Quantum Control in Magic-Angle-Spinning Solid-State NMR: Tailoring the Hamiltonian Through Modulation and Demodulation

Kavli Institute for Theoretical Physics, UCSB, Santa Barbara, June 18, 2009

AARHUS UNIVERSITET

Center for Insoluble Protein Structures

Outline

- Introduction to NMR and motivation for going into solids
- The challenges of solid-state NMR leading to our control problem
- Ways to tailor our nuclear spin Hamiltonian to provide information
- Dipolar recoupling in solid-state NMR
- Optimal control solutions to the problem

Background

Chemical Shift – the resonance frequency depends on the electronic surrounding

Scalar couplings and dipolar cross-relaxation allows for communication between spins: 2D NMR

Controls in liquid-state NMR spectroscopy

Product operator calculations in liquid-state NMR

Rf pulse:

Evolution under isotropic shielding:

Evolution under J coupling:

The evolution angle: $\Theta, \phi = \omega t$

 $\{I_x, I_y, I_z\} \\ \{I_x, 2I_yS_z, 2I_zS_z\} \\ \{2I_zS_x, S_y, 2I_zS_z\}$

Protein NMR spectroscopy

Motivation – we want to design experiments for the same purpose for solids

Amyloid fibril structures

For solids, anisotropic interactions destroy the resolution and the sensitivity is low

dipolar coupling between protons:

Origin to broadening: Chemical shielding anisotropy

Another origin to broadening: Dipole-dipole coupling

= 0 in isotropic liquids≠0 in solids or oriented media

Typically several interactions ...

Spin and Spatial parts of the Internal Hamiltonian

Chemical shift

Dipole-dipole coupling

Spatial tensor: Principal Axis Frame

y σ_{yy} γ

 $\sigma_{PAS} = \begin{pmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{pmatrix}$

Different principal axis Frame for different Interactions

Х

Irreducible tensors

$$H_{\lambda} = C^{\lambda} \sum_{j=0}^{2} \sum_{m=-j}^{j} (-1)^{m} (R_{j,-m}^{\lambda})^{L} T_{j,-m}^{\lambda}$$

Hamiltonians containing isotropic and anisotropic components

Rotations in spin and spatialspace:

Wigner Matrix

ReducedWigner Matrix

Spatial transformations

Summary of rotations

From Levitt

InternalHamiltonian – all in oneTable

$H_{\lambda} = C^{\lambda} \sum_{i=0}^{2} \sum_{m=-i}^{j} (-1)^{m} (R_{j,-m}^{\lambda})^{L} T_{j,-m}^{\lambda}$., _			
y end y	λ	CS	J	D	\overline{Q}
Interaction	C^{λ}	γ_i	1	$-2\hbar\gamma_i\gamma_j$	$rac{eQ}{(2I(2I-1)h)}$
	$(R_{0,0}^{\lambda})^P$	δ_{iso}	J_{iso}	0	0
Fundamental constants	$(R_{2,0}^{\lambda})^P$	$\sqrt{\frac{3}{2}}\delta_{aniso}$	$\sqrt{rac{3}{2}}J_{aniso}$	$\sqrt{rac{2}{3}rac{\mu_0}{4\pi}r_{ij}^{-3}}$	$eq\sqrt{rac{3}{2}}$
	$(R^{\lambda}_{2,\pm 1})^P$	0	0	0	0
Spatial part	$(R^{\lambda}_{2,\pm 2})^P$	$-\delta_{aniso}rac{\eta_{CS}}{2}$	$-J_{aniso}rac{\eta_J}{2}$	0	$-eqrac{\eta_Q}{2}$
	$T^{\lambda}_{0,0}$	$B_0 I_{iz}$	$\mathbf{I_i} \cdot \mathbf{I_j}$	0	0
Spin part	$T^{\lambda}_{2,0}$	$\sqrt{\frac{2}{3}B_0}I_{iz}$	$\frac{1}{\sqrt{6}}(3I_{iz}I_{jz} - \mathbf{I_i} \cdot \mathbf{I_j})$	$\frac{1}{\sqrt{6}}(3I_{iz}I_{jz} - \mathbf{I_i} \cdot \mathbf{I_j})$	$\frac{1}{\sqrt{6}}(3I_{iz}^2 - I_i(I_i + 1))$
	$T^{\lambda}_{2,\pm 1}$	$\mp B_0 I^i_{\pm}$	$\pm \frac{1}{2} (I_{\pm}^i I_{jz} + I_{iz} I_{\pm}^j)$	$\mp \frac{1}{2} (I_{\pm}^i I_{jz} + I_{iz} I_{\pm}^j)$	$\pm \frac{1}{2} (I_{\pm}^i I_{iz} + I_{iz} I_{\pm}^i)$
	$T_{2,\pm 2}^{\lambda}$	0	$\frac{1}{2}I^i_{\pm}I^j_{\pm}$	$rac{1}{2}I^i_\pm I^j_\pm$	$\frac{1}{2}I_{\pm}^2$

High-field approximation:

$$H_D = C^D (R_{2,0}^D)^L T_{2,0}^D = \sqrt{6} \omega_D T_{2,0}^D$$
$$= \omega_D (2I_z S_z - I_x S_x - I_y S_y)$$

•shiftspintensor is rank 1

To mimic molecular motion we have to spin fast

4.0 mm	\rightarrow	15 kHz	(1,400,000 x g)
3.2 mm	÷	25 kHz	(2,700,000 x g)
2.5 mm	\rightarrow	35 kHz	(3,500,000 x g)

a 3.2 mm rotor spinning at 24 kHz...

