Quantum Quench in Conformal Field Theory from a General Short-Ranged State

John Cardy

University of Oxford

KITP August 2012

Quantum Quench in Conformal Field Theory

(Global) Quantum Quench

- prepare an extended system (in thermodynamic limit) at time t = 0 in a (translationally invariant) pure state $|\psi_0\rangle$ – e.g. the ground state of some hamiltonian H_0
- evolve unitarily with a hamiltonian *H* for which $|\psi_0\rangle$ is not an eigenstate and has extensive energy above the ground state of *H*
- how do correlation functions of local observables, and quantum entanglement of subsystems, evolve as a function of *t*?
- for a compact subsystem do they become stationary?
- if so, what is the stationary state?
- is the reduced density matrix thermal?

(日本) (日本) (日本)

Quantum quench in a 1+1-dimensional CFT

- P. Calabrese + JC [2006,2007] studied this problem in 1+1 dimensions when $H = H_{CFT}$ and $|\psi_0\rangle$ is a state with short-range correlations and entanglement
- *H_{CFT}* describes the universal low-energy, large-distance properties of many gapless 1d systems
- 1+1-dimensional CFT is exactly solvable, so we can get analytic results for interacting systems – however, these turn out to depend only on general properties of any CFT

Results

- there is a parameter au_0 characterising $|\psi_0
 angle$ such that:
- one-point functions of local quantities in general decay towards their ground state values:

 $\langle \Phi(x,t)
angle \sim e^{-\pi\Delta_{\Phi}t/2 au_0}$ where Δ_{Φ} is the scaling dimension of Φ

• for times $t > |x_1 - x_2|/2v$, the correlation functions become stationary and decay exponentially:

$$\langle \Phi(x_1,t_1)\Phi(x_2,t_2)\rangle \sim e^{-\pi\Delta_\Phi|x_1-x_2|/2v\tau_0}$$

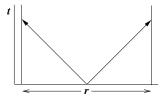
for $t_1 = t_2$, and $\sim e^{-\pi \Delta_{\Phi} |t_1 - t_2|/2\tau_0}$ for $x_1 = x_2$

- the (conserved) energy density is $\pi c/6(4\tau_0)^2$
- the von Neumann entropy of a region of length ℓ saturates for t > ℓ/2v at

$$S \sim (\pi c/3(4\tau_0))\ell$$

・ロト ・四ト ・ヨト

- all these results are *precisely* those expected for the same CFT at temperature $T = (4\tau_0)^{-1}$
- an extreme example of thermalisation!
 - no time average necessary
 - it happens after a finite time $t \sim \ell/2v$
- results accord with a simple physical picture of entangled pairs of quasiparticles emitted from correlated regions



this picture has more general applicability (Lieb-Robinson)

Quantum quenches in integrable models

- however studies of quenches in integrable models
 [(Rigol,Dunjko,Yurovsky,Olshanii),...,(Calabrese,Essler,Fagotti)]
 have led to the conclusion that the steady state should be
 a 'generalised Gibbs ensemble' (GGE) with a separate
 'temperature' conjugate to each local conserved quantity
- 1+1-dimensional CFT is super-integrable: e.g. all powers *T*(z)^j and *T*(z)^j of the stress tensor (and its derivatives) correspond to local conserved currents, leading to conserved charges
- so why did CC find a simple Gibbs ensemble?

Quantum quenches in integrable models

- however studies of quenches in integrable models
 [(Rigol,Dunjko,Yurovsky,Olshanii),...,(Calabrese,Essler,Fagotti)]
 have led to the conclusion that the steady state should be
 a 'generalised Gibbs ensemble' (GGE) with a separate
 'temperature' conjugate to each local conserved quantity
- 1+1-dimensional CFT is super-integrable: e.g. all powers *T*(z)^j and *T*(z)^j of the stress tensor (and its derivatives) correspond to local conserved currents, leading to conserved charges
- so why did CC find a simple Gibbs ensemble?
- this can be traced to a simplifying assumption about the form of the initial state
- what is the effect of relaxing this assumption?

