Efficient Control Algorithms for Unitary Transformations: The Cartan Decomposition and Beyond

Robert Zeier
Department Chemie, Technische Universität München

July 2, 2009

Outline

(1) Preliminaries
(2) Fast local control
(3) A fast and slow qubit system
(4) Analyzing non-locality: representation-theoretic methods
(5) Summary

Quantum systems and their transformations

(pure) quantum states (= vectors in $\mathbb{C}^{m}, m<\infty$)

- example: qubit (=quantum bit) is an element of $\mathbb{C}^{2}(\rightarrow$ Bloch sphere)
- combined quantum system: tensor product $\mathbb{C}^{m_{1}} \otimes \cdots \otimes \mathbb{C}^{m_{n}}$
- space of all \mathbb{Z}-linear comb. of $v_{1} \otimes \cdots \otimes v_{n}\left(v_{j} \in \mathbb{C}^{m_{j}}, \otimes\right.$ bilinear $)$
- example: two qubits as given by $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$
quantum operations $=$ unitary transformations $U \in \mathrm{SU}(d)$
- Lie group $\operatorname{SU}(d)=\left\{G \in \mathrm{GL}(d, \mathbb{C}) \mid G^{-1}=\left(G^{*}\right)^{T}\right.$, $\left.\operatorname{det}(G)=1\right\}$ (= closed linear matrix group)
- Lie algebra $\mathfrak{s u}(d)=\left\{g \in \mathfrak{g l}(d, \mathbb{C}) \mid-g=\left(g^{*}\right)^{T}, \operatorname{Tr}(g)=0\right\}$
- tangent space to $\mathrm{SU}(d)$ at the identity
- vector space with bilinear and skew-symmetric multiplication

$$
\begin{aligned}
& {\left[g_{1}, g_{2}\right]:=g_{1} g_{2}-g_{2} g_{1} \text { where }\left[g_{1}, g_{2}\right] \in \mathfrak{s u}(d) \text { and }} \\
& {\left[\left[g_{1}, g_{2}\right], g_{3}\right]+\left[\left[g_{3}, g_{1}\right], g_{2}\right]+\left[\left[g_{2}, g_{3}\right], g_{1}\right]=0 \text { (Jacobi identity) }}
\end{aligned}
$$

Quantum computing as a control problem (1/2)

Schrödinger equation as a continuous model for quantum computing
$\frac{d}{d t} U(t)=[-i H(t)] U(t)$, where $H(t)=H_{0}+\sum_{j=1}^{m} v_{j}(t) H_{j}$

- unitary transformation $U(t) \in \mathrm{SU}(d)$ (= algorithm)
- system Hamilton operator $H(t)$, where $i H(t) \in \mathfrak{s u}(d)$
- control functions $v_{j}(t)$
(for this talk) NOT interested in:
- pure state transformations:
$\frac{d}{d t}|\Psi(t)\rangle=[-i H(t)]|\Psi(t)\rangle$, where $|\Psi(t)\rangle$ is a pure state
- numerical computations and decoherence (and similar effects)
- in the last part we briefly consider:

$$
\frac{d}{d t} \rho=[-i H(t), \rho], \text { where } \rho \text { is a mixed state }
$$

Quantum computing as a control problem (2/2)

Schrödinger equation as a continuous model for quantum computing $\frac{d}{d t} U(t)=[-i H(t)] U(t)$, where $H(t)=H_{0}+\sum_{j=1}^{m} v_{j}(t) H_{j}$

- unitary transformation $U(t) \in \operatorname{SU}(d)$ (= algorithm)
- system Hamilton operator $H(t)$, where $i H(t) \in \mathfrak{s u}(d)$
- control functions $v_{j}(t)$
- find efficient control algorithms to synthesize unitary transformations (efficient $=$ short evolution time)
controllability (= universality), i.e., all $U \in \operatorname{SU}(d)$ can be obtained necessary and sufficient condition: $i H_{0}, i H_{1}, \ldots, i H_{m}$ generate $\mathfrak{s u}(d)$ (Brockett (1972,1973), Jurdjevic and Sussmann (1972))

Outline

(1) Preliminaries
(2) Fast local control
(3) A fast and slow quit system
(4) Analyzing non-locality: representation-theoretic methods
(5) Summary

 -


```
\(\square\)
```


\qquad

\qquad
\square

Simulation of unitary transformations

resources (realistic for nuclear spins in nuclear magnetic resonance)

- instantaneous operations $U_{j} \in \mathrm{SU}(2)^{\otimes n}=\mathrm{SU}(2) \otimes \cdots \otimes \mathrm{SU}(2)$
- time-evolution w.r.t. a coupling Hamilton operator $H\left(-i H \in \mathfrak{s u}\left(2^{n}\right)\right)$
efficient control algorithm for $U \in \mathrm{SU}\left(2^{n}\right)$ with evolution time t
- $U=\left[\prod_{k=1}^{m}\left(U_{k} \exp \left(-i H t_{k}\right) U_{k}^{-1}\right)\right] U_{0}$ and $t=\sum_{k=1}^{m} t_{k} \quad\left(t_{k} \geq 0\right)$
- Lie group variant: conjugate the orbit $\exp \left(-i H t_{k}\right)$ with instantaneous operations $U_{k} \in \mathrm{SU}(2)^{\otimes n} \Rightarrow$ piecewise change of the time evolution

Lie algebra variant: simulate $H^{\prime}=\sum_{k=1}^{m} t_{k}\left(U_{k} H U_{k}{ }^{-1}\right)$

- $i H^{\prime} \in \mathfrak{s u}\left(2^{n}\right)$ and time $t=\sum_{k=1}^{m} t_{k}\left(t_{k} \geq 0\right)$
- linearized version (first order): $\log \left(U U_{0}^{-1}\right)=-i \sum_{k=1}^{m} t_{k}\left(U_{k} H U_{k}^{-1}\right)$
- often easier to solve

