Selective Control of Molecular Rotation

Sharly Fleischer, Erez Gershnabel, Yuri Khodorkovsky, Yehiam Prior, and Ilya Sh. Averbukh

Department of Chemical Physics
Weizmann Institute of Science,
Rehovot, Israel

KITP, Santa Barbara May 2009
Motivation for controlling molecular rotation, alignment/orientation

Control of chemical kinetics
Pulse shaping
Pulse compression
HHG control
Molecular imaging
Quantum computation
etc ...
Control of Laser induced Ionization/Dissociation

Selective Ionization / Dissociation of a single species in a mixture.

Purification of a sample by “blasting away” other components.

LOW probability

HIGH probability
Outline

• Molecular alignment by femtosecond pulses
• Rotational revivals
• Experimental setup (as seen by a theorist)
 • Addressing close molecular species in a mixture
 – Selection of Isotopes
 – Selection of nuclear spin Isomers
• Unidirectional rotation
• Summary
Outline

• Molecular alignment by femtosecond pulses
 • Rotational revivals
 • Experimental observations
 • Addressing close molecular species in a mixture
 – Selection of Isotopes
 – Selection of nuclear spin Isomers
 • Unidirectional rotation
• Molecular alignment at liquid-air interfaces
• Summary
Laser induced alignment

The laser field couples to the molecular rotation via the anisotropic polarizability

$$\alpha_{\perp}$$

$$\hat{H} = \frac{\hat{L}^2}{2I} + V(\theta, t)$$

$$V(\theta, t) \propto \left[\frac{1}{4} \hat{H}^2 (\alpha_{\Delta} \alpha_{\perp} \cos^2(\theta)) + \alpha_{\perp} \right]$$

$$\tau(\theta) \propto -\frac{dV}{d\theta}$$

$$\omega(\theta) \propto -\sin(2\theta)$$
\[\omega(\theta) \propto -\sin(2\theta) \]
Periodic signal
\[T = 8.3 \text{ ps} \]
Outline

• Molecular alignment by femtosecond pulses
• Rotational revivals
• Experimental setup (as seen by a theorist)
 • Addressing close molecular species in a mixture
 – Selection of Isotopes
 – Selection of nuclear spin Isomers
• Unidirectional rotation
• Molecular alignment at liquid-air interfaces
• Summary
Rotational energy: \(E_J = \hbar B c J(J+1) \)

Rotational wave packet: \(\Psi(t) = \sum_{J,m} c_J^m Y_J^m e^{-i\pi J(J+1)t/T_{\text{rev}}} \)

Quantum revival time: \(T_{\text{rev}} = \frac{1}{2Bc} \)

The wavefunction is periodic:
\[\Psi(t + T_{\text{rev}}) = \Psi(t) \quad \text{- full revival} \]
Alignment evolution through time

For \(N_2 \), 100 fs pulse
Outline

• Molecular alignment by femtosecond pulses
• Rotational revivals
• **Experimental setup (as seen by a theorist)**
 • Addressing close molecular species in a mixture
 – Selection of Isotopes
 – Selection of nuclear spin Isomers
• Unidirectional rotation
• Molecular alignment at liquid-air interfaces
• Summary
Experimental: time delayed degenerate four wave mixing

\[E_a E_b = E_c \]

Phase matching

\[\vec{k}_s = (\vec{k}_a - \vec{k}_b) + \vec{k}_c \]

\~ 70 femtosecond pulses \~ 0.1 mJ per pulse
Experimental: Transient Grating - TG

Molecular gas
$^{14}\text{N}_2$ gas at room temperature

$T_{\text{rev}} = 8.3\ \text{ps}$
Outline

• Molecular alignment by femtosecond pulses
• Rotational revivals
• Experimental setup (as seen by a theorist)
• **Addressing close molecular species in a mixture**
 – Selection of Isotopes
 – Selection of nuclear spin Isomers
• Unidirectional rotation
• Molecular alignment at liquid-air interfaces
• Summary
Alignment of Chlorine isotopologues

\[\text{Trev (Cl}_2) \approx 70 \text{ ps} \]

- Cl\(^{35}\) - 7.5%
- Cl\(^{37}\) - 2.5%
- Cl\(^{35}\) - Cl\(^{35}\) - 9/16
- Cl\(^{37}\) - Cl\(^{37}\) - 1/16
- Cl\(^{35}\) - Cl\(^{37}\) - 6/16
Controlling rotations with two pulses – classical picture

Applying another pulse just on time!

