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Can say concrete statements when
relaxation time of subsystem << drive and coupling times

(note combined system may still be far from equilibrium)




Outline

* Discuss first in details the driven isolated case
* In particular observe two broad classes of distributions
* |llustrate the idea behind derivation in a trivial example

* Derivation and conditions for the relation to hold -
derive using fluctuation relations (quantum version see poster by Guy Bunin)

* [lllustrate on another example (driven XY model inld, driven quantum transverse
field Ising model in 1d and particle in a chaotic cavity)]

» Results for driven dissipative, thermalizing and drive by external baths

e Summarize




Motivation:
cold atom systemes,
trapped ions...

Many body isolated
system in a potential

Due to noise in the system the
potential is fluctuating in time

2nd law - Lord Kelvin: No process is possible in which the sole result is the

absorption of heat from a reservoir and its complete conversion into work

fluctuating potential can only increase (on average) the energy of the system




"X-rays will prove to be a hoax."
—— Lord Kelvin, president, Royal Society, 1895

"Radio has no future."
——- Lord Kelvin

"Heavier than air flying machines are impossible.”
-- Lord Kelvin




Essentially identical question: move piston with a given cyclic protocol
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Thermodynamics - adiabatic process E
energy will remain constant every time A A
cycle is completed v v &
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irreversible
process every experiment will give a different
result (will be visible in small mesoscopic systems
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irreversible
process every experiment will give a different
result

(E) A
Second law - repeat experiment many times
and the average energy will always increase
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Several questions (begin to address in this talk):

* Can we say something about the distribution of the final energies?

* How do they compare to changing the energy of the system by coupling
the system to a thermal bath!?

2 _ 2
O-eq (E) _ T C’U independent of history, given energy know width

Can it be wider/narrower?

* Can one classify different systems with distinct behaviors?




Main Result for this setup

If the drive is slow enough (still irreversible + exact conditions later) the variance
is governed by the rate of energy change in the system

<E>A UQ(E)A

implies
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Specifically, given A((F)) = 0;(F)|(depends on how potential varies and for a given system can
be controlled to a large extent) we can write:
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at initial state inverse temperature at energy E,
B(E) = 0InQ(E)/OE

In essence a direct result of time-reversal symmetry




. . 2 2
Implications of results | ‘ thermal bath o, (E) =TC,

Recall, given A((E)) = 0;,(F) we can write:

) E dE'
A7y W) /E A2 (E) B ()

|~ /

at initial state inverse temperature at energy E’

e Depending on the functional form of A(E), 5(FE) the distribution can be larger
and somewhat surprisingly smaller than the equilibrium distribution.
History Dependent




. . 2 2
Implications of results - 2 ‘ thermal bath o, (E) =TC,

Recall, given A((E)) = 0,(F) we can write:

) E dE'
A7y W) /E A2 (E) B ()

|~ /

at initial state inverse temperature at energy E’

* Two distinct behaviors depending on integral controlled by upper or
lower bound (of course doesn’t have to be).

Namely, if integral diverges/converges asymptotically at large F/




lllustrate last points for genetic §(F) o E~% (Goldstone modes, Fermi liquid,
|deal gas ....)

from positivity of specific heat
O<a<l

Take A ((E)) = 0;(E) = ¢(E)® , namely, rate of change power law in energy.

demanding finite energy at finite time

s <1




Results normalized by equilibrium width:

B(E)x B¢ A(F)=0F = F?
n=2s—1—-«

Regime |Condition width
Gibbs-like| 1 <0 o~
run-away | n >0 ;;q ~ 270‘ (EQO)"

critical n =0 ;;q ~ 2alog (Eﬂo)

1> 0 integral converges

Broad classification remains valid as long as functions are monotonic, namely A(E)

- For large negative 7] the distribution becomes very narrow

- In terms of entropy the integral becomes

/S dS/
S0 AQ(S/)

boarder line when § ~ t2 (time measures number of cycles)




Derivation




|dea through a (really) simple example

Weakly interacting harmonic oscillators

oSN NV

impulse on one oscillator
weak interactions allow to thermalize

p— p+ F(x)At
N

particle momentum

* Assume impulse short enough that position doesn’t change (in general not
needed)

* Let system equilibrate between pulses (quasi-static)

* Allow for general distribution of frequencies g(w)




Using fact that between impulses system equilibrates

2

p(x,v) xe >

average over initial positions in eq. to obtain the first and second cumulants
of the work

(p+ F(z)At)* — p*

(W) = A = (F@))AL2, (w?), =B = %(F(w)2>At2
note that . ) .. .
Fluctuation - dissipation
53 = 2A relation

Comment - results will not change if act on several
oscillators and will show completely general




Since we are essentially dealing with a quasi-static process we can describe
the evolution of the energy by a Fokker-Planck equation

9P = —0p(A(E)P) + %8EE(B(E)P)

but with 3B = 2A and time the number of impulses
(Noted before in chaotic particles -C. Jarzynski 93, D. Cohen 99, Ott 79, Chirikov 70s)

2 o A2 (E) 2 B dE’
o (E)_OOAZ(EO) + 24 (E)/Eo A2(E')5(E’)