Two qubits: Mathematical structure $(1 / 5)$

Cartan decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$

- condition: $[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k},[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p},[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$
- \mathfrak{k} Lie algebra, \mathfrak{K} its Lie group; but \mathfrak{p} only a subspace
example: $\mathfrak{G}=\operatorname{SU}(4)$ and $\mathfrak{g}=\mathfrak{s u}(4)$
- $\mathfrak{K}=\operatorname{SU}(2) \otimes \operatorname{SU}(2)=\exp (\mathfrak{k})$ where $\mathfrak{k}=\operatorname{span}_{\mathbb{R}}\{\mathrm{XI}, \mathrm{YI}, \mathrm{ZI}, \mathrm{IX}, \mathrm{IY}, \mathrm{IZ}\}$
- subspace $\mathfrak{p}=\operatorname{span}_{\mathbb{R}}\{\mathrm{XX}, \mathrm{XY}, \mathrm{XZ}, \mathrm{YX}, \mathrm{YY}, \mathrm{YZ}, \mathrm{ZX}, \mathrm{ZY}, \mathrm{ZZ}\}$
notation: e.g. $\mathrm{XI}=i(\mathrm{X} \otimes \mathrm{I}) / 2$ where $\mathrm{X}:=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right), \mathrm{Y}:=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \mathrm{Z}:=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \mathrm{I}:=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

Two qubits: Mathematical structure $(2 / 5)$

control algorithms and the Weyl orbit

- $U=\left[\prod_{k=1}^{m}\left(U_{k} \exp \left(-i H t_{k}\right) U_{k}^{-1}\right)\right] U_{0}$ and $t=\sum_{k=1}^{m} t_{k} \quad\left(t_{k} \geq 0\right)$
- Weyl orbit $\mathcal{W}(p)=\left\{K p K^{-1}: K \in \mathfrak{K}\right\} \cap \mathfrak{a}$ of $p \in \mathfrak{p}$
- max. Abelian subalgebra $\mathfrak{a} \subset \mathfrak{p}$ and $\mathfrak{p}=\bigcup_{K \in \mathfrak{R}} K \mathfrak{a} K^{-1}$
example: $\mathfrak{k} \oplus \mathfrak{p}=\mathfrak{s u}(4) \quad([\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k},[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p},[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k})$
- $\mathfrak{k}=\operatorname{span}_{\mathbb{R}}\{\mathrm{XI}, \mathrm{YI}, \mathrm{ZI}, \mathrm{IX}, \mathrm{IY}, \mathrm{IZ}\}$
- subspace $\mathfrak{p}=\operatorname{span}_{\mathbb{R}}\{X X, X Y, X Z, Y X, Y Y, Y Z, Z X, Z Y, Z Z\}$
- max. Abelian subalgebra $\mathfrak{a}=\left\{a_{1} X X+a_{2} Y Y+a_{3} Z Z: a_{j} \in \mathbb{R}\right\} \subset \mathfrak{p}$
- $\mathcal{W}\left[b_{1} \mathrm{XX}+b_{2} \mathrm{YY}+b_{3} \mathrm{ZZ}\right]=\mathcal{W}\left[\left(b_{1}, b_{2}, b_{3}\right)\right]=\left\{\left(b_{1}, b_{2}, b_{3}\right)\right.$,
$\left(-b_{1},-b_{2}, b_{3}\right),\left(-b_{1}, b_{2},-b_{3}\right),\left(b_{1},-b_{2},-b_{3}\right)$, and all permutations\}
- Weyl group $\mathcal{W}=$ symmetric group S_{4}

Two qubits: Mathematical structure $(3 / 5)$

Weyl orbit $\mathcal{W}(p)=\left\{K p K^{-1}: K \in \mathfrak{K}\right\} \cap \mathfrak{a}$ of $p \in \mathfrak{p}$

- max. Abelian subalgebra $\mathfrak{a}=\left\{a_{1} \mathrm{XX}+a_{2} \mathrm{YY}+a_{3} Z Z: a_{j} \in \mathbb{R}\right\} \subset \mathfrak{p}$
- $\mathcal{W}\left[b_{1} \mathrm{XX}+b_{2} \mathrm{YY}+b_{3} \mathrm{ZZ}\right]=\mathcal{W}\left[\left(b_{1}, b_{2}, b_{3}\right)\right]=\left\{\left(b_{1}, b_{2}, b_{3}\right)\right.$, $\left(-b_{1},-b_{2}, b_{3}\right),\left(-b_{1}, b_{2},-b_{3}\right),\left(b_{1},-b_{2},-b_{3}\right)$, and all permutations $\}$

Kostant's convexity theorem (1973)

- $\Gamma_{\mathfrak{a}}\left[\left\{K p K^{-1}: K \in \mathfrak{K}\right\}\right]=$ convex closure of $\mathcal{W}(p)$
$\Gamma_{\mathfrak{a}}=$ orthogonal projection to \mathfrak{a} (w.r.t. a natural scalar product on \mathfrak{g})
- idea: What is with $\left\{K p K^{-1}: K \in \mathfrak{K}\right\}$? orthogonal projection to $\mathfrak{a}=$ convex closure of the intersection with \mathfrak{a}

Two qubits: Mathematical structure $(4 / 5)$

Weyl orbit $\mathcal{W}(p)=\left\{K p K^{-1}: K \in \mathfrak{K}\right\} \cap \mathfrak{a}$ of $p \in \mathfrak{p}$

