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 How do quantum systems come to equilibrium? 

Overview: 1. Equilibration

Gogolin, Mueller, Eisert, Phys Rev Lett 106, 040401 (2011) 
Cramer, Eisert, New J Phys 12, 055020 (2010) 
Cramer, Dawson, Eisert, Osborne, Phys Rev Lett 100, 030602 (2008) 

ρ(t) = e−iHtρ(0)eiHt, H =
∑

i

hi

 Non-equilibrium dynamics after a sudden quench



Overview: 2. Thermalization and integrability

 How does temperature dynamically emerge? 

 Relationship to integrability?

Riera, Gogolin, Eisert, Phys Rev Lett 108, 080402 (2012) 
Eisert, Friesdorf, Gogolin, in preparation (2012)   
Gogolin, Mueller, Eisert, Phys Rev Lett 106, 040401 (2011)



 Quantum simulation with cold atoms

Overview: 3. Quantum simulations

Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)

H = −J
∑

〈j,k〉

b†jbk +
U

2

∑

k

b†kbk(b
†
kbk − 1)− µ

∑

k

b†kbk



Overview: 3. Quantum simulations

 "A quantum device that outperforms classical computers"

Eisert, Kliesch, in progress (2012) 
Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)



1. Notions of equilibration



Sudden quenches

 Initial state (clustering correlations, e.g., product state)

 Then many-body free unitary time evolution

ρ(t) = e−iHtρ(0)eiHt, H =
∑

i

hi



 What happens? Equilibration?

Sudden quenches



S

"Strong equilibration"

‖ρS(t)− ρG‖1

ε

t

 Free bosons (but non-Gaussian states): H =
∑

〈i,j〉

(b†i bj + b†jbi)

 Observation 1: Strong equilibration 
For algebraically clustering correlations (...), for any          and any recurrence 
time    one finds a system size and a relaxation time    such that 

      is maximum entropy state for fixed covariance matrix (linearly many consts  
 of motion, "generalized Gibbs ensemble")

ε > 0
t2 t1

‖ρS(t)− ρG‖1 < ε, ∀t ∈ [t1, t2]

ρG

t1

Cramer, Eisert, New J Phys 12, 055020 (2010) 
Cramer, Dawson, Eisert, Osborne, Phys Rev Lett 100, 030602 (2008) 
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Lieb-Robinson bounds and speeds of information propagation

t

 Finite speed of information propagation (bosonic version of Lieb-Robinson bounds)

   (see also Immanuel's talk)

Lieb, Robinson, Commun Math Phys 28, 251 (1972)
Eisert, Osborne, Phys Rev Lett 97, 150404 (2006)
Cramer, Dawson, Eisert, Osborne, Phys Rev Lett 100, 030602 (2008) 
Cheneau, Barmettler, Poletti, Endes, Schauss, Fukuhara, Gross, Bloch, Kollath, Kuhr, Nature 484, 481 (2012)
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Quantum central limit theorems

ε

χρS(t)(β) = tr[ρS(t)D(β)]

∣

∣

∣

〈DS〉 − eµS+σS/2
∣

∣

∣

≤ c0
log(t)

t
η2

1+η

+ f1/2(t) + ef(t)f(t) + eg(t)g(t)

Characteristic function of reduced state

Formulate non-commutative 
Lindeberg central limit theorem

Chuck lattice into "rooms" and 
"corridors" (Bernstein-Spohn-blocking)

Characteristic function becomes Gaussian

Maximum entropy state

‖ρS(t)− ρG‖1 < ε

Cramer, Eisert, New J Phys 12, 055020 (2010) 
Cramer, Dawson, Eisert, Osborne, Phys Rev Lett 100, 030602 (2008) 
Dudnikova, Komech, Spohn, J Math Phys 44, 2596 (2003)
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"Weak equilibration"

 Observation 2: Weak equilibration (true for all Hamiltonians with degenerate 
   energy gaps)

       is maximum entropy state given all constants of motion

deff =
1∑

k |〈Ek|ψ0〉|4
ρG

Linden, Popescu, Short, Winter, Phys Rev E 79, 061103 (2009)
Gogolin, Mueller, Eisert, Phys Rev Lett 106, 040401 (2011)

E(‖ρS(t)− ρG‖1) ≤
1

2

√
d2S
deff

,

t

ε

‖ρS(t)− ρG‖1



Lessons

 Lesson: Systems generically locally "appear relaxed", although the dynamics 
   is entirely unitary

 Proven in strong sense for general states in integrable limit of Bose-Hubbard model

 True in slightly weaker sense for most times

 Generalized Gibbs ensembles, what conserved quantities?



