Quantum quenches, dynamical transitions and off-equilibrium quantum criticality

Giulio Biroli IPhT CEA Saclay

In collaboration with Bruno Sciolla (IPhT CEA Saclay): PRL 2010, JSTAT 2011 and on condmat (very) soon

Dynamical transition & quantum quenches starting from symmetry broken phase

$$H = -J\sum_{\langle i,j\rangle} b_i^{\dagger} b_j + \frac{U}{2}\sum_i n_i(n_i - 1)$$

Quantum Quench: $U_i \rightarrow U_f$

superfluid

Mott Insulator

Limit of infinite dimensions: $d \to \infty$ $H = -\frac{J}{V} \sum_{i \neq j} b_i^{\dagger} b_j + \frac{U}{2} \sum_i n_i (n_i - 1)$

Fisher et al '89

Quantum Quench in infinite dimensions

Site-permutation symmetry of H and $|\psi_{GS}\rangle$: the system remains in the symmetric subspace.

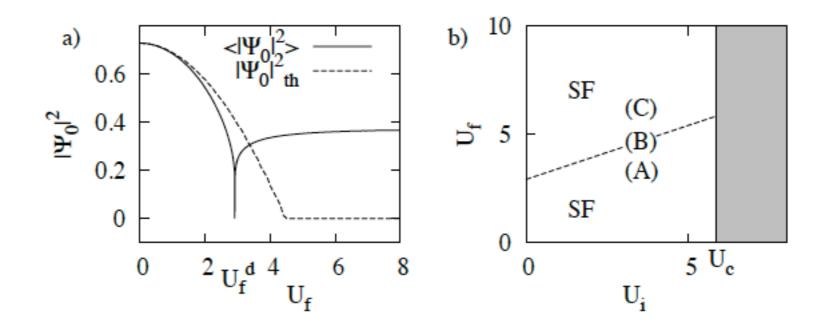
Site-permutation symmetric states:

$$|x_0, x_1, x_2, \ldots\rangle = \mathcal{N} \sum_{i=1}^{\prime} |\{n_i\}\rangle$$

Degrees of freedom: x_i fraction of sites with i bosons

Classical dynamics for x_i in the thermodynamic limit $\frac{1}{V} \sim \hbar$

Dynamical Transition



- Logarithmic singularity of time averages (no equilibration and no damping)
- Critical U: initial energy equal to the one of the Mott (metastable) state.
- Different from the equilibrium phase transition.

"Generality" of the transition (within Mean-Field approaches)

- Found in the Hubbard Model by Dynamical Mean Field Theory (Eckstein, Kollar, Werner '09) and Gutzwiller (Schiro', Fabrizio '10,'11)
- Transverse Field Ising in infinite D (Sciolla, GB '11)
- Quartic quantum field theory by mean-field
 approximation (Gambassi, Calabrese '10)

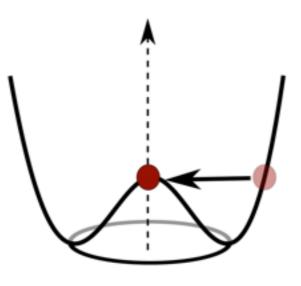
Absence of thermalization, no dynamics starting from the Mott state, no damping, no spatial correlations: need to go beyond and take into account fluctuations

Large-N quantum field theory

Hamiltonian:

$$H = \int d^3x \frac{1}{2} \sum_{a} \left((\vec{\nabla}\phi_a(x))^2 + m_0^2 \phi_a(x)^2 \right) + \frac{\lambda}{4!N} \left(\sum_{a} \phi_a(x)^2 \right)^2$$

- Quantum phase transition: $\langle \phi_a \rangle \neq 0$ a = 1, ..., N
- Mean-field theory of quantum quenches (Calabrese, Gambassi '10): $m_i \rightarrow m_f$ dynamical transition.