- max. Abelian subalgebra $\mathfrak{a}=\left\{a_{1} X X+a_{2} Y Y+a_{3} Z Z: a_{j} \in \mathbb{R}\right\} \subset \mathfrak{p}$
- $\mathcal{W}\left[b_{1} \mathrm{XX}+b_{2} \mathrm{YY}+b_{3} \mathrm{ZZ}\right]=\mathcal{W}\left[\left(b_{1}, b_{2}, b_{3}\right)\right]=\left\{\left(b_{1}, b_{2}, b_{3}\right)\right.$,

$$
\left.\left(-b_{1},-b_{2}, b_{3}\right),\left(-b_{1}, b_{2},-b_{3}\right),\left(b_{1},-b_{2},-b_{3}\right), \text { and all permutations }\right\}
$$

majorization condition [after Bennett et al. (2002)]

- assume that $\left|a_{1}\right| \geq\left|a_{2}\right| \geq\left|a_{3}\right|$ and $\left|b_{1}\right| \geq\left|b_{2}\right| \geq\left|b_{3}\right|$
- $\tilde{a}_{1}:=\left|a_{1}\right|, \tilde{a}_{2}:=\left|a_{2}\right|, \tilde{a}_{3}:=\operatorname{sgn}\left(a_{1} a_{2} a_{3}\right)\left|a_{3}\right|$
- $\left(a_{1}, a_{2}, a_{3}\right)$ is in the convex closure of $\mathcal{W}\left[\left(b_{1}, b_{2}, b_{3}\right)\right]$ iff $\tilde{a}_{1} \leq \tilde{b}_{1}, \tilde{a}_{1}+\tilde{a}_{2}+\tilde{a}_{3} \leq \tilde{b}_{1}+\tilde{b}_{2}+\tilde{b}_{3}$, and $\tilde{a}_{1}+\tilde{a}_{2}-\tilde{a}_{3} \leq \tilde{b}_{1}+\tilde{b}_{2}-\tilde{b}_{3}$
- Zeier/Grassl/Beth (2004) [see also Yuan/Khaneja (2005 and 2006)] proved the connection to the convex closure of the Weyl orbit

Two qubits: Mathematical structure $(5 / 5)$

$\mathfrak{K} \mathfrak{A} \mathfrak{K}$ decomposition

$$
(\mathfrak{A}=\exp (\mathfrak{a}))
$$

- max. Abelian subalgebra $\mathfrak{a}=\left\{a_{1} X X+a_{2} Y Y+a_{3} Z Z: a_{j} \in \mathbb{R}\right\} \subset \mathfrak{p}$
- $G=K_{1} \exp \left(a_{1} X X+a_{2} Y Y+a_{3} Z Z\right) K_{2} \in \mathfrak{G}$
$\left(K_{j} \in \mathfrak{K}\right)$
remark: $\mathfrak{K} \mathscr{A} \mathfrak{K}$ decomposition is not unique
- Vidal/Hammerer/Cirac (2002): sufficient to consider all $\left(a_{1}, a_{2}, a_{3}\right)+\pi\left(z_{1}, z_{2}, z_{3}\right)$ where $z_{j} \in \mathbb{Z}$
- Vidal/Hammerer/Cirac (2002): $a_{j} \in[-\pi / 2, \pi / 2]$
\Rightarrow (to find the optimal control) it is sufficient to consider only
$\left(z_{1}, z_{2}, z_{3}\right)=(0,0,0)$ and $\left(z_{1}, z_{2}, z_{3}\right)=(-1,0,0)$
- Zeier/Grassl/Beth (2004) [see also Dirr et al. (2006)] proved the connection to the nonuniqueness of the $\mathfrak{K} \mathfrak{K} \mathfrak{K}$ decomposition

```
gate simulation [Khaneja/Brockett/Glaser (2001)]
One can simulate U in time t iff U = K K exp (tW)K}\mp@subsup{K}{2}{}\mathrm{ such that
W \in\operatorname{conv}(\mathcal{W}(iH)), where K}\mp@subsup{K}{j}{}\in\mathfrak{K}=\textrm{SU}(2)\otimes\textrm{SU}(2)
```

Hamiltonian simulation
[Bennett et al. (2002), this formulation by Zeier/Grass//Beth (2004)] One can simulate H^{\prime} in time t iff $K_{1}\left(i H^{\prime} / t\right) K_{1}{ }^{-1} \in \operatorname{conv}(\mathcal{W}(i H))$ for some $K_{1} \in \mathfrak{\kappa}=\operatorname{SU}(2) \otimes \operatorname{SU}(2)$.

remark [Zeier/GrassI/Beth (2004)]

Bennett et al. (2002) is a special case of Khaneja/Brockett/Glaser (2001)

Two qubits: comments $(1 / 3)$

gate simulation [Khaneja/Brockett/Glaser (2001)] ($H=$ Hamiltonian)
One can simulate U in time t iff $U=K_{1} \exp (t W) K_{2}$ such that $W \in \operatorname{conv}(\mathcal{W}(i H))$, where $K_{j} \in \mathfrak{K}=\operatorname{SU}(2) \otimes \operatorname{SU}(2)$.

comments

- control problem is reduced to convex optimization (via Kostant) which can be solved analytically
- $U_{k} \exp \left(-i H t_{k}\right) U_{k}^{-1}$ (can be made to) commute with each other in $U=\left[\prod_{k=1}^{m}\left(U_{k} \exp \left(-i H t_{k}\right) U_{k}^{-1}\right)\right] U_{0}$ and $t=\sum_{k=1}^{m} t_{k} \quad\left(t_{k} \geq 0\right)$
- idea: $\exp \left(t_{1} p_{1}\right) \exp \left(t_{2} p_{2}\right)=\exp \left(t_{1} p_{1}+t_{2} p_{2}+t_{1} t_{2}\left[p_{1}, p_{2}\right] / 2+\cdots\right)$ remember: $p_{1}, p_{2} \in \mathfrak{p} \Rightarrow\left[p_{1}, p_{2}\right] \subset \mathfrak{k} \Rightarrow$ new direction lies in fast \mathfrak{k}