2. Integrability and thermalization



S

Thermalization?

H = HS +HB +HI∼ trB(e
−βH)

 When do systems thermalize?

 (See talks by Marcos, Jean-Sebastian, Fabian, ...)

 (Progress on thermalization question, ask if interested)
Riera, Gogolin, Eisert, Phys Rev Lett 108, 080402 (2012)
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Notions of integrability

Beautiful models, Sutherland (World Scientific, Singapore, 2004)
Exactly solvable models, Korepin, Essler (World Scientific, Singapore, 1994)

H = HS +HB +HI∼ trB(e
−βH)
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 Notions of integrability

(A) Exist n independent (local) conserved mutually commuting linearly 
      independent operators (n no. of degrees of freedom) 

(B) Like (A) but with linear replaced by algebraic independence

(C) The system is integrable by the Bethe ansatz
(D) The system exhibits non-diffractive scattering

(E) The quantum many-body system is exactly solvable

 Common intuition: "Non-integrable models thermalize"



S

H = HS +HB +HI∼ trB(e
−βH)

 Natural candidates?

Gogolin, Mueller, Eisert, Phys Rev Lett 106, 040401 (2011)

Compare also:
Pal, Huse, arXiv:1103.2613
Canovi, Rossini, Fazio, Santoro, Silva, arXiv:1006.1634
Kollath, Lauchli, Altman, Phys Rev Lett 98, 180601 (2007)
Polkovnikov, Sengupta, Silva, Vengalattore, Rev Mod Phys 83, 863 (2011)
Rigol, Srednicki, Phys Rev Lett 108, 110601 (2012)

 Nearest-neighbor interactions

 Translationally invariant (no disorder)

 No exactly conserved local quantities

Notions of integrability
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H = HS +HB +HI∼ trB(e
−βH)

 Observation 3 (non-thermalization): The physical distinguishability of two local
   time averaged states          and           of two pure initial product states 

   and non-degenerate Hamiltonians is large in that

ωS(1) ωS(2)

ψ(i)
0 = ψS(i)

0 ⊗ φB(i)
0

‖ωS(1) − ωS(2)‖1 ≥ ‖ψS(1)
0 − ψS(2)

0 ‖1)−R(ψ(1)
0 )−R(ψ(2)

0 )

 Effective entanglement in the eigenbasis

Gogolin, Mueller, Eisert, Phys Rev Lett 106, 040401 (2011)

R(ψ0) =
∑

k

|ck|2‖trB |Ek〉〈Ek|− ψS
0 ‖1, ck = 〈Ek|ψ0〉

Effective entanglement in the eigenbasis



S

H = HS +HB +HI∼ trB(e
−βH)

 Non-thermalization

Eisert, Friesdorf, Gogolin, in preparation (2012)   
Gogolin, Mueller, Eisert, Phys Rev Lett 106, 040401 (2011)

 Observation 4: Ex. non-integrable models for which the 
   memory of the initial condition remains large for all times

Proof related to Matt Hastings' and Spiros Michalakis' ideas

 So, what is precise relationship? Role of disorder?

 Eigenstate thermalization? Refined concepts of integrability?

Non-integrable non-thermalizing models



Non-integrable non-thermalizing models

 Lesson: Connection between integrability and thermalization may 
   be more intricate than often assumed

Eisert, Friesdorf, Gogolin, in preparation (2012)   
Gogolin, Mueller, Eisert, Phys Rev Lett 106, 040401 (2011)



3. Dynamical quantum simulation 
and "quantum supremacy"



An experiment

 Quench to full strongly-correlated Bose-Hubbard Hamiltonian...

  (see also Immanuel's talk)

Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)
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An experiment

 Quench to full strongly-correlated Bose-Hubbard Hamiltonian...