Large-N approximation for quantum quench

$$\psi_a(t) = \langle \hat{\phi}_a(x,t) \rangle$$

$$G_a(x-x';t,t') = \left(\langle \{ \hat{\phi}_a(x,t), \hat{\phi}_a(x',t') \} \rangle - \psi_a(t) \psi_a(t') \right)$$

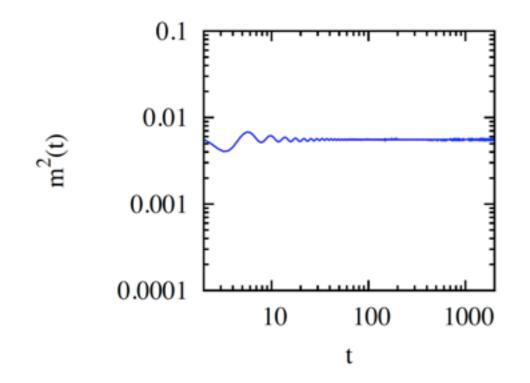
Using 2PI formalism (Baym-Kadanoff)

$$\begin{aligned} \partial_t^2 \phi_t &= -\left(m_t^2[\phi] + \frac{\lambda}{6N} \int_p G_{ptt}^{\parallel}\right) \phi_t = -\frac{\partial V(\phi)}{\partial \phi} \\ \partial_t^2 G_{ptt'}^{\perp} &= -\left(p^2 + m_t^2\right) G_{ptt'}^{\perp} \\ \partial_t^2 G_{ptt'}^{\parallel} &= -\left(p^2 + m_t^2 + \frac{\lambda}{3N} \phi_t^2\right) G_{ptt'}^{\parallel} \\ m_t^2 &= (m_0^f)^2 + \frac{\lambda}{6N} \left(\phi_t^2 + \frac{1}{2} \int_p G_{ptt}^{\parallel} + \frac{N-1}{2} \int_p G_{ptt}^{\perp}\right) \end{aligned}$$

See also Sotiriadis, Cardy '09; Schiro', Fabrizio '11

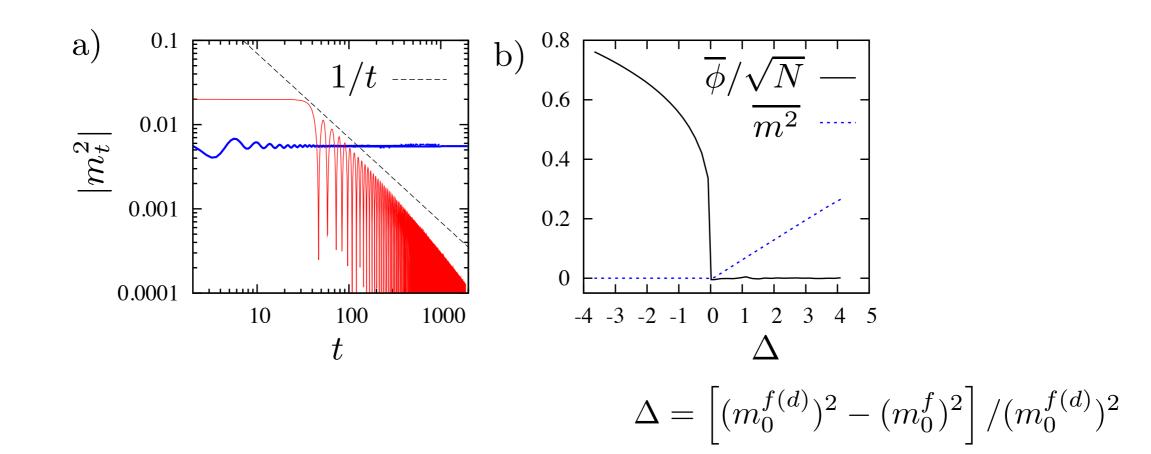
Quantum Quench: $m_i^2 < 0 \rightarrow m_f^2$