Two qubits: comments $(2 / 3)$

further properties of $\mathfrak{p}(\mathfrak{k} \oplus \mathfrak{p}=\mathfrak{s u}(4),[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k},[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p},[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k})$

- \mathfrak{p} is irreducible under the action of \mathfrak{K} by conjugation
- $K p K^{-1}=\tilde{p} \Leftrightarrow G p G^{-1}=\tilde{p}$
$(p, \tilde{p} \in \mathfrak{p}, G \in \mathfrak{G}, K \in \mathfrak{K})$
\Leftrightarrow characteristic polynomials of p and \tilde{p} are equal
\Rightarrow three (real) invariants of p, \tilde{p} under conjugation (as $\operatorname{Tr}(p)=\operatorname{Tr}(\tilde{p})=0$)
- cp. Makhlin (2002): three (real) invariants for two-qubit operations under local equivalence
- related to Zhang/Vala/Sastry/Whaley (2003): detailed characterization of non-local operations in two-qubit systems

Two qubits: comments $(3 / 3)$

gate simulation [Khaneja/Brockett/Glaser (2001)] ($H=$ Hamiltonian)
One can simulate U in time t iff $U=K_{1} \exp (t W) K_{2}$ such that $W \in \operatorname{conv}(\mathcal{W}(i H))$, where $K_{j} \in \mathfrak{K}=\operatorname{SU}(2) \otimes \operatorname{SU}(2)$.
(incomplete) list of proofs
original proof in Khaneja/Brockett/Glaser (2001), Vidal/Hammerer/Cirac (2002), more general case in Yuan/Khaneja (2005)

- Childs/Haselgrove/Nielsen (2003): proof of the lower bound relying on majorization conditions on the spectra of $U(Y \otimes Y) U^{T}(Y \otimes Y)$
- uses Thompson's theorem:
A, B hermitian than exists A^{\prime}, B^{\prime} such that $\operatorname{spec}\left(A^{\prime}\right)=\operatorname{spec}(A)$, $\operatorname{spec}\left(B^{\prime}\right)=\operatorname{spec}(B)$, and $\exp (i A) \exp (i B)=\exp \left(i A^{\prime}+i B^{\prime}\right)$

Beyond two qubits

approach for choosing a Cartan decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$

- for two qubits: $\mathfrak{k}=$ local part, $\mathfrak{p}=$ non-local part
- n qubits $(n>2)$: local operations $\varsubsetneqq \mathfrak{K}$ (e.g., $\left.\mathrm{SU}(2)^{\otimes n} \varsubsetneqq \mathfrak{K}\right)$
lower bounds on the evolution time
- assume that all elements of \mathfrak{K} can be applied instantaneously, and not only the elements of $\operatorname{SU}(2)^{\otimes n} \Rightarrow$ we get the evolution time
- $\mathrm{SU}(2)^{\otimes n} \subseteq \mathfrak{K} \Rightarrow$ the evolution time can only be greater determine suitable \mathfrak{K} [Childs et al. (2003), Zeier/Grassl/Beth (2004)]
- n even: \mathfrak{K} is conjugated to the orthogonal group $\mathrm{O}\left(2^{n}\right)$
- n odd: \mathfrak{K} is conjugated to the (unitary) symplectic group

$$
\operatorname{Sp}\left(2^{n-1}\right)=\left\{U \in U\left(2^{n}\right) \mid U^{\top} J_{n / 2} U=J_{n / 2}\right\}, \text { where } J_{k}=\left(\begin{array}{cc}
0_{k} & I_{k} \\
-I_{k} & 0_{k}
\end{array}\right)
$$

Algebraic structure analysis for multi-qubit systems

Cartan decomposition $\mathfrak{g}=\mathfrak{l} \oplus \mathfrak{p}$ and symmetric spaces $\mathfrak{G} / \mathfrak{L}$
The Cartan decomposition induces a symmetric space: n even: $\operatorname{SU}\left(2^{n}\right) / \operatorname{SO}\left(2^{n}\right), n$ odd: $\operatorname{SU}\left(2^{n}\right) / \operatorname{Sp}\left(2^{n-1}\right)$
general case of $\mathfrak{G} / \mathfrak{L}=\operatorname{SU}\left(2^{n}\right) / \operatorname{SU}(2)^{\otimes n}$ and $\mathfrak{l}=\operatorname{Lie}$ algebra (\mathfrak{L}) $\mathfrak{g}=\mathfrak{l} \oplus \mathfrak{m}$, where $[\mathfrak{l}, \mathfrak{l}] \subset \mathfrak{l}$ and $[\mathfrak{l}, \mathfrak{m}] \subset \mathfrak{m}$ (but not $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{l}$ for $n>2)$ \Rightarrow no Cartan decomposition
de Rham cohomology of $\mathfrak{G} / \mathfrak{L}=\operatorname{SU}\left(2^{n}\right) / \operatorname{SU}(2)^{\otimes n}$

- antisymmetric invariant [in contrast to a symmetric (i.e., polynomial) invariant]
- computed for $n=2,3$ [Zeier (2006)]
- potential connections to the structure of entanglement

Outline

(1) Preliminaries
(2) Fast local control
(3) A fast and slow qubit system
(4) Analyzing non-locality: representation-theoretic methods
(5) Summary

Our model: coupled fast and slow qubit system (1/2)

the physical system (high field case, in a double rotating frame)

- free evolution w.r.t. the Hamiltonian $H_{0}=J I_{z}+J\left(2 S_{z} I_{z}\right)$
- control Hamiltonian on the first qubit ($=$ electron spin):

$$
H_{S}=\Omega^{S}(t)\left[S_{x} \cos \phi_{S}(t)+S_{y} \sin \phi_{S}(t)\right]
$$

- control Hamiltonian on the second qubit (= nuclear spin):

$$
H_{l}=\Omega^{\prime}(t)\left[I_{x} \cos \phi_{l}(t)+I_{y} \sin \phi_{l}(t)\right]
$$