Weakly interacting harmonic oscillators

AT

weak interactions allow to thermalize

For impulse F'(z) = Cxz" can show
P (@) Note, here easy to

A(E) < E*" | change A(E)

Where B(FE) o< E~“ depends on g(w)

For Id harmonic chain o = 1/2

<= = E) = E
3
22r>5 = o?(E) = Col (E)E" 3/




(will worry about |/N corrections)

Recall - I. Liouville’s theorem quantum mechanically - unitarity
(volumes in phase space are conserved under dynamics)

2. Hamiltonian - H()\(t))
3. For a given )\ dynamics have time reversal symmetry

Consider changing \(t) on isolated system. O<t<T
Forward direction - (%)

Backward direction - \(7 — ¢) —
—=

P. Pradhan,Y. Kafri, D. Levine,, PRE 77,041 129 (2008)




time reversed Av
_\ after protocol

" (work done) PR(—W, E + W) _

OF

Isolated system - phase space
(microcanonical)

Then

Pr(W, E) YEiw
= = E — S\.(F

inour case A\p = A\,

Easy to obtain the same for quantum taking equilibrium density matrix and unitary
evolution




Difference between reversible and irreversible

non-reversible

reversible (closed system dQ=0)




For periodic driving

PF(WvE) - ZE—I—VV . .
B BT = et = exp(S(E + W) — S(E)
Using |
S(E+W)—S(E)EBW——W2 need (I <« C,

2
202,

Pr(—W,E + W) = Pp(—W, E) + WdpPr(—W, E)

Therefore, to leading order in |/N the Crooks equality (G. E. Crooks PRE, 60,2721,1999)

Pr(W,FE)
Pr(—W, F)

= exp(B8W)




Pr(W, E)

Pr(—W, F)

Not surprising that we get the Jarzynski relation to leading order
/W 1
(e ) =14+ 0(=)

(C. Jarzynski, PRL, 78, 2690 (1997))

= exp(8W)

N




With the relation established for an isolated system to get the Fokker-Planck
equation look at cumulant of the work from (everything up to I/N)

In(e ")

BW?)e =2(W)+ O(1/N)

BB =2A+ O(1/N)

9P = —0p(A(E)P) + %8EE(B(E)P)

For Fokker-Planck to be valid need to demand third cumulant small

BHw (B))e < (w(E)).
This is the quasi-static demand

Different derivation found in C. Jarzynski 93, D. Cohen 99, Ott 79




So far, Isolated system
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The ideas can be generalized to account
for a system that is driven and
coupled to a bath

FEq _ﬁ-. E5
A
Ap = A1+ Ay

Two dimensional Fokker-Planck equation is reduced to one variable ( F};) the
following fluctuation-dissipation relation holds

1
0P = —0g, (A1 P) + 58%1 (B11P)

241 — 282 /B1Ar = (B1 — B2) B11
/ \

/ \
Drive in reduced equation Diffusion coefficient of reduced equation




First Case:
No Driving - Just Dissipation (equilibrating)

-

o = g

\ Y

Assume S = Si(F1)+ S3(F3) -weak interactions between systems

<6A51+AS2> ~ <6—(52—51)AEB> —1




Attaching two systems, equilibration

Isolated system, external drive

A ( ) E, <_6L
o*(E)=0; +24° (E)
" £ (E,) fEAZ(E)[Sl(E)
Two isolated systems, weak interaction (slightly modified
fluctuation dissipation relation 24 = (81 — B2)B ). .
E

o2 ()0 A E)

2 dE
b 42 (E )+2A (E)jz) A° (E )[[3] (E )— b, (Ez)]

- Fluctuation dynamics of full equilibration process.

- External drive case is formally recovered by taking 7, = (3, =0)




Equilibrating systems: simulations

Hard spheres in a box,
two different masses




Second Case:
Driven Dissipative

d rivet

Can write expression for time evolutions of variance.
Present results only for steady-state




Driven-Dissipative setting: at steady-state

Relation between relaxation time,

energy flow and fluctuations:
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Derivation - essentially using Fokker-Planck at steady state

Near steady state

1
Al = ——e; , Bi1 = Bg with €1 = E1 — E(l)
T

ore1 = —e1 /T + / Bsn

Implies

B
<61 (tl) €1 (t2)> p— 2T6_|t2—t1|/7'

07 = B,T/2

In addition the fluctuation dissipation relation implies at steady-state

—2B2/B1AF = (1 — B2) B




Third Case:
Driven by two external baths

Can write expression for time evolutions of variance.
Present results only for steady-state




Again a relation between the relaxation time, energy fluctuations
and rate of energy injection

. (B1— B82)(Bs — B1)

T = o’

(B3 — B2)




Summary

* For driven isolated systems (noisy potential, driving on purpose...)

<E>A UQ(E)A

——

for slow enough driving

> >
4 t

* Simple expression - history dependent (in contrast to heating with thermal bath)
* Broadly two different regimes - equilibrium like and wide run away

* Can show hold for other examples (XY model in Id, TF Ising model (quantum))
* Generalizing to thermalizing systems (teas cups)

* Generalizing to driven dissipative systems (fluctuation dissipation like relation)

* Generalize to drive by two external baths