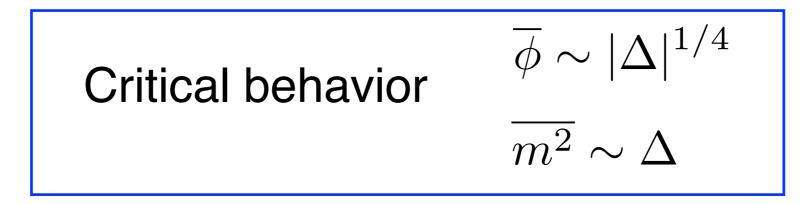
Steady state reached at long times (damping, relaxation but not to thermal equilibrium)



Strong quench

Dynamical transition (steady state)

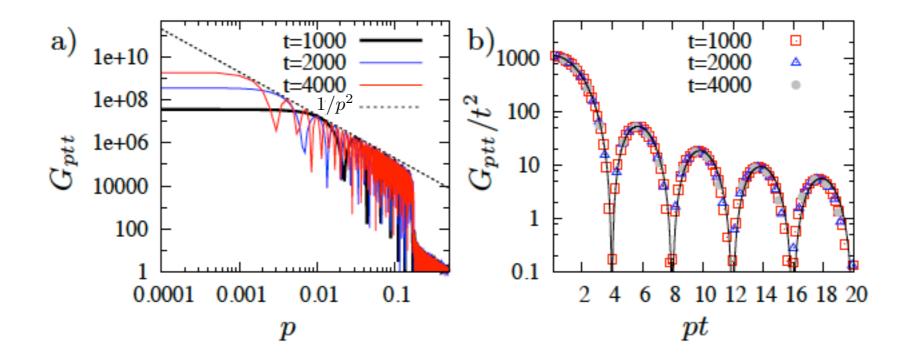




At the transition dynamic scaling and aging

The system never reaches the steady state

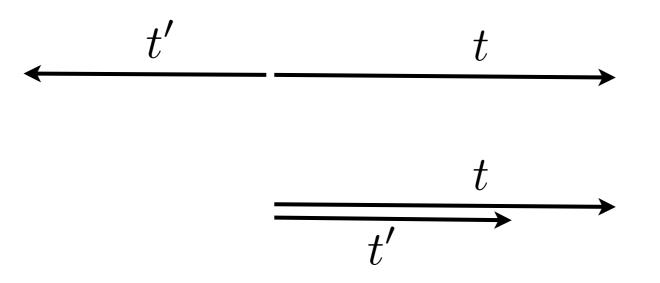
$$G^{\perp}(p;t,t') = \frac{1}{p^2} F\left(p\xi(t), \frac{t}{t'}\right) \quad \xi(t) \propto t$$
$$F(x,y) = C\left[\cos(x-xy) - \cos(x+xy)\right]$$