- time scales $\Omega^{\prime} \ll J \ll \Omega^{S} \quad\left(H_{0}\right.$ faster than some local operations!)
- first qubit $=$ fast qubit and second qubit $=$ slow qubit
notation: $S_{\mu}=\left(\sigma_{\mu} \otimes \mathrm{id}_{2}\right) / 2$ and $I_{\nu}=\left(\mathrm{id}_{2} \otimes \sigma_{\nu}\right) / 2 \quad(\mu, \nu \in\{x, y, z\})$ where $\sigma_{x}:=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{y}:=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \sigma_{z}:=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \mathrm{id}_{2}:=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

Our model: coupled fast and slow qubit system (2/2)

how to synthesize slow transformations (first order approximation) $H_{0}+H_{I}=2 J S^{\beta} I_{z}+\Omega^{\prime}(t)\left(S^{\alpha}+S^{\beta}\right)\left(I_{x} \cos \phi_{I}+I_{y} \sin \phi_{I}\right)$ truncates to

$$
H^{\alpha}\left(\phi_{I}\right)=2 J S^{\beta} I_{z}+\Omega^{\prime}(t) S^{\alpha}\left(I_{x} \cos \phi_{I}+I_{y} \sin \phi_{I}\right)
$$

where $S^{\beta}=\left(\mathrm{id}_{4} / 2+S_{z}\right)=\left(\begin{array}{cc}\mathrm{id}_{2} & 0_{2} \\ 0_{2} & 0_{2}\end{array}\right), S^{\alpha}=\left(\mathrm{id}_{4} / 2-S_{z}\right)=\left(\begin{array}{cc}0_{2} & 0_{2} \\ 0_{2} & i d_{2}\end{array}\right)$

energy diagram (w.r.t. lab frame)
 $\omega_{s}, \omega_{l}=$ natural precession frequency of the first and second qubit

model \Rightarrow efficiency measure (time):

- count evolution under $H^{\alpha}\left(\phi_{l}\right)$
- neglect fast operations and H_{0}

Mathematical structure of our model $(1 / 2)$

Cartan decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$

$$
(\mathfrak{g}=\mathfrak{s u}(4), \mathfrak{G}=\mathrm{SU}(4))
$$

condition: $[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k},[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p},[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$ (\mathfrak{k} Lie algebra, \mathfrak{K} its Lie group)
fast operations: $-i S_{\mu}(\mu \in\{x, y, z\})$ and $-i H_{0} \Rightarrow$ $\mathfrak{K}=\exp (\mathfrak{k})$ where $\mathfrak{k}=\operatorname{span}_{\mathbb{R}}\left\{-i S_{\mu},-i 2 S_{\nu} I_{z},-i I_{z}: \mu, \nu \in\{x, y, z\}\right\}$
$\mathfrak{K}=\mathrm{S}[\mathrm{U}(2) \otimes \mathrm{U}(2)]$ (sometimes called $\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{U}(1))$ which is block-diagonal in an appropriately chosen basis
slow operations: e.g., $-i H^{\alpha}\left(\phi_{l}\right) \Rightarrow$
$\mathfrak{P}=\exp (\mathfrak{p})$ where $\mathfrak{p}=\operatorname{span}_{\mathbb{R}}\left\{-i l_{\gamma},-i 2 S_{\mu} I_{\gamma}: \gamma \in\{x, y\}, \mu \in\{x, y, z\}\right\}$

Mathematical structure of our model $(2 / 2)$

Weyl orbit $\mathcal{W}(p)=\left\{K p K^{-1}: K \in \mathfrak{K}\right\} \cap \mathfrak{a}$ of $p \in \mathfrak{p}$

- max. Abelian subalgebra $\mathfrak{a}=\left\{a_{1}\left(-i S^{\beta} I_{x}\right)+a_{2}\left(-i S^{\alpha} I_{x}\right): a_{j} \in \mathbb{R}\right\} \subset \mathfrak{p}$
- $\mathcal{W}\left[b_{1}\left(-i S^{\beta} I_{x}\right)+b_{2}\left(-i S^{\alpha} I_{x}\right)\right]=\mathcal{W}\left[\left(b_{1}, b_{2}\right)\right]=\left\{\left(b_{1}, b_{2}\right),\left(b_{1},-b_{2}\right)\right.$,

$$
\left.\left(-b_{1}, b_{2}\right),\left(-b_{1},-b_{2}\right),\left(b_{2}, b_{1}\right),\left(b_{2},-b_{1}\right),\left(-b_{2},-b_{1}\right),\left(-b_{2}, b_{1}\right)\right\}
$$

majorization condition: $\left(a_{1}, a_{2}\right)$ is in the convex closure of $\mathcal{W}\left[\left(b_{1}, b_{2}\right)\right]$ iff $\max \left\{\left|a_{1}\right|,\left|a_{2}\right|\right\} \leq \max \left\{\left|b_{1}\right|,\left|b_{2}\right|\right\}$ and $\left|a_{1}\right|+\left|a_{2}\right| \leq\left|b_{1}\right|+\left|b_{2}\right|$

$\mathfrak{K} \mathfrak{A} \mathfrak{K}$ decomposition

- $G=K_{1} \exp \left[a_{1}\left(-i S^{\beta} I_{x}\right)+a_{2}\left(-i S^{\alpha} I_{x}\right)\right] K_{2} \in \mathfrak{G}$
- is not unique \Rightarrow consider all $\left(a_{1}, a_{2}\right)+\pi\left(z_{1}, z_{2}\right)$ where $z_{j} \in \mathbb{Z}$
- majorization condition simplifies for $a_{1}, a_{2} \in[-\pi, \pi]$ \Rightarrow sufficient to consider only $\left(z_{1}, z_{2}\right)=(0,0)$