we want to compute

 $\langle \psi_0 | e^{itH_{
m CFT}} \, \mathcal{O} \, e^{-itH_{
m CFT}} | \psi_0
angle$

we could get this from imaginary time by considering

 $\langle \psi_0 | e^{- au_2 H_{ ext{CFT}}} \, \mathcal{O} \, e^{- au_1 H_{ ext{CFT}}} | \psi_0
angle$

and continuing $\tau_1 \rightarrow it$, $\tau_2 \rightarrow -it$

• 'slab' geometry with boundary condition $\equiv \psi_0$, but thickness $\tau_1 + \tau_2 = 0 \ \odot$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ◆○○

Resolution, updated

 in general we can write any translationally invariant state with short-range correlations and entanglement in the form

 $|\psi_0
angle \propto e^{-\sum_j \lambda_j \int \phi_j^{(b)}(x) dx} |B
angle$

where $|B\rangle$ is an 'ideal' state (e.g. a product state) which corresponds to a fixed point of the boundary RG, and $\phi_j^{(b)}$ are all possible (irrelevant) boundary operators

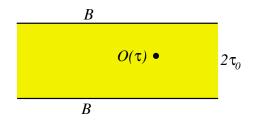
- one of the most important is the stress tensor $T_{\tau\tau}$ with RG eigenvalue 1 2 = -1: note that $\int T_{\tau\tau}(x)dx = H_{\text{CFT}}$
- CC's assumption was equivalent to the assertion that this is the only one:

 $|\psi_0
angle \propto e^{- au_0 H_{
m CFT}}|B
angle$

< 日 > < 回 > < 回 > < 回 > < 回 > <

 $\langle \psi_0 | \mathcal{O}(\tau) | \psi_0
angle = \langle B | e^{-\tau_0 H} \mathcal{O}(\tau) e^{-\tau_0 H} | B
angle$

• to compute $\langle \psi_0 | \mathcal{O}(\tau) | \psi_0 \rangle$ we therefore consider a slab $-\tau_0 < \tau < \tau_0$ with boundary conditions corresponding to the ideal state $|B\rangle$:



• and continue the result to $\tau \rightarrow it$

ヘロト 人間 とくほ とくほ とう

- because $|B\rangle$ is conformally invariant, the correlations in the slab are related to those in the upper half *z*-plane by $z = ie^{\pi w/2\tau_0}$
- power-law behaviour in the *z*-plane ⇒ exponential behaviour in *t* and *x*

- in particular, $x + i(\tau \rightarrow it)$ is mapped to
- $z = i e^{\pi (x-t)/2\tau_0}; \quad \bar{z} = -i e^{\pi (x+t)/2\tau_0} \ (\neq z^*!)$
 - except for narrow regions O(τ₀) near the light cone, points are exponentially ordered along imaginary *z*-axis: correlators can be computed by successive OPEs
 - for $t \gg \tau_0$ the \overline{z} 's move off to $-i\infty$ and the boundary effectively plays no role

This implies:

- invariance under rotations in the *z*-plane, and since $z = ie^{\pi(x+i\tau)/2\tau_0}$, \Rightarrow stationarity in τ and therefore *t*
- periodicity of correlators under $\tau \rightarrow \tau + 4\tau_0 \Rightarrow$ the slab effectively becomes a cylinder: finite temperature!

All the other conclusions of CC then follow straightforwardly.

Relaxing CC's assumption

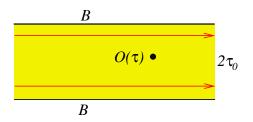
more generally let us suppose

$$|\psi_0
angle \propto e^{- au_0 H_{
m CFT}} \, e^{-\sum_j '\lambda_j \int \phi_j^{(b)}(x) dx} |B
angle$$

- first consider the case where $\phi_j^{(b)}(x) = T(x)^j (=\overline{T}(x)^j)$ (or more generally combinations of derivatives and powers of *T*)
- since $T = \overline{T}$ on *B*, we can write

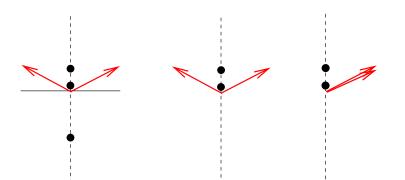
$$\int_{B} T(x)^{j} dx = \frac{1}{2} \int_{B} T(z)^{j} dz + \frac{1}{2} \int_{B} \overline{T}(\overline{z})^{j} d\overline{z}$$

 since the operators are (anti-)holomorphic, we can distort the contours away from the boundary:



