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•  Dynamic Kosterlitz-Thouless transition	

    with K. Günter, J. Dalibard, A. Polkovnikov	


–  Renormalization group dynamics, vortex unbinding, reverse 
Kibble-Zurek	


–  Experimental proposal for mixtures of hyperfine states	


cond-mat/1112.1204	

LM and A. Polkovnikov, Phys. Rev. A 81, 033605 (2010)	

LM and A. Polkovnikov, Phys. Rev. A 80, 041601(R) (2009)	




Ludwig Mathey                                                                                Dynamic KT transition	


3	


Renormalization group framework ���
for critical dynamics	


€ 

I :   dτ
dl

=αg2

€ 

II :   dg
dl

= (2 − 2 /τ)g

t = t0 el	


LM and A. Polkovnikov, Phys. Rev. A 81, 033605 (2010)	


We rescale real-time and real space, and correct for it up to 1-loop order	


This generates RG flow equations in real-time. To predict the dynamic	

behavior, we fix non-universal constants and time scales, and integrate 	

the flow equations in time.	
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Bose gas in 2D: Kosterlitz-Thouless transition	


    

€ 

G(x) = ψ +(x)ψ(0) ~ exp(− x / x0)Disordered phase	


Kosterlitz-Thouless transition	
 driven by vortex unbinding	


    

€ 

G(x) = ψ +(x)ψ(0) ~ x
−
τ

4Quasi-Order	
     

€ 

τ−1 ≈
πρ

2mT
+ C

Berezinskii 1972, Kosterlitz and Thouless 1973	


Prokof’ev, Ruebenacker, Svistunov, ‘00, ‘01,’02	
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Interfering 2D Bose gases	


•  Realization of quasi-condensates and KT transition	


•  algebraic        exponential scaling. Vortices  	


Review: Z. Hadzibabic, J. Dalibard, Rivisto del Nuovo Cimento, 34, 389 (2011)	


Dalibard group, Phillips/Helmerson group, Chin group, Jin group, …	
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Preparation and measurement sequence	


Measure interference to detect critical dynamics	


Prepare a 2D superfluid in internal state    	


Apply π/2 pulse to create a superfluid in              	


Apply field gradient, turn off the inter-species interaction	


  

€ 

1

  

€ 

1 + 2( ) 2

  

€ 

1 + 2( ) 2  

€ 

1

  

€ 

1

  

€ 

2

1D experiment: Schmiedmayer group	
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          Vortex                  Anti-vortex	


                             	


Numerical Approach: Truncated Wigner approximation	


Phys. Rev. A 80, 041601(R) (2009); 81, 033605 (2010)	

A. Polkovnikov,  Annals of Phys. 325, 1790 (2010) 	


20*20 	

lattice	


Sample over many Gross-Pitaevskii solutions according to the Wigner distribution of the initial state. 
Includes quantum and thermal fluctuations.	
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Dynamics of G(x,t) on different time scales	


On intermediate scales, a 	

metastable supercritical state	

with algebraic scaling emerges.	


On a very long time scale, the	

scaling changes from algebraic 	

to exponential	

     dynamic KT transition! 	


 J = 0.3ms ρ0 = 50 /µm
2 l = 0.3µm 87Rb
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Quantifying the change of functional form	


We fit g(x,t) with an algebraic and an exponential fitting 	

function:	

	

	

Algebraic:	

	

	

Exponential:	

	

	

	

We define the two fitting errors:	


	


    

€ 

fa(x) = C | sin(πx / L) | L /π( )
−τ / 4

    

€ 

fe(x) = C exp − | sin(πx / L) | / xo( )

    

€ 

~ x
−τ / 4

    

€ 

~ exp − x / xo( )

    

€ 

Ee,a (t) = g(x, t)− fe,a(x)( )
2

∑
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Fitting results	


τi	


•  The system relaxes to a steady state with exponent τi	

•  A supercritical superfluid state is observed	

•  The relaxation to the disordered groundstate is slowed down critically	
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Light cone dynamics	


	
 Dynamics separates G(x,t) into connected and disconnected part.	


x	


t	


vt	


x2	
x1	


Phys. Rev. A 80, 041601(R) (2009); 81, 033605 (2010)	


After the quench, G(x,t) is only piece-wise algebraic, thus the 	

fitting error spikes up.	
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Mapping out the dynamical phase transition	


•  τ(t), with τI as initial value	


•  For small τi, the system	


    equilibrates at 	

    some final τf > τi	


	


•  For larger τi, the system 	

   continues  to increase, and eventually relaxes to thermal equilibrium 

via vortex unbinding	
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Errors indicate change of functional form	


Algebraic error	

Exponential 	

error	


Dynamic 	

KT transition!	
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Scaling exponent of the metastable state	


•  The spectrum separates into total and relative density+phase 
fluctuations	


•  Symmetric and anti-symmetric sector equilibrate on a time scale 
shorter than the vortex unbinding scale.	