Time-optimal control of fast and slow qubit system

Zeier/Yuan/Khaneja (2008)

The minimal time to synthesize $G \in \operatorname{SU}(4)$ is $\min \left\{\left(\left|t_{1}\right|+\left|t_{2}\right|\right) / \Omega^{\prime}\right\}$ such that $G=K_{1} \exp \left[t_{1}\left(-i S^{\beta} I_{x}\right)+t_{2}\left(-i S^{\alpha} I_{x}\right)\right] K_{2}$

remarks

- slow operations: $-i H^{\alpha}(0)$, we use the Weyl orbit of $-i S^{\alpha} I_{x}$: $b_{1}=0$ and $b_{2}=1 \Rightarrow \mathcal{W}\left[\left(b_{1}, b_{2}\right)\right]=\{(-1,0),(1,0),(0,-1),(0,1)\}$
- Yuan/Zeier/Khaneja/Lloyd (2009):
applied similar techniques in a tunable coupling scheme of super-conducting qubits

Examples of time-optimal controls

minimum time $t_{\text {min }}$ for $\operatorname{CNOT}[2,1]$, $\operatorname{CNOT}[1,2]$, and SWAP
(1) $e^{i \pi / 4}\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)=\exp \left[\pi\left(-i 2 S_{x} I_{z}+i S_{x}+i I_{z}\right) / 2\right] \Rightarrow t_{\min }=0$
(as it is contained in $\mathfrak{K}=$ fast operations)
(2) $e^{i \pi / 4}\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)=\exp \left[\pi\left(-i 2 S_{z} I_{x}+i S_{z}+i I_{x}\right) / 2\right]=$
$\exp \left(i \pi S_{z} / 2\right) \exp \left(-i t^{\prime} H_{0} / J\right) \exp \left[-i \pi H^{\alpha}(\pi) / \Omega^{\prime}\right]$
(where $t^{\prime}=-\pi J / \Omega^{\prime} \bmod 2 \pi \geq 0$)
$\Rightarrow t_{\text {min }}=\pi / \Omega^{\prime}$
(3) $e^{i \pi / 4}\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)=\exp \left[\pi\left(i 2 S_{x} I_{x}+i 2 S_{y} I_{y}+i 2 S_{z} I_{z}\right) / 2\right]=$ $e^{i \pi S_{z} / 2} e^{-i \pi S_{x} / 2} e^{-i 3 \pi H_{0} /(2 J)} e^{i \pi S_{y} / 2} e^{-i t^{\prime} H_{0} / J} \exp \left[-i \pi H^{\alpha}(\pi) / \Omega^{\prime}\right]$ $\times e^{-i \pi S_{x} / 2} e^{-i \pi H_{0} /(2 J)} e^{-i \pi S_{y} / 2}$
$\Rightarrow t_{\text {min }}=\pi / \Omega^{\prime}$

Outline

(1) Preliminaries
(2) Fast local control
(3) A fast and slow qubit system
(4) Analyzing non-locality: representation-theoretic methods

(5) Summary

Control algorithms and density matrices

efficient control algorithms for $U \in \operatorname{SU}\left(2^{n}\right)$ with execution time t

- $U=\left[\prod_{k=1}^{m}\left(U_{k} \exp \left(-i H t_{k}\right) U_{k}^{-1}\right)\right] U_{0}$ and $t=\sum_{k=1}^{m} t_{k} \quad\left(t_{k} \geq 0\right)$
- time-evolution w.r.t. a given Hamilton operator $H\left(-i H \in \mathfrak{s u}\left(2^{n}\right)\right)$
- conjugate the orbit $\exp \left(-i H t_{k}\right)$ with instantaneous operations $U_{k} \in \mathrm{SU}(2)^{\otimes n}=\mathrm{SU}(2) \otimes \cdots \otimes \mathrm{SU}(2)$
local equivalence of density matrices ρ and $\tilde{\rho}$
- local equivalent if $U \rho U^{-1}=\tilde{\rho}$ for some $U \in \mathrm{SU}(2)^{\otimes n}=\mathrm{SU}(2) \otimes \cdots \otimes \mathrm{SU}(2)$
- related to mixed state transformations:
$\frac{d}{d t} \rho=[-i H(t), \rho]$, where ρ is a mixed state
- recall: ρ can be written as $c \cdot \operatorname{Id}+H$ where $-i H \in \mathfrak{s u}\left(2^{n}\right)$ and $c \in \mathbb{R}$

Adjoint representation and adjoint orbits

adjoint representation

- Lie group \mathfrak{G} [i.e. $\mathrm{SU}\left(2^{n}\right)$] and its Lie algebra \mathfrak{g} [i.e. $\mathfrak{s u}\left(2^{n}\right)$]
- adjoint representation $\operatorname{Ad}(G)(\tilde{g}):=G \tilde{g} G^{-1}$
$(G \in \mathfrak{G}, \tilde{g} \in \mathfrak{g})$
- infinitesimal version $\operatorname{ad}(g)(\tilde{g}):=[g, \tilde{g}]$
adjoint orbit of $\tilde{g} \in \mathfrak{g}$ w.r.t. $\mathfrak{K} \subset \mathfrak{G}$
- $\operatorname{Ad}(\mathfrak{K})(\tilde{g}):=\{\operatorname{Ad}(K)(\tilde{g}): K \in \mathfrak{K}\}=\left\{K \tilde{g} K^{-1}: K \in \mathfrak{K}\right\}$
- especially important if $\mathfrak{K}=\mathrm{SU}(2)^{\otimes n}=\mathrm{SU}(2) \otimes \cdots \otimes \mathrm{SU}(2)$
example: $\operatorname{Ad}(\mathfrak{K})$-orbit of ZZI + IZZ (analyzed by hand)
- support in $\mathfrak{s u}(2) \otimes \mathfrak{s u}(2) \otimes \operatorname{Id}$ and $\operatorname{Id} \otimes \mathfrak{s u}(2) \otimes \mathfrak{s u}(2)$
- orbit is not linearly closed \Leftrightarrow What is the dimension of the orbit?
- orbit contains (e.g.) XXI \pm IXY but not XXI \pm IYY