Quasi-particles interpretation

$$G(r;t,t') \propto \frac{1}{r}\theta(|r| - (t-t'))\theta(t+t'-|r|)$$

Quasi-particles propagation $r = t \ (v = 1)$



Calabrese, Cardy '07

Critical behavior

Diverging time to reach the steady state $\tau_{relax} \sim$

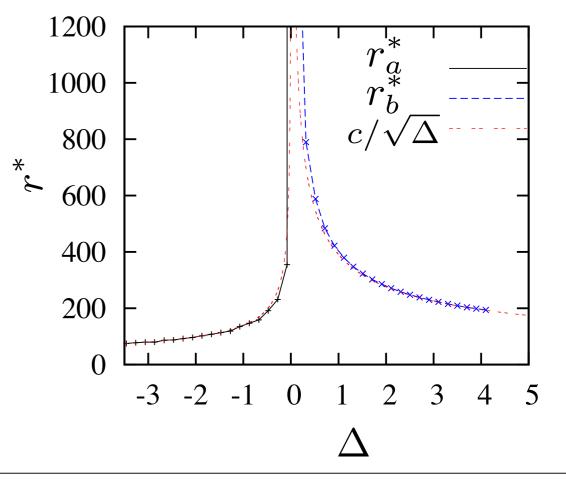
$$\frac{1}{\sqrt{|\Delta|}}$$

 $O(1) \ll t \ll \tau_{relax}$ Dynamic scaling & Aging

 $t \sim \tau_{relax}$

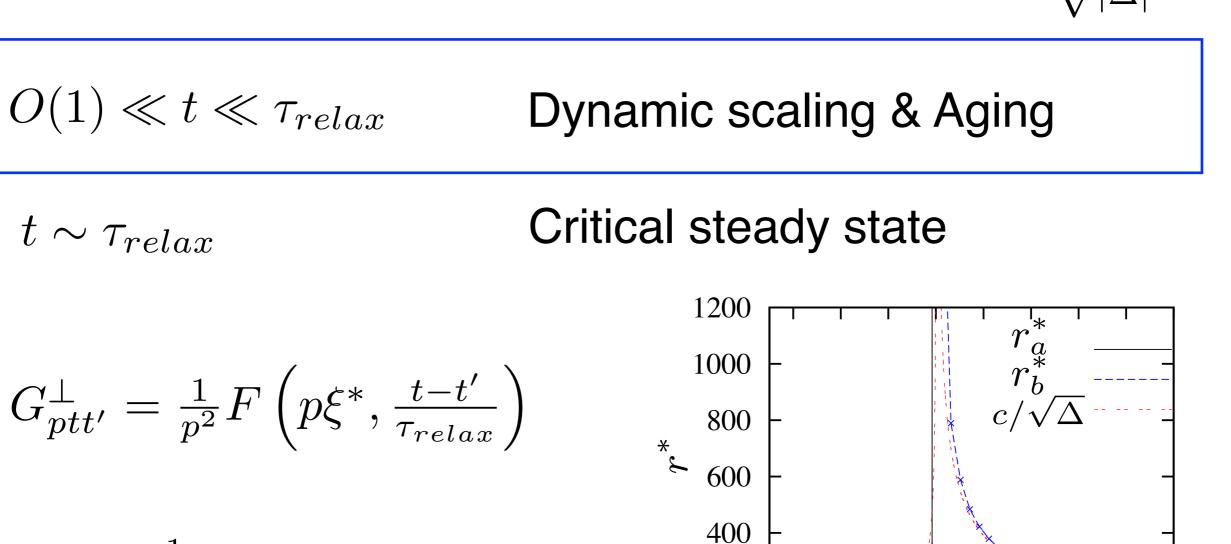
Critical steady state

$$G_{ptt'}^{\perp} = \frac{1}{p^2} F\left(p\xi^*, \frac{t-t'}{\tau_{relax}}\right)$$
$$\xi^* \sim \frac{1}{\sqrt{|\Delta|}} \sim \tau_{relax}$$



