

Dynamic Kosterlitz-Thouless transition in 2D Bose mixtures

Ludwig Mathey

Zentrum für Optische Quantentechnologien und Institut für Laserphysik, University of Hamburg

KITP, September 2012

Forschungs- und Wissenschaftsstiftung Hamburg

- Dynamic Kosterlitz-Thouless transition with K. Günter, J. Dalibard, A. Polkovnikov
 - Renormalization group dynamics, vortex unbinding, reverse Kibble-Zurek
 - Experimental proposal for mixtures of hyperfine states

cond-mat/1112.1204

LM and A. Polkovnikov, Phys. Rev. A 81, 033605 (2010)

LM and A. Polkovnikov, Phys. Rev. A 80, 041601(R) (2009)

L

Renormalization group framework for critical dynamics

LM and A. Polkovnikov, Phys. Rev. A 81, 033605 (2010)

We rescale real-time and real space, and correct for it up to 1-loop order

This generates RG flow equations in real-time. To predict the dynamic behavior, we fix non-universal constants and time scales, and integrate the flow equations in time.

Bose gas in 2D: Kosterlitz-Thouless transition

Quasi-Order
$$G(x) = \langle \psi^+(x)\psi(0) \rangle \sim |x|^{-\frac{x}{4}}$$
 $\tau^{-1} \approx \frac{\pi\rho}{2mT} + C$
Prokof' ev, Ruebenacker, Svistunov, '00, '01, '02
driven by vortex unbinding
Disordered phase $G(x) = \langle \psi^+(x)\psi(0) \rangle \sim \exp(-|x|/x_0)$

Berezinskii 1972, Kosterlitz and Thouless 1973

Interfering 2D Bose gases

- Realization of quasi-condensates and KT transition
- algebraic exponential scaling. Vortices

Dalibard group, Phillips/Helmerson group, Chin group, Jin group, ...

Review: Z. Hadzibabic, J. Dalibard, Rivisto del Nuovo Cimento, 34, 389 (2011)

Dynamic KT transition

Preparation and measurement sequence

Numerical Approach: Truncated Wigner approximation

Sample over many Gross-Pitaevskii solutions according to the Wigner distribution of the initial state. Includes quantum and thermal fluctuations.

Phys. Rev. A 80, 041601(R) (2009); 81, 033605 (2010) A. Polkovnikov, Annals of Phys. 325, 1790 (2010)

Dynamics of G(x,t) on different time scales

On intermediate scales, a metastable supercritical state with algebraic scaling emerges.

$$\hbar/J = 0.3ms \ \rho_0 = 50 \ / \ \mu m^2 \ l = 0.3\mu m^{-87} Rb$$

On a very long time scale, the scaling changes from algebraic to exponential

dynamic KT transition!

Dynamic KT transition

Quantifying the change of functional form

We fit g(x,t) with an algebraic and an exponential fitting function:

Algebraic:
$$\sim |x|^{-\tau/4}$$

Exponential: $\sim \exp(-|x|/x_o)$
 $f_e(x) = C(|\sin(\pi x/L)|L/\pi)^{-\tau/4}$

We define the two fitting errors:

$$E_{e,a}(t) = \sum \left(g(x,t) - f_{e,a}(x)\right)^2$$

Fitting results

- The system relaxes to a steady state with exponent τ_i
- A supercritical superfluid state is observed
- The relaxation to the disordered groundstate is slowed down critically

Light cone dynamics

Dynamics separates G(x,t) into connected and disconnected part.

After the quench, G(x,t) is only piece-wise algebraic, thus the fitting error spikes up.

Phys. Rev. A 80, 041601(R) (2009); 81, 033605 (2010)

H

Mapping out the dynamical phase transition

• $\tau(t)$, with τ_l as initial value

• For small τ_i , the system equilibrates at some final $\tau_f > \tau_i$

• For larger τ_{i} , the system continues to increase, and eventually relaxes to thermal equilibrium via vortex unbinding

Dynamic KT transition

Ludwig Mathey

Errors indicate change of functional form

Scaling exponent of the metastable state

• The spectrum separates into total and relative density+phase fluctuations

$$\psi_{1,2} \sim (n_0/2 + \delta n_{1,2})^{1/2} \exp(i\phi_{1,2})$$

- Symmetric and anti-symmetric sector equilibrate on a time scale shorter than the vortex unbinding scale.
- For T >> U $n_0/2$, the total energy scales as T²
- So $T_f = T_i / \sqrt{2}$ • But $\tau^{-1} \approx \frac{\pi \rho}{2mT} + C$, so $\tau_f = \left(\frac{1}{\sqrt{2}\tau_i} + D\right)^{-1}$

For ID gases, sym and anti-sym sector stay out-of-equilibrium for a much longer time, see T. Kitagawa, et al., NJP 2011

Dynamics as a renormalization group process

Dar 6

₹.

