

Scaling & Universality at Landau & non-Landau transitions

with F. Burnell, A. Erez, S.S. Gubser, V. Khemani, S.L. Sondhi

Thursday, August 30, 12

Outline

- Kibble-Zurek (KZ) Problem
 - Set up in Landau transition
 - Scaling limit
 - Universal content
- Port to non-Landau transition
- Z₂ gauge theory in (2+1)
- Irrelevant \rightarrow dangerously irrelevant in KZ
- Analogies in Levin-Wen models

• Slow ramps near critical points

- Slow ramps near critical points
- Critical point

$$\tau - H = J \sum_{ij} \tau_i^z \tau_j^z + \Gamma_M \sum_i \tau_i^x$$

- Slow ramps near critical points
- Critical point

- Slow ramps near critical points
- Critical point

Universal scaling of defects

Universal scaling of defects

Universal scaling of defects

Universality, scaling

As quench time $\ au
ightarrow \infty$

Diverging length and time scale $I_{\rm K}$ and $t_{\rm K}$

Chandran et al., PRB 86, 064304 (2012)

Universality, scaling

As quench time $\ au o \infty$

Diverging length and time scale $I_{\rm K}$ and $t_{\rm K}$

Limit
$$\tau \to \infty$$
 holding $\frac{x}{l_K}, \frac{t}{t_K}$ fixed

Chandran et al., PRB 86, 064304 (2012)

Universality, scaling

As quench time $\ au o \infty$

Diverging length and time scale $I_{\rm K}$ and $t_{\rm K}$

$$\begin{array}{l} \text{Limit } \tau \to \infty \text{ holding } \frac{x}{l_K}, \frac{t}{t_K} \text{ fixed} \\ \\ \lim_{\substack{\tau \to \infty \\ x/l_K, t/t_K \text{fixed}}} [\\ \end{array}](x,t;\tau) = \frac{1}{l_K^{\Delta}} f\left(\frac{x}{l_K}, \frac{t}{t_K}\right) \end{array}$$

Chandran et al., PRB 86, 064304 (2012)

Observables

Observables

Comments

- Dynamical scaling hypothesis + protocol
 - KZ universality class
 - Content : scaling functions, exponents ..
- Coarsening
 - Finite temperature ordered phase
 - Model C
 - Order parameter relaxes
 - Energy density conserved

- Wegner lets us cheat!
- Ising gauge theory on the dual lattice

- Wegner lets us cheat!
- Ising gauge theory on the dual lattice

- Wegner lets us cheat!
- Ising gauge theory on the dual lattice

Vortex

- Wegner lets us cheat!
- Ising gauge theory on the dual lattice

 σ_l^x

 $l \in C$

• $\tau_i^z \tau_j^z \iff \text{String order parameter}$

Wilson loop

Charge confined		Charge deconfined		PM
Area law	Vortices co	ondense	Perimeter law	K/Γ

Wilson loop

Electric field coarsening

Creates a pair of vortices at ends of C

Confined/Trivial

 $\rightarrow K/\Gamma$

Topological degeneracy

Charge-flux statistics

-Banksey

Confined/Trivial

 $\rightarrow K/\Gamma$

Topological degeneracy

Charge-flux statistics

-Banksey

Confined/Trivial

Topological degeneracy

 $+ K/\Gamma$

Charge-flux statistics

• Each topological sector → different TFIM

-Banksey

- Deconfined phase : $exp(-\Delta/L)$ energy splitting
- $L \gg I_K, I_{co}$..

Confined/Trivial

Topological degeneracy

Charge-flux statistics

Each topological sector → different TFIM

-Banksey

- Deconfined phase : $exp(-\Delta/L)$ energy splitting
- $L \gg I_K, I_{co}$..

$$q(t;\tau) \sim \frac{L^2}{l_K^3} \left(\frac{t}{t_K}\right)^{\alpha} + \frac{L}{l_K} \left(\frac{t}{t_K}\right)^{\nu} + \dots$$

 $+ K/\Gamma$

 $\begin{array}{c} \textbf{Confined/Trivial} & & & \\ \textbf{F} \\ \textbf{Topological degeneracy} \\ \hline \textbf{Charge-flux statistics}. \end{array}$

Each topological sector → different TFIM

- Deconfined phase : $exp(-\Delta/L)$ energy splitting
- $L \gg I_K$, I_{co} .. $q(t; \tau) \sim \frac{L^2}{l_K^3} \left(\frac{t}{t_K}\right)^{\alpha} + \left(\frac{L}{l_K} \left(\frac{t}{t_K}\right)^{\nu}\right) + \dots$ • Window for O(L) term to beat O(L²)

$$-H = J \sum_{l} \sigma_{l}^{z} \prod_{s \in l} \tau_{s}^{z} + \Gamma_{M} \sum_{s} \tau_{s}^{x}$$

Thursday, August 30, 12

$-H = J \sum_{l} \sigma_{l}^{z} \prod_{s \in l} \tau_{s}^{z} + \Gamma_{M} \sum_{s} \tau_{s}^{x} + K \sum_{p} \prod_{l \in \partial p} \sigma_{l}^{z} + \Gamma \sum_{l} \sigma_{l}^{x}$

Fradkin & Shenker, PRD 19, 3682 (1979)

• Coupling to matter RG irrelevant to T=0 transition

• Defines local dressed operators : "charge", "vortex" ..

Excited states?

Excited states?

Excited states?

- Freedom in U \Rightarrow different local "charge"
- No finite T transition
 - "Charge" density ~ $\exp(-\Delta/\epsilon)$

Dangerously irrelevant

- Coupling to charge irrelevant for T=0
- T≠0 : destroys confined phase
- Ramp through transition
 - Charge on scale $\ell \sim \exp(\Delta I_{\rm K}/(t/t_{\rm K})^{\alpha})$
 - Coarsening stops when $I_{co} \sim \ell$. Thermalization?
 - ℓ/I_K infinite. Outside scaling limit
 - KZ story identical!

Frendenhagen-Marcu (FM)

- Observables Hamiltonian dependent
- FM order parameter Hamiltonian independent

- Deconfined : 0
- Confined : Non-zero

Gregor et al, NJP, 13, 025009 (2011)

Confined → Deconfined

Confined → Deconfined

Confined -> Deconfined

- Vortex pairs of length > I_K at t = $-t_K$
- $t \gg t_K$: annihilate leaving behind contractible strings

Levin-Wen Models

- 'String net' lattice Hamiltonians
- Hilbert Space : Edge labels 1, ψ , σ
- Allowed vertices (" ∇ .E = 0")

• Allowed label flips (in "B²" term)

Map to (2+1)-d TFIM

Map to (2+1)-d TFIM

- Condensation of ψ vortex
- Identify

Map to (2+1)-d TFIM

- Condensation of ψ vortex
- Identify

Conclusions

- Kibble-Zurek Problem
 - Set up in Landau transition
 - Scaling limit
 - Universal content
- Scaling theory in non-Landau transition
- Z₂ gauge theory in (2+1)
- Irrelevant \rightarrow dangerously irrelevant in KZ
- Analogies in Levin-Wen models