic action that now depend on time after 22
the quench.




Cap(1,2)=(e"¢=De=1(2) 12)=R+ ()5, Tm+(=)3 A K

The correlator depends both on the time-difference 7
as well as the mean time T,, after the quench, and Ko
as expected 1s alwavs translationally invariant in space.

Co(r, T, T)=

Va2 + (ur +1r)2 /a2 + (ur — r)?

Va2 + 2u(Tn +7/2)F Va? + {2u(T,, — 7/2)}? Kir
X
\/O!Q + (2uT,, +r)? \/02 T (2uT,, — )2

e—iKp_q [tan_l (“—Tfji)-l—t.an_l (m—m_r )]

Hﬂ.r:q 1
N o ] time

*

(3) K. =2 K

Suppose 7T = 0

At short times T,, << «, power-law in space with exponent Ko.

At long times T, >> ', &, power-law in space (and also in time for T, >>7)
with exponent Kneq. The crossover between these two limits determined by Ktr
SCALING DIMENSION OF THE LATTICE IS TIME-DEPENDENT

The RG allows one to do an infinite resummation of the most singular terms. ’



RG equations that depend explicitly on the time Tm after the quench

dg ; K, Scaling dimension of the lattice is
dinl Y 2= Kneg + 1+472 3"time-depenc!ent. At _short times itis
dK~'  7g?~? Ko, at long times it is Kneq
dml g xTm)
dT,, Time after the quench acts as an
dinl —Tm additional inverse energy scale in
1 du frgzﬁ,rzf (T,) the problem
Kudlnl 8“7
d 2““,“2}’-’1 —_—
i/ BAUE N X —— .
dlnl 4 _ Dissipation and noise whose
d(nTess) 0T gy K I (T strengths are now time-dependent.
d]ﬂf T? Eff—l_ 8 Trj‘f( m) ]

Ik un1.;; Teach steady state values at T, > 1, whereas
for short times, they vanish as T,, — 0 as expected since
the effect of the lattice potential vanishes at T,,=0.
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1

For times Tn <; we may neglect dissipation and noise.

Convenient to define an effective coupling e = 9/ 1« ()
that vanishes at Tm=0, and reaches a steady state

valueatTm>>1

=0,

<F.F.I.IJ.I.I A E S EEEEE
g Line of stable fixed points (QLRO)

a. Periodic potential irrelevant at all times.
b. Periodic potential relevant at all times

Jest (OO)‘

Critical line

C.

dK ! Wgzqz
dlnl 8 Iic(Tm)
dT
mo_ T
dlnl

0

Arrows connect
Hamiltonians before and
after the quench

c. Periodic potential relevant at short times, irrelevant at long times.
d. Periodic potential irrelevant at short times, relevant at long times. This case »5

shows a dynamical phase transition




Case (a): Periodic potential always irrelevant

Jest (OO)‘

E=0,
Critical line
d.
b.
C.
<l.l.-.-.l4-.l.-_ it }
g Line of stable fixed points (QLRO)
0
Lo 1. 72203 i (Tmoto) o, L L O(T2,A2) Renormalization of the Luttinger
R 8 (152 -3) : parameter at short times.
’ 24 . _
e MoTmo>l, 4\ 5 (x’}) At long times, the Luttinger-parameter reaches a

steady-state value as a power-law.

A:\fﬁ% — ggff:ﬂ
26



Jest (OO)‘

£=0, -
Critical line At strong coupling: g COS((D) ~1—
0. (I") =0(1),
1
d. Am
I(T,,)
b. ]
. (cos(yp)) ~| —
£ TR e vones B > I (T)
0
| A ] lll TB
,B:f;' (| qﬂi&[} - f{ﬂeq|)~ v = 1+ AB | &
‘4:\/E§_g§ff,ﬂ |
_ 1 p
E] I _
o / Tuo
Tmg b.c | - |
/ ]J.-“IAG __IL_D* l."llr.-ﬁss I.nt]

Results agree with a lattice quench

at the exactly solvable Luther-Emery point (lucci and Cazalilla, 2010)

Case (b&c): Periodic potential relevant at short-times

9 >
2(9

7’2K0
4
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Case d: Dynamical Phase Transition

,_Ki« ,  Canchange sign during the
14 4T time-evolution

At a time Tm* such that (T )=g.7¢(T,;,) a non-analytic
behavior in the solution of the RG equations.
1 S f

A= I* = 0(Timo — Ty, )e tmo—"1m

| " Pure lattice quench

|| Lattice and interaction quench

dg Ky,
= 2— Iﬂe PE——
dlnl g[ (‘ ”1-41@3)]
dK™'  wg’y’
— L (T,
dln g Ixl )
dT,,
= _T
dlnl
geff A
Critical line
\
>

(A LR e B NN B BN NN §§/
g Line of stable fixed points (QLRO)

regions of size R ~ T

Non-analytic behavior at a critical time in the Loschmidt echo in the transverse-field Ising model 28

after a quench: Heyl, Polkovnikov, Kehrein, arXiv:1206.2505

0
Due to light-cone phy5|cs expect appearance of non-zero order-parameter in finite




Conclusions

Quantum gquenches in free theories can lead to interesting
nonequilibrium states that are often described by a generalized Gibbs
ensemble (GGE).

In the presence of non-linearities, an analytic approach to study
dynamics is presented that is valid in the thermodynamic and long-
time limit where numerical studies are still hard to do.

Even when the periodic potential is “irrelevant”, its effect is non-trivial
as it generates a dissipation and a noise.

When the periodic potential is relevant, a new kind of non-equilibrium
phase transition is identified which corresponds to non-analytic
behavior during the time-evolution. In particular an order-parameter is
found to be zero at all times t<t* and non-zero after this time.

The RG also makes predictions for how an order-parameter evolves in
time. The results are in agreement with a lattice quench at the exactly
solvable Luther-Emery point, and generalizes the results to the case
where the model is not exactly solvable.

29




	Quench dynamics in one-dimension: A renormalization group approach
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Conclusions