Restricting representations and orbits

philosophy

- start some representation [e.g., the adjoint representation $\operatorname{Ad}(\mathfrak{G})$] or an adjoint orbit $\operatorname{Ad}(\mathfrak{G})(\tilde{g})$ where $\tilde{g} \in \mathfrak{g}$
- restrict \mathfrak{G} to a subgroup \mathfrak{K}
- we consider $\mathfrak{G}=\mathrm{SU}\left(2^{n}\right)$ and $\mathfrak{K}=\mathrm{SU}(2)^{\otimes n}=\mathrm{SU}(2) \otimes \cdots \otimes \mathrm{SU}(2)$
restricting Ad from $\mathrm{SU}\left(2^{n}\right)$ to $\mathrm{SU}(2)^{\otimes n}$
- the irreducible representation $\operatorname{Ad}\left[\mathrm{SU}\left(2^{n}\right)\right]$ decomposes if we restrict
- $\mathfrak{s u}\left(2^{n}\right) \Rightarrow[\operatorname{Id} \oplus \mathfrak{s u}(2)]^{\otimes n}=\mathrm{Id}^{\otimes n} \oplus \cdots \oplus \mathfrak{s u}(2)^{\otimes n} ; \quad\left[\mathrm{Id}^{\otimes n} \notin \mathfrak{s u}\left(2^{n}\right)\right]$

Decomposing the adjoint representation Ad

two qubits: $\mathfrak{G}=\mathrm{SU}(4), \mathfrak{K}=\mathrm{SU}(2) \otimes \mathrm{SU}(2)$

- $[\operatorname{Id} \oplus \mathfrak{s u}(2)]^{\otimes 2}=\mathrm{Id}^{\otimes 2} \oplus[\mathfrak{s u}(2) \otimes \mathrm{Id}] \oplus[\operatorname{Id} \otimes \mathfrak{s u}(2)] \oplus[\mathfrak{s u}(2) \otimes \mathfrak{s u}(2)]$
- \Rightarrow vector space decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}=$ local \oplus nonlocal
- $\mathfrak{k}=[\mathfrak{s u}(2) \otimes \mathrm{Id}] \oplus[\mathrm{Id} \otimes \mathfrak{s u}(2)]$ is a subalgebra of dimension $3+3=6$
- $\mathfrak{p}=\mathfrak{s u}(2) \otimes \mathfrak{s u}(2)$ is an irreducible subspace of dimension 9
three qubits: $\mathfrak{G}=\mathrm{SU}\left(2^{3}\right), \mathfrak{K}=\mathrm{SU}(2) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(2)$
- $[\operatorname{Id} \oplus \mathfrak{s u}(2)]^{\otimes 3}=\mathrm{Id}^{\otimes 3} \oplus \mathfrak{k} \oplus \mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \mathfrak{m}_{3} \oplus \mathfrak{m}_{4}$, where
- $\mathfrak{k}=[\mathfrak{s u}(2) \otimes \mathrm{Id} \otimes \mathrm{Id}] \oplus[\mathrm{Id} \otimes \mathfrak{s u}(2) \otimes \mathrm{Id}] \oplus[\mathrm{Id} \otimes \mathrm{Id} \otimes \mathfrak{s u}(2)]$
- $\mathfrak{m}_{1}=\mathfrak{s u}(2) \otimes \mathfrak{s u}(2) \otimes \operatorname{Id}$, where $\operatorname{dim}\left(\mathfrak{m}_{1}\right)=9$
- $\mathfrak{m}_{2}=\mathfrak{s u}(2) \otimes \operatorname{Id} \otimes \mathfrak{s u}(2)$, where $\operatorname{dim}\left(\mathfrak{m}_{2}\right)=9$
- $\mathfrak{m}_{3}=\operatorname{Id} \otimes \mathfrak{s u}(2) \otimes \mathfrak{s u}(2)$, where $\operatorname{dim}\left(\mathfrak{m}_{3}\right)=9$
- $\mathfrak{m}_{4}=\mathfrak{s u}(2) \otimes \mathfrak{s u}(2) \otimes \mathfrak{s u}(2)$, where $\operatorname{dim}\left(\mathfrak{m}_{4}\right)=27$
- \mathfrak{k} is a subalgebra of dimension $3+3+3=9$
- $\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \mathfrak{m}_{3} \oplus \mathfrak{m}_{4}$ is a subspace of dimension 54 (NOT irreducible)

Kostant's convexity theorem (revisited)
 $(\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p})$

Kostant's convexity theorem (1973):

- orth. projection of $\left\{K p K^{-1}: K \in \mathfrak{K}\right\}$ to \mathfrak{a}
$=$ convex closure of $\left\{K p K^{-1}: K \in \mathfrak{K}\right\} \cap \mathfrak{a}$
- $\mathfrak{a}=$ max. commutative subalgebra in \mathfrak{p} and $p \in \mathfrak{p}$
versions of Kostant's convexity theorem
version A : project to a max. commutative subalgebra \mathfrak{a} of \mathfrak{p}
version B: project to a max. commutative subalgebra $\mathfrak{t}_{\mathfrak{g}}$ of \mathfrak{g} (usually generalizations consider only version B)