Quantum Quench in Conformal Field Theory

• in the half-plane

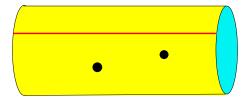


Quantum Quench in Conformal Field Theory

▶ < ≣ >

æ

on the cylinder



 $\operatorname{Tr} \mathcal{O} e^{-\beta H - \sum_{j}^{\prime} \lambda_{j} H_{j}}$

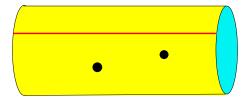
where $H_j = \int [T(x)^j + \overline{T}(x)^j] dx$

Quantum Quench in Conformal Field Theory

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

æ

on the cylinder



 $\operatorname{Tr} \mathcal{O} e^{-\beta H - \sum_{j}^{\prime} \lambda_{j} H_{j}}$

where $H_j = \int [T(x)^j + \overline{T}(x)^j] dx$

Generalised Gibbs Ensemble (GGE)

Quantum Quench in Conformal Field Theory

< 同 > < 回 > < 回 >

Observable consequences of GGE in CFT

$$H_j \propto rac{1}{eta^{2j-1}} \sum_{n_1 + \dots + n_p = 0} : L_{n_1} L_{n_2} \cdots L_{n_p} : + ext{c.c.}$$

 $\propto L_0^j + ext{terms with } n_p \ge 1 + ext{c.c.}$

so acting on a primary operator $H_j \propto \Delta_{\Phi}^j$

so in the stationary regime, a 2-point function decays as

$$\begin{split} & \langle \Phi(x_1,t)\Phi(x_2,t)\rangle \propto e^{-|x_1-x_2|/\xi_{\Phi}} \\ \text{where} \qquad \xi_{\Phi}^{-1} = \frac{2\pi\Delta_{\Phi}}{\beta} \left[1 + \sum_j \lambda_j \left(\frac{2\pi\Delta_{\Phi}}{\beta^2}\right)^{j-1} \right] \end{split}$$

- effective temperature, as determined by decay of correlations, depends on the observable
- similar consequences for entropy, etc

More general boundary perturbations

- more general boundary perturbations φ_j^(b) with scaling dimensions Δ_j ≠ integer are consistent with a GGE only if we posit the existence of bulk *parafermionic* holomorphic currents φ_j(z) with dimension Δ_j and include the corresponding non-local conserved charges H_j = ∫ φ_j(x, t)dx in the GGE
- example: quench to the critical point in a transverse-field Ising model from disordered state with a small longitudinal field $(\Delta = \frac{1}{2})$ gives rise to a fermionic charge $\int [\psi(x) + \overline{\psi}(x)] dx$ (??)

• in general, by dimensional analysis,

$$\xi_{\Phi}^{-1} = \frac{2\pi\Delta_{\Phi}}{\beta} \left[1 + O\left(\frac{\lambda_j}{\beta^{\Delta_j - 1}}\right) \right]$$

- so if Δ_j > 1 (irrelevant initial perturbation) the stationary state is more Gibbsian if β large (shallow quench)
- one can also add irrelevant terms to H_{CFT} : e.g.
 - $T\overline{T}$, corresponding to left-right scattering
 - $T^{j} + \overline{T}^{j}$, corresponding to curvature of dispersion relation
- these are irrelevant for a *shallow* quench
- do they drive crossover to a different behaviour for a deep quench?

・ 戸 ト ・ 三 ト ・ 三 ト

• in general, by dimensional analysis,

$$\xi_{\Phi}^{-1} = \frac{2\pi\Delta_{\Phi}}{\beta} \left[1 + O\left(\frac{\lambda_j}{\beta^{\Delta_j - 1}}\right) \right]$$

- so if Δ_j > 1 (irrelevant initial perturbation) the stationary state is more Gibbsian if β large (shallow quench)
- one can also add irrelevant terms to H_{CFT} : e.g.
 - $T\overline{T}$, corresponding to left-right scattering
 - $T^{j} + \overline{T}^{j}$, corresponding to curvature of dispersion relation
- these are irrelevant for a *shallow* quench
- do they drive crossover to a different behaviour for a deep quench?
- if so, what? True thermalisation?

Conclusions

- a quantum quench in 1+1-dimensional CFT from a more general state leads to results consistent with a GGE
- the conserved quantities are in 1-1 correspondence with possible boundary perturbations - some of these may be non-local in the bulk
- the effects of GGE include observable-dependent effective temperatures
- they should be less important for shallow quenches