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Fisher et al ʼ89

Dynamical transition & quantum quenches 
starting from symmetry broken phase

Mott Insulator

superfluid

Ui → UfQuantum Quench:

2



Quantum Quench in infinite dimensions 

Site-permutation symmetry of H and         : the system 
remains in the symmetric subspace.

|ψGS�

Site-permutation symmetric states: 

xiDegrees of freedom:     fraction of sites with i bosons

|x0, x1, x2, ...� = N
��
|{ni}�

Classical dynamics for     in the thermodynamic limitxi
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Dynamical Transition

• Logarithmic singularity of time averages (no 
equilibration and no damping)

• Critical U: initial energy equal to the one of the Mott 
(metastable) state.

• Different from the equilibrium phase transition.
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“Generality” of the transition 
(within Mean-Field approaches)

• Found in the Hubbard Model by Dynamical Mean Field 
Theory (Eckstein, Kollar, Werner ʼ09) and Gutzwiller (Schiroʼ, Fabrizio 
ʻ10,ʼ11)

• Transverse Field Ising in infinite D (Sciolla, GB ʼ11)

• Quartic quantum field theory by mean-field 
approximation  (Gambassi, Calabrese ʼ10)

Absence of thermalization, no dynamics starting from 
the Mott state, no damping, no spatial correlations: 
need to go beyond and take into account fluctuations
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Large-N quantum field theory

• Hamiltonian:

• Quantum phase transition: �φa� �= 0

• Mean-field theory of quantum quenches (Calabrese, 

Gambassi ʼ10):                 dynamical transition. mi → mf
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Large-N approximation for quantum quench

• Using 2PI formalism (Baym-Kadanoff)

ψa(t) = �φ̂a(x, t)�

See also Sotiriadis, Cardy ʼ09; Schiroʼ, Fabrizio ʼ11
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Quantum Quench:

Steady state reached at long times (damping, relaxation 
but not to thermal equilibrium)                             

Strong quench 

m2
i < 0 → m2

f
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Dynamical transition (steady state)
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At the transition dynamic scaling and aging

ξ(t) ∝ t

F (x, y) = C [cos(x− xy)− cos(x + xy)]

1/p2

The system never reaches the steady state                        

G⊥(p; t, t�) =
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t
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�
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Quasi-particles interpretation

G(r; t, t�) ∝ 1
r
θ(|r|− (t− t�))θ(t + t� − |r|)

r = t (v = 1)

tt�

t

t�

Quasi-particles propagation

Calabrese, Cardy ʼ07
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Critical behavior

Diverging time to reach the steady state                        τrelax ∼ 1√
|∆|

O(1) � t � τrelax Dynamic scaling & Aging

t ∼ τrelax

G⊥
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Critical steady state

ξ∗ ∼ 1√
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Quantum quenches from the symmetric phase

• Same dynamic scaling in the 
whole OESB region. 

• Similarity with coarsening after 
thermal quenches.

Boyanovsky, De Vega et al 
ʼ95, ʼ96...
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Open questions on the dynamical transition

• Connection with the quantum/thermal phase 
transition?

• Does it remain once all dynamical fluctuations are 
included? (Calabrese, Gambassi ʼ10) 

• Connection with coarsening?

• Evidences from numerics? (Kollath Lauchli ʼ10; Eckstein et al ʼ09)

(Sciolla, GB ʼ11, Schiroʼ, Fabrizio ʼ11)
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Conclusion and Perspectives

• Dynamical transition in mean-field theory of quantum 
quenches.  

• Beyond mean-field theory by 1/N expansion: 
relaxation to steady state, (different) critical 
exponents, diverging time and length-scales and 
aging for the critical quench. 

• Study next-leading order and thermalization.

• Full analysis of the dynamical transition

• Effects of driving on the dynamical transition
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