Generalizations of Kostant's convexity theorem (1/2)

dualism between irred. representations and (integral) adjoint orbits both corresp. to integral points in $\mathfrak{t}_{\mathfrak{g}}$ (= max. Abelian subalgebra in \mathfrak{g})
restrict the group \mathfrak{G} to a subgroup \mathfrak{K}
problem 1: find all $t^{\prime} \in \mathfrak{t}_{\mathfrak{k}}$ corresp. to restricted adjoint orbits of $t \in \mathfrak{t}_{\mathfrak{g}}$ problem 2: (asymptotic decomp.) find all rational $\left(t^{\prime}, t\right) \in\left(\mathfrak{t}_{\mathfrak{e}}, \mathfrak{t}_{\mathfrak{g}}\right)$ s.t.
a) $\exists n \in \mathbb{N}$ s.t. $\left(n t^{\prime}, n t\right)$ is integral and
b) decomposition of the representation $n t$ contains $n t^{\prime}$
remark: if t index of the representation $V \Rightarrow$ $n t$ index of the representation (inner tensor product) $V^{\otimes n}$

Generalizations of Kostant's convexity theorem (2/2)

restrict the group \mathfrak{G} to a subgroup \mathfrak{K}
problem 1: find all $t^{\prime} \in \mathfrak{t}_{\mathfrak{k}}$ corresp. to restricted adjoint orbits of $t \in \mathfrak{t}_{\mathfrak{g}}$ problem 2: (asymptotic decomp.) find all rational $\left(t^{\prime}, t\right) \in\left(\mathfrak{t}_{\mathfrak{k}}, \mathfrak{t}_{\mathfrak{g}}\right)$ s.t.
a) $\exists n \in \mathbb{N}$ s.t. ($n t^{\prime}, n t$) is integral and
b) decomposition of the representation $n t$ contains $n t^{\prime}$

- Heckman $(1980,1982)$: problems 1 and 2 are equivalent
- Kirwan (1984): restriction of a compact Lie group to a Lie subgroup (for convexity one has to restrict to a certain convex cone of $\mathfrak{t}_{\mathfrak{k}}$)
- Kirwan's result gives no practical method for explicit computations!
- Berenstein/Sjamaar (2000): computational methods relying on integral cohomology groups

Spectra and current status

spectra of reduced density matrices

- density matrices: $\rho_{A B}, \rho_{A}$, and ρ_{B} [and more tensor components]
- consider: $\operatorname{spec} \rho_{A B}, \operatorname{spec} \rho_{A}$, and $\operatorname{spec} \rho_{B}$
- problem: What combinations of spectra are possible?
- equivalent to the discussed restrictions of representations
\rightarrow Keyl/Werner (2001), Klyachko (2004), Christandl/Mitchison (2005), ...
decomposition of an adjoint orbit $\operatorname{Ad}(\mathfrak{G}) g \quad(g \in \mathfrak{g}, g$ integral)
- dream: decompose $\operatorname{Ad}(\mathfrak{G}) g$ into $\operatorname{Ad}(\mathfrak{K})$-orbits using the equivalent asymptotic decompositions of representations
- status: preliminary computations

Commutator relations for two and three qubits

important for the analysis of products of adjoint orbits
two qubits

$$
\left[\mathfrak{G}=\mathrm{SU}\left(2^{2}\right), \mathfrak{K}=\mathrm{SU}(2)^{\otimes 2}\right]
$$

- $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ where $\mathfrak{k}=[\mathfrak{s u}(2) \otimes \mathrm{Id}] \oplus[\mathrm{Id} \otimes \mathfrak{s u}(2)]$ and $\mathfrak{p}=\mathfrak{s u}(2) \otimes \mathfrak{s u}(2)$
- $[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k}$ and $[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p},[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$
three qubits
$\left[\mathfrak{G}=\operatorname{SU}\left(2^{3}\right), \mathfrak{K}=\operatorname{SU}(2)^{\otimes 3}\right]$
- $[\operatorname{Id} \oplus \mathfrak{s u}(2)]^{\otimes 3}=\mathrm{Id}^{\otimes 3} \oplus \mathfrak{k} \oplus \mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \mathfrak{m}_{3} \oplus \mathfrak{m}_{4}$, where
- $\mathfrak{k}=[\mathfrak{s u}(2) \otimes \mathrm{Id} \otimes \mathrm{Id}] \oplus[\mathrm{Id} \otimes \mathfrak{s u}(2) \otimes \mathrm{Id}] \oplus[\mathrm{Id} \otimes \mathrm{Id} \otimes \mathfrak{s u}(2)]$
- $\mathfrak{m}_{1}=\mathfrak{s u}(2) \otimes \mathfrak{s u}(2) \otimes \operatorname{Id}, \mathfrak{m}_{2}=\mathfrak{s u}(2) \otimes \operatorname{Id} \otimes \mathfrak{s u}(2)$,
$\mathfrak{m}_{3}=\operatorname{Id} \otimes \mathfrak{s u}(2) \otimes \mathfrak{s u}(2)$, and $\mathfrak{m}_{4}=\mathfrak{s u}(2) \otimes \mathfrak{s u}(2) \otimes \mathfrak{s u}(2)$
- $[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k}, \quad\left[\mathfrak{k}, \mathfrak{m}_{i}\right] \subset \mathfrak{m}_{i}, \quad\left[\mathfrak{m}_{j}, \mathfrak{m}_{j}\right] \subset \mathfrak{k}, \quad\left[\mathfrak{m}_{4}, \mathfrak{m}_{4}\right] \subset \mathfrak{k} \oplus \mathfrak{m}_{4}$,

$$
\text { and (e.g.) }\left[\mathfrak{m}_{1}, \mathfrak{m}_{2}\right] \subset \mathfrak{m}_{4} \quad(i \in\{1,2,3,4\}, j \in\{1,2,3\})
$$

Summary

summary

- control algorithms for two coupled qubits with fast local control
- lower bounds for coupled multi-qubit systems with fast local control
- control algorithms for a coupled electron-nuclear spin system
- representation theory might help to understand multi-qubit systems
http://www.org.chemie.tu-muenchen.de/people/zeier/

Thank you for your attention!