2^{nd} pulse
At $\frac{1}{2} T_{rev}$

2^{nd} pulse
At full T_{rev}
Rotational control in $^{14}\text{N}_2$

Selective alignment in isotopologues mixture

14N$_2$ \sim 8.3ps
15N$_2$ \sim 8.9ps

$7\frac{1}{2}$ T_{rev}
7 T_{rev}

15N$_2$ only

[Graph showing time vs. intensity with two pulses and labels for first and second pulse, and 15N$_2$ only highlighted]
Outline

• Molecular alignment by femtosecond pulses
• Rotational revivals
• Experimental setup (as seen by a theorist)
• Addressing close molecular species in a mixture
 – Selection of Isotopes
 – Selection of nuclear spin Isomers
• Unidirectional rotation
• Molecular alignment at liquid-air interfaces
• Summary
$^{15}\text{N}_2$ - homonuclear molecule with atomic nuclear spin – $I = \frac{1}{2}$

$$\Psi = \Psi_{\text{elec}} \Psi_{\text{vib}} \Psi_{\text{rot}} \Psi_{\text{spin}}$$

^{15}N atoms are Fermions

Anti-symmetric upon exchange

Ortho (Triplet)
Symmetric Ψ_{spin}
Anti-Symmetric Ψ_{rot}
Odd J states

Para (Singlet)
Anti-Symmetric Ψ_{spin}
Symmetric Ψ_{rot}
Even J states
Calculated alignment factor for N_2, 300 K

- Decrease
- Enhance
- Enhance
- Decrease
Energy absorbed by odd and even wavepackets
Spin isomer-selective alignment by two pulses

Frequency analysis

\[\text{Signal} \propto \delta n \]
\[\delta n \propto \left\langle \cos^2 \theta \right\rangle \]

Participating rotational state population
Signal $\propto (\delta n)^2$
$\propto \langle \cos^2 \theta \rangle^2$

Binary SUMS and DIFFERENCES of the J states
Single pulse vs. double pulse

Odd Sum ↔ Odd J + Even J
Even Sum ↔ Odd J + Odd J, Even J + Even J
Laser Alignment of Ortho/Para Water Molecules

Rotational Hamiltonian (rigid rotor model)

\[\hat{H} = \frac{\hat{J}_a^2}{2I_a} + \frac{\hat{J}_b^2}{2I_b} + \frac{\hat{J}_c^2}{2I_c} \]

\((a,b,c)\) are the molecule principal axes

C\(_{2v}\) symmetry, irreducible representations:

\(A_1, A_2, B_1, B_2\).
Spin-Dependent Alignment

Calculated time dependent alignment factor after an excitation by a short linearly polarized 20 fs laser pulse of $10^{13} W / cm^2$ maximal intensity, at 20K.

Simultaneous alignment and antialignment of two different spin isomers can be achieved.
Spin-Selective Alignment by Two Pulses

After application of an additional pulse (of the same intensity and duration) at $t=1.9$ ps

As a result, only the Para molecules experience transient alignment!
Outline

• Molecular alignment by femtosecond pulses
• Rotational revivals
• Experimental setup (as seen by a theorist)
• Addressing close molecular species in a mixture
 – Selection of Isotopes
 – Selection of nuclear spin Isomers
• Unidirectional rotation
• Summary
Field Free Unidirectional Rotation

\[L_y = 0 \]
\[L_z = 0 \]
\[(-L_y) = 0 \]
\[L_x = 0 \]
Controlling the sense of rotation

Optical Centrifuge for Molecules

Joanna Karczmarek,1 James Wright,2 Paul Corkum,1 and Misha Ivanov1

1SIMS NRC, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
2Ottawa-Carleton Chemistry Institute, Carleton University, Ottawa, Ontario, Canada K1S 5B6

(Received 5 October 1999)
Controlling the sense of rotation

\(\langle L_Y \rangle \neq 0 \)
Angular momentum as a function of 2nd pulse polarization

Max \(\langle L_y \rangle \) @ \(\pm 45^0 \)
Field free unidirectional rotation

Finite temperature simulations by:
• Spectral decomposition
• Direct FDTD
• Classical ensemble dynamics

NJP, submitted (2009)
Anisotropic time averaged angular distribution

Control of:
- Collisional cross section
- Diffusion processes
- Surface scattering
- Deflection by external inhomogeneous fields

Yet to be demonstrated experimentally!
Outline

- Molecular alignment by femtosecond pulses
- Rotational revivals
- Experimental setup (as seen by a theorist)
 - Selection of Isotopes
 - Selection of nuclear spin Isomers
- Unidirectional rotation
- Molecular alignment at liquid-air interfaces
- Summary
Summary

Selective addressing of close molecular species:
- Molecular isotopes
- Spin Isomers

- Not based on specific molecular resonances.
- Conducted at room temperature.
- Can be applied to all symmetric linear molecules.

Double pulse scheme - selective ionization (dissociation).

Unidirectional rotation – anisotropic diffusion.
 directional surface scattering.
 interesting optical features.

- Should be implemented to molecules larger than diatomics
- May be useful for detection and identification in mixtures
The End

Thank you