 ... but use optical superlattices to circumvent readout problem

   read out with period 2: Densities, correlators, currents...

|ψ(t)〉 = e−iHt|1, 0, 1, 0, . . . , 1, 0〉

- Bias superlattice
- Unload to higher band
- Time-of-flight measurement:
  mapping to different 
  Brillouin zones

Foelling et al, Nature Phys 448, 1029 (2007)

Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)



U/J = 5.16
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An experiment

〈b†jbj〉 = 〈nj〉

4Jt/h

Experimental data

Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)

 Densities of odd sites as function of time



An experiment

Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)

 Current measurements: Measure double well oscillations

 ...
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 Visibility proportional to nearest-neighbor correlations



  v 〈b†jbj〉 = 〈nj〉

4Jt/h

Matrix-product state classical simulation

 For short times: 

 Observation 5: Short times matrix-product state (MPS) simulation

...practically to machine precision with t-DMRG (exponential blow-up of 
   bond dimension in time)

Classical simulation
(up to bond dim. of 5000)

White, Phys Rev Lett 69, 2863 (1992)
Schollwoeck, Rev Mod Phys 77, 259 (2005)
Eisert, Cramer, Plenio, Rev Mod Phys 82, 277 (2010)



Matrix-product state classical simulation

 For short times: "Check correctness" 

 Observation 6: Short times matrix-product state (MPS) simulation

Short time evolution can be efficiently described MPS: Rigorously using 
quantum cellular automata and Lieb-Robinson bounds

Eisert, Osborne, Phys Rev Lett 100, 030602 (2008)
Osborne, Phys Rev Lett 97, 157202 (2006)



"Quantum simulator"

Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)

  v 〈b†jbj〉 = 〈nj〉

4Jt/h

 Observation 7: Long time dynamics of many-body dynamics in experiment

Can accurately probe dynamics for longer times (exp vs poly decay, ...) 
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 Dynamical mean field?

 Some Markovian dynamics?

Devil's advocate

Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)
Wolf, Eisert, Cubitt, Cirac, Phys Rev Lett 101, 150402 (2008)

 Great! Hmm, easier explanation...?

 In fact, stronger reduction holds true
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Sample from output number
distribution up to error ε

Boson sampling problem

 Claim: Not believed to be universal for quantum computing - but, solves
   sampling problem, classically intractable* under plausible assumptions

|n1〉 |n2〉 |nN 〉...

U(V )

NWord of photon numbers, length

ε > 0

Description of optical network   ,V

(b1, . . . , bN )T !→ V (b1, . . . , bN )T

 Obvious problems:  Difficult do this optically for large number of modes
     Arbitrary linear optical networks?

Aaronson, Arkhipov, arXiv:1011.3245
Rohde, Ralph, Phys Rev A 85, 022332 (2012)
Scheel, quant-ph/0406127

* Efficient sampling up to exponentially small errors leads to collapse of polynomial hierarchy to third 
    order, with poly accuracy also true, under reasonable conjectures
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Polynomial reduction to boson sampling

 Observation 8: Reduction to boson sampling problem using period-2

For any instance of the Boson sampling problem there exists an experiment with

- Initial product state in optical lattice
- Natural dynamics under free limit of Bose-Hubbard Hamiltonian + superlattices
- Measurement of boson number
poly overhead, giving rise to same distribution (up to exponentially small) errors

n1 n2 n3

|ψ(t)〉 = e−iHt|ψ(0)〉 ,

nN ′

Translationally invariant, fixed natural dynamics 
(free dynamics and use of optical superlattices)

H = −Je(t)
∑

〈j,k〉r

b†jbk − Jo(t)
∑

〈j,k〉o

b†jbk − µ
∑

k

b†kbk

Eisert, Kliesch, in progress (2012)



Polynomial reduction to boson sampling

 Observation 9: Reduction to boson sampling problem

For any instance of the Boson sampling problem there exists an experiment with

- Initial product state in optical lattice
- Natural dynamics under free limit of Bose-Hubbard Hamiltonian
- Measurement of boson number
poly overhead, giving rise to same distribution (up to poly small) errors
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n1 n2 n3

H = −
∑

〈j,k〉

b†jbk − µ
∑

k

b†kbk

Translationally invariant, fixed natural dynamics 
(free dynamics and use of optical superlattices)

|ψ(t)〉 = e−iHt|ψ(0)〉 ,

nN ′

Eisert, Kliesch, in progress (2012)



Quantum dynamical simulator

 Hardness of Bose-Hubbard simulation

... is (in the above sense) classically a hard problem

"Simulatable with MPS"

"Hard region"

Improved tensor network methods?



Quantum dynamical simulator

 Hardness of Bose-Hubbard simulation

... is (in the above sense) classically a hard problem



Summary and outlook

 Thermalization and integrability

 An experiment

 Equilibration of many-body systems

 A "dynamical quantum simulator"

Thanks for your attention!