•  For T >> U n0/2, the total energy scales as T2	


•  So 	


•  But                           , so 	


    

€ 

Tf = Ti 2

    

€ 

τf =
1

2τi

+ D
# 

$ 
% % 

& 

' 
( ( 

−1

ψ1,2 ~ (n0/2 + δn1,2)1/2 exp(iφ1,2)	


    

€ 

τ−1 ≈
πρ

2mT
+ C

For 1D gases, sym and anti-sym sector stay out-of-equilibrium for a much longer time, 	

see T. Kitagawa, et al., NJP 2011	
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Dynamics as a renormalization group process	


€ 

I :   dτ
dl

=αg2

Dynamic KT transition	

€ 

II :   dg
dl

= (2 − 2 /τ)g

t = t0 el	


g: vortex 	

fugacity	
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A few steps of the derivation

Sine-Gordon model in 2D, i.e. dual theory of the XY model (see

e.g. X-G Wen)

1

µ
@tt✓ = �4✓ +

g

a2
sin ✓

We split the field ✓ into high- and low-energy modes, ✓ = ✓<
+ ✓>

,

i.e. into momentum modes between ⇤� d⇤ and ⇤ for ✓>
and

below ⇤� d⇤ for ✓<
.

We solve the EoMs for ✓>
up to first order in g :

✓>
(t) = ✓>

0 (t) + ✓>
1 (t)

We introduce this into the EoM of ✓<

1

µ
@tt✓ ⇡ �4✓ +

g

a2
(cos ✓<

)✓>
+

g

a2
sin ✓<

⇣
1� (✓>

)

2

2

⌘

16	


LM and A. Polkovnikov, Phys. Rev. A 81, 033605 (2010)	
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We now integrate out ✓>
and get

g ! g
⇣
1� (✓>

)

2

2

⌘
= g

⇣
1� 1

4⇡�

⌘
= g(1� 2/⌧)

The ✓>
1 correction in the second term gives rescaled � and µ. So

the low-energy harmonic oscillators are renormalized

!k ! !
0
k

We now use the separation of time scales between the cut-o↵

energy and the k ! 0 regime. According to the theorem on

adiabatic invariants (LL, Theor. Mech.), the ratio

Ik =

Ek

!k

is invariant under slower deformations of !k . We thus find a slow

drift of the energy stored in mode k, corresponding to slow

heating. This is consistent with the slow increase of ⌧ .

Combining all these arguments, and writing them in di↵erential

form, we arrive at the KT flow equations.
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Renormalization group flow vs. dynamics	


Quasi-condensate	


g	


1/T	
1/Tc	


Thermal	

Bose gas	


Phys. Rev. A 80, 041601(R) (2009); 81, 033605 (2010)	


Dynamics resemble the RG flow of the equilibrium 
system	
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Subcritical regime, fixing αg2(0)	


•  We write                                       	

•  By using the asymptotic form of τ, and fitting it to the subcritical 

data, one can extract αg2(0) and C.	


    

€ 

d(αg 2)
dl

= (4 − 4 /τ)(αg 2)
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Predicting critical dynamics via real-time RG	


•  We integrate the flow equations and find agreement with the 
numerics.	


Red: τ data at times t1 = 300, t2 = 1200, t3 = 1800.	

	

Blue: RG prediction; ‘II’ is the correct prediction, ‘I’ and ‘III’ are	

two near-by solutions for visible comparison.	


Analytical description of critical dynamics!	
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Time scales of vortex unbinding	


From RG, we derive the time scale	

	

Near criticality:	


Away from criticality:	


        Exponential increase at criticality	

        The energy range of suppression is                 	
           

	
given by the vortex core energy Ec	


    

€ 

t * ~ exp
Ec

T − Tc

# 

$ 
% 

& 

' 
( 

    

€ 

t * ~ exp
exp(−Ec / 2T)

1− T /Tc

# 

$ 
% 
% 

& 

' 
( 
( 
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Conclusions	


•  Critical dynamics can be described using a novel RG 
approach	


•  Realistic, experimental proposal to create a dynamic 
Kosterlitz-Thouless transition of 2D superfluids	


•  Metastable, supercritical state state emerges	

•  Dynamical vortex unbinding (Reverse Kibble-Zurek effect)	