A few steps of the derivation

LM and A. Polkovnikov, Phys. Rev. A 81, 033605 (2010)

<□▶ <⊡▶ <≣▶ <≣▶

Sine-Gordon model in 2D, i.e. dual theory of the XY model (see e.g. X-G Wen)

$$\frac{1}{\mu}\partial_{tt}\theta = \lambda \triangle \theta + \frac{g}{a^2}\sin\theta$$

We split the field θ into high- and low-energy modes, $\theta = \theta^{<} + \theta^{>}$, i.e. into momentum modes between $\Lambda - d\Lambda$ and Λ for $\theta^{>}$ and below $\Lambda - d\Lambda$ for $\theta^{<}$.

We solve the EoMs for $\theta^>$ up to first order in g:

$$\theta^>(t) = \theta_0^>(t) + \theta_1^>(t)$$

We introduce this into the EoM of $\theta^{<}$

$$\frac{1}{\mu}\partial_{tt}\theta \approx \lambda \triangle \theta + \frac{g}{a^2}(\cos\theta^<)\theta^> + \frac{g}{a^2}\sin\theta^< \left(1 - \frac{(\theta^>)^2}{2}\right)$$

5990

We now integrate out $\theta^>$ and get

$$g
ightarrow g \Bigl(1 - rac{(heta^{>})^2}{2} \Bigr) = g \Bigl(1 - rac{1}{4\pi\lambda} \Bigr) = g \bigl(1 - 2/ au)$$

The $\theta_1^>$ correction in the second term gives rescaled λ and μ . So the low-energy harmonic oscillators are renormalized

$$\omega_k \to \omega'_k$$

We now use the separation of time scales between the cut-off energy and the $k \rightarrow 0$ regime. According to the theorem on adiabatic invariants (LL, Theor. Mech.), the ratio

$$I_k = \frac{E_k}{\omega_k}$$

is invariant under slower deformations of ω_k . We thus find a slow drift of the energy stored in mode k, corresponding to slow heating. This is consistent with the slow increase of τ . Combining all these arguments, and writing them in differential form, we arrive at the KT flow equations.

Renormalization group flow vs. dynamics

Dynamics resemble the RG flow of the equilibrium system

Phys. Rev. A 80, 041601(R) (2009); 81, 033605 (2010)

Subcritical regime, fixing $\alpha g^2(0)$

- We write $\frac{d(\alpha g^2)}{dl} = (4 4/\tau)(\alpha g^2)$
- By using the asymptotic form of τ , and fitting it to the subcritical data, one can extract $\alpha g^2(0)$ and C.

Predicting critical dynamics via real-time RG

• We integrate the flow equations and find agreement with the numerics.

Red: τ data at times $t_1 = 300, t_2 = 1200, t_3 = 1800$.

Blue: RG prediction; 'II' is the correct prediction, 'I' and 'III' are two near-by solutions for visible comparison.

Analytical description of critical dynamics!

Time scales of vortex unbinding

From RG, we derive the time scale

Near criticality: $t^* \sim \exp\left(\frac{\exp(-E_c/2)}{\sqrt{1-T/T}}\right)$

Away from criticality:

$$^{*} \sim \exp\left(\frac{\exp(-E_{c}/2T)}{\sqrt{I-T/T_{c}}}\right)$$
$$t^{*} \sim \exp\left(\frac{E_{c}}{T-T_{c}}\right)$$

Exponential increase at criticality The energy range of suppression is given by the vortex core energy E_c

Conclusions

- Critical dynamics can be described using a novel RG approach
- Realistic, experimental proposal to create a dynamic Kosterlitz-Thouless transition of 2D superfluids
- Metastable, supercritical state state emerges
- Dynamical vortex unbinding (Reverse Kibble-Zurek effect)