

The Abdus Salam International Centre for Theoretical Physics, Trieste Italy

Cooling of hot electrons by phonons: role of pairing interactions and disorder V.E.Kravtsov (ICTP, Trieste, Italy) Collaboration: M.Feigelman (Landau Institute) Alexander Shtyk (Landau Institute)

Santa Barbara, October 23, 2012

Super-insulator?

TiN films InO films а 10^{-5} B = 0.9 T10-6 70 mK 10-7- 10^{-6} $dI/dV (\Omega^{-1})$ T = 0.15 K $dI/dV (\Omega^{-1})$ 10-8- 10^{-2} T = 0.01 K10-9. 20 mK 10⁻⁸ V_{τ} 10-10. Ja5 5 Ò -10 -5 10 -10 5 $V_{dc} \, (10^{-3}$ Voltage (mV) Baturina, Mironov, Vinokur, Sambandamurthy, Engel, Johansson, Peled, Baklanov, Strunk,'07 Shahar, '05

PHYSICAL REVIEW LETTERS

Ŝ

Electron-Phonon Decoupling in Disordered Insulators

M. Ovadia, B. Sacépé,^{*} and D. Shahar

Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel (Received 28 January 2009; published 28 April 2009)

What is the physics behind? Is there a new phase???

Our answer: No new phase but bistability due to overheating of electron system

 PRL 102, 176803 (2009)
 PHYSICAL REVIEW LETTERS
 week ending 1 MAY 2009

 Jumps in Current-Voltage Characteristics in Disordered Films
 Boris L. Altshuler,^{1,2} Vladimir E. Kravtsov,³ Igor V. Lerner,⁴ and Igor L. Aleiner¹

Assumptions

Electron Temperature Te is decoupled from the phonon bath Tph

Te depends on voltage V and is determined by the heat balance

Bistability

 $R(T) = \exp[-T_0 / T] \qquad W(T) = \Gamma T^{\beta}$

Electron temperature is strongly decoupled from phonon bath =

No phonon-assisted hopping

Electrons are the bath for themselves

see also: M.Gershenzon,...

S. Marnieros, L. Bergé, A. Juillard, and L. Dumoulin;

But electron cooling W is always due to phonons: electron interaction is energy conserving

Electron cooling rate W(T)

Ovadia, Sacepe, Shahar

Why power law cooling rate in insulator?

For energy relaxation it is NOT necessary to move in space.It is only necessary to move in the energy space.

But localization is $\delta_{\xi} \sim 1/\xi^3$ still relevant

Ef

e

X

$$P=(T_e/\delta_{\xi})^2 <<1$$

Small probability of having two close in energy states localized in one place

How to compensate a small factor $(T/\delta_{\xi})^{2}$?

Proximity to superconductor-insulatortransition?

The problem of electron cooling by phonons is revisited in the presence of superconducting fluctuations

> A. Shtyk, M.Feigelman and V.E.K. 2012

Naïve idea I

Fermions:

$$W_{out} = \frac{1}{\tau_{ph}(T)} \times \rho \int \delta f(\varepsilon) \varepsilon d\varepsilon = \frac{1}{\tau_{ph}(T)} \times \frac{n}{\varepsilon_F} T^2$$

Bosons:

$$W_{out} = \frac{1}{\tau_{ph}(T)} \times nT$$

Gain at low temperature

$$\frac{T^{2}}{\varepsilon_{F}} \Longrightarrow T$$

Naïve idea II

Standard e-ph cooling in metal:

$$W_{out}^{el} \sim \frac{T^3}{\theta_D^2} n \frac{T^2}{\varepsilon_F} \sim \frac{T^5}{\theta_D^2 \varepsilon_F} n$$

pair-ph cooling:

Metal ($\delta_{\xi} << T$):

$$W_{out}^{pair} \sim \frac{T^4}{\theta_D^2} n$$

Insulator $\delta_{\xi} >> T$:

 T^{3}

 $\sim \frac{1}{\theta_D^2}$

1

 $\tau_{_{ph}}(T)$

$$W_{out}^{pair} \sim \frac{T^4}{\theta_D^2} n \times \frac{T^2}{\delta_{\xi}^2} \sim \Gamma T^6, \quad \Gamma \sim \frac{n}{\theta_D^2 \delta_{\xi}^2}$$

Cooling in dirty metal

Under assumptions of:

-full involvement of impurity in the lattice motion -universal limit of screened Coulomb interaction ALL diagrams with diffusons cancel out!

Cooling in dirty metal

Diagrams without diffusons make a contribution smaller than in a clean metal:

$$W_{out} \sim \frac{T^{3}}{\theta_{D}^{2}} \frac{nT^{2}}{\varepsilon_{F}} \frac{\varepsilon_{F} v_{s}}{(q\ell)} \sim T^{6}, \quad q = \frac{T}{v_{s}}$$

A.Schmid, M.Reyzer, Sergeev

Cooling in a dirty metal

If no cancellation, the result would be larger than in clean metal:

$$W_{out} \sim \frac{T^3}{\theta_D^2} \frac{nT^2}{\varepsilon_F} \frac{1}{(q\ell)} \sim T^4, \quad q = \frac{T}{v_s}$$

Cancellation of phonon-diffuson vertices

Corrections due to superconducting fluctuations

BCS and BEC limits

Fluctuation propagator, corresponding to Ginzburg-Landau or Gross-Pitaevskii functional

$$\Theta \frac{\partial \Psi}{\partial t} = \frac{\delta F_{GL}}{\delta \Psi}$$

$$\underbrace{\partial \Psi}_{\partial t} = \frac{\delta F_{G-P}}{\delta \Psi}$$

The sum of corrections is only non-zero if Re γ is non-zero

$$i\gamma \frac{\partial \Psi}{\partial t} = \frac{\delta F}{\delta \Psi}, \quad \gamma = \gamma + i\gamma''$$

BEC resonance: real pair formation

e-h symmetry and γ'

Pole of the fluctuation propagator:

$$L(i\omega,q) = \frac{1}{Dq^{2} + (T - T_{c}) + |\omega| \gamma'' - \gamma' i\omega}$$

$$v(E) = v_0 + v_1(E - E_F)$$

Can be obtained if e-h symmetry is violated

There is the e-h symmetry in the canonical BCS with $v(E)=v_0$. There is no e-h symmetry in BEC where the condensate occupies the bottom of spectrum.

Detailed theory of BCS-BEC crossover in dirty metals is needed!

Diagrams with diffuson do not cancel out in the presence of Cooper attraction if γ' is non-zero!

$$W_{out}^{pair} \sim T^{6} \frac{\lambda}{(q\ell)^{2}} \sim \lambda T^{4}$$

Correspondence to naïve picture

$$W_{out} \sim \frac{T^3}{\theta_D^2} (q\ell) \times \frac{nT^2}{\varepsilon_F} \propto \frac{T^3}{\theta_D^2} nT \times \left(\frac{T}{\varepsilon_F} \right)^2$$

Enhancement of cooling rate by virtual pairs near MIT

$$W_{out} \propto \lambda T^{4} \min\{1, \frac{T^{2}}{\delta_{\xi}^{2}}\}$$

Cooling rate
$$\lambda T^{6} \xi^{6} \qquad \lambda T^{4} \qquad \lambda \frac{T^{4}}{\ell^{3}}$$
$$T^{6} \ell = T^{5}$$

disorder MIT

Conclusion

 Power-law cooling rate in the insulator
 How to get T^6 cooling rate? 1/T^2 enhancement due to virtual pairs and T^2 suppression by localization
 ξ^6 enhancement of pre-factor near MIT