Critical behavior

Diverging time to reach the steady state $\tau_{relax} \sim$



200

0

-3

0

-1

-2

2

3

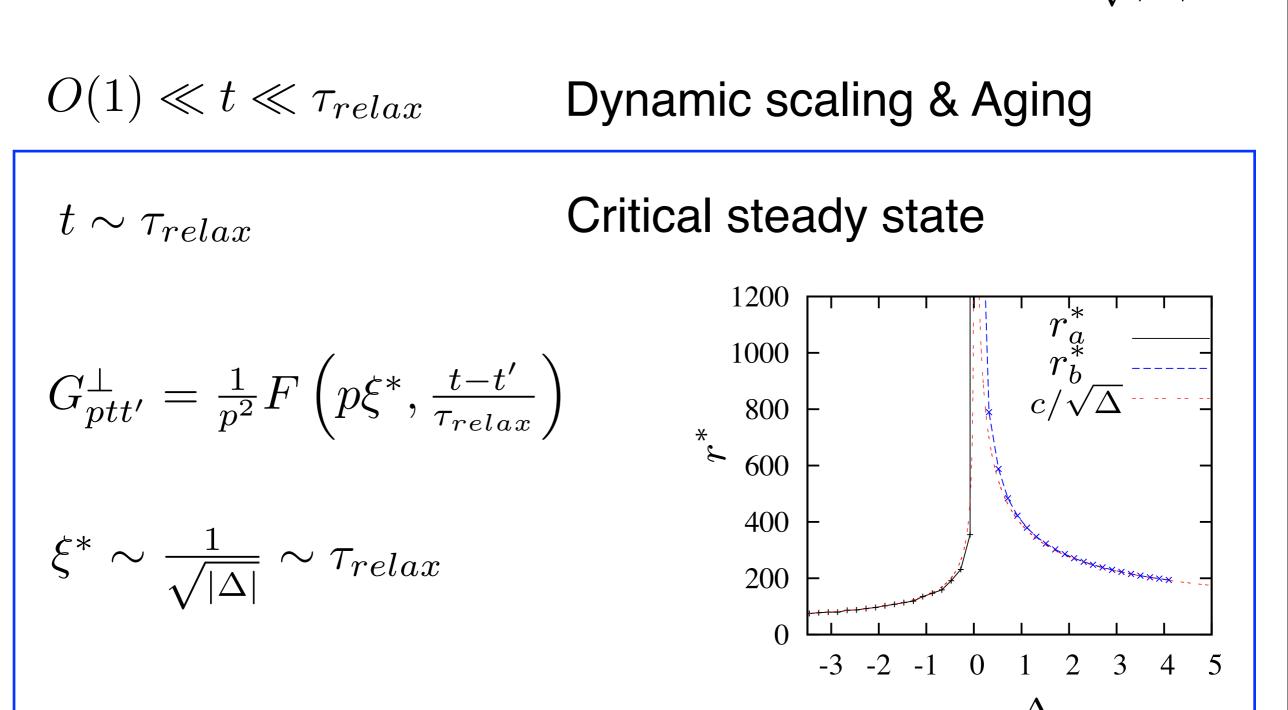
4

$$\xi^* \sim \frac{1}{\sqrt{|\Delta|}} \sim \tau_{relax}$$

5

Critical behavior

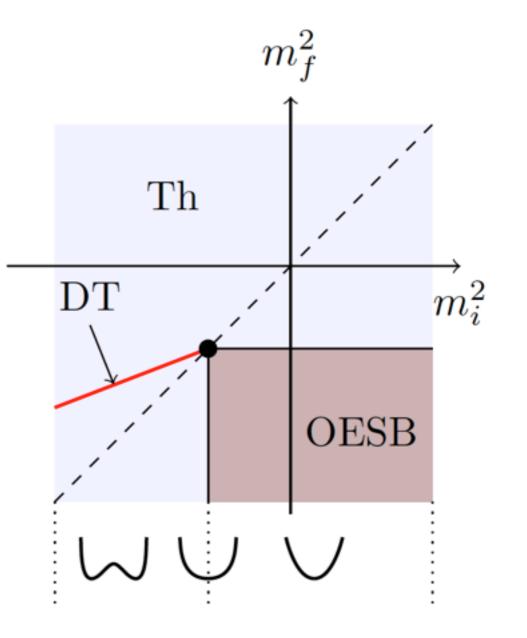
Diverging time to reach the steady state $\tau_{relax} \sim \frac{1}{\sqrt{|\Delta|}}$



15

Quantum quenches from the symmetric phase

- Same dynamic scaling in the whole OESB region.
- Similarity with coarsening after thermal quenches.



Boyanovsky, De Vega et al '95, '96...

Open questions on the dynamical transition

- Connection with the quantum/thermal phase transition? (Sciolla, GB '11, Schiro', Fabrizio '11)
- Does it remain once all dynamical fluctuations are included? (Calabrese, Gambassi '10)
- Connection with coarsening?
- Evidences from numerics? (Kollath Lauchli '10; Eckstein et al '09)

Conclusion and Perspectives

- Dynamical transition in mean-field theory of quantum quenches.
- Beyond mean-field theory by 1/N expansion: relaxation to steady state, (different) critical exponents, diverging time and length-scales and aging for the critical quench.
- Study next-leading order and thermalization.
- Full analysis of the dynamical transition
- Effects of driving on the dynamical transition