... and needs only 46 hours to roll around the earth...

(50,000 x g)...

From van Rossum

Averaging of an isotropic interactions by MAS

$$\rho(t) = e^{-i\phi 2I_z S_z} \rho(0) e^{i\phi 2I_z S_z} \quad \phi = \int_0^t \omega_D(t) dt$$

The evolution angle

Rotor synchronized sampling: $t = 0, \tau_r, 2\tau_r, ...$

$$\phi = \sum_{m=-2}^{2} \int_{0}^{n\tau_{r}} \omega_{D}^{(m)} e^{im\omega_{r}t} dt = \omega_{D}^{(0)} = -b_{IS} d_{0,0}^{(2)} (\beta_{PR}^{D}) d_{0,0}^{(2)} (\beta_{PL}^{D})$$

$$= -b_{IS} \frac{1}{2} (3c_{\beta_{PR}}^{2} - 1) \frac{1}{2} (3c_{\beta_{RL}}^{2} - 1) = 0$$
Fast MAS
$$\beta_{RL} = tan^{-1} \sqrt{2}$$

$$\overline{\gamma}^{(1)} = \omega_{R}^{2\pi/\omega_{r}} \tilde{\gamma}^{(m)} \tilde{\gamma}$$

$$\overline{\tilde{H}}_D^{(1)}(t) = \frac{\omega_r}{2\pi} \int_0^{2\pi/\omega_r} \widetilde{H}_D(t) dt = \omega_D^{(0)} = 0$$

Individual Manipulation of Spin and Spatial parts

The equation of motion

RotatingFrames&EffectiveHamiltonians

The rotating frame

From: RE. Fukushima & S.B.W. Roeder (1981) Experimental pulse NMR

$$H(t) = H_{big}(t) + H_{small}(t)$$

$$\tilde{\rho}(t) = U_{big}^{\dagger} \rho(t) U_{big}$$

$$\tilde{H}^{(t)} = U_{big}^{\dagger} H(t) U_{big} - i U_{big}^{\dagger} \frac{d}{dt} U_{big}(t) = \tilde{H}_{small}(t)$$

$$\frac{d}{dt} \tilde{\rho}(t) = -i \left[\tilde{H}(t), \tilde{\rho}(t) \right]$$
inSPIN

Modulating the spin part: HeteronuclearDipolarDecoupling

$$H(t) = \omega_S(t)S_z + \omega_{IS}(t)2I_zS_z + \omega_{rf}(I_x)$$

1. Interaction frame of rf

$$\tilde{H}_{IS}(t) = \omega_{IS}(t)e^{i\omega_{rf}tI_x}2I_zS_ze^{-i\omega_{rf}tI_x}$$
$$= \omega_{IS}(t)[c_{\omega_{rf}t}2I_zS_z + s_{\omega_{rf}t}2I_yS_z]$$

2. Average Hamiltonian

$$\overline{\tilde{H}}_{IS}^{(1)} = \omega_{IS}(t) \frac{\omega_{rf}}{2\pi} \int_{0}^{2\pi/\omega_{rf}} [c_{\omega_{rf}t} 2I_z S_z + s_{\omega_{rf}t} 2I_y S_z] dt = 0$$

Effect of MAS and decoupling

Detailed structure information - regain of control

Tailoring of the Hamiltonian: Recoupling of dipolar coupling interactions

Center for Insoluble Protein Structures

MODULATION

Center for Insoluble Protein Structures

Disrupting averaging of dipolar couplings – using rf pulses in synchrony with sample revolution

Sample rotation destroys exploitation of dipolar couplings

Simultaneous rf irradiation brings it back again

AARHUS UNIVERSITET

Center for Insoluble Protein Structures

Tailoring of the Hamiltonian => assignment

Magic Angle Spinning NMR of Proteins

A major aim is to develop methods providing

- high sensitivity
- high specificity
- high-precision structures

Structural information regained using dipolar recoupling

AARHUS UNIVERSITET

Center for Insoluble Protein Structures

DipolarRecoupling: How do weget the anisotropy back – selectively?

HeteronuclearDipolarRecoupling:

OK, we have now modulations – but to appreciate recoupling we recast in terms of exponentials

$$e^{ix} = c_x + is_x$$
$$e^{-ix} = c_x - is_x$$

HeteronuclearDipolarRecoupling: Recouplingconditions

$$\tilde{H}_{IS}(t) = \frac{1}{4} \sum_{m=-2}^{2} \omega_{IS}^{(m)} \left\{ \left(e^{i(p+q+m)\omega_{r}t} + e^{-i(p+q-m)\omega_{r}t} \right) (2I_{z}S_{z} - 2I_{y}S_{y}) + \left(e^{i(p-q+m)\omega_{r}t} + e^{-i(p-q-m)\omega_{r}t} \right) (2I_{z}S_{z} + 2I_{y}S_{y}) - i \left(e^{i(p+q+m)\omega_{r}t} - e^{-i(p+q-m)\omega_{r}t} \right) (2I_{z}S_{y} + 2I_{y}S_{z}) + i \left(e^{i(p-q+m)\omega_{r}t} - e^{-i(p-q-m)\omega_{r}t} \right) (2I_{z}S_{y} - 2I_{y}S_{z}) \right\}$$

$$\rightarrow \text{AverageHamiltonia}$$

$$\begin{split} &\text{n over rotor period} \overline{\tilde{H}}_{IS}^{(1)} = \frac{\omega_r}{2\pi} \int_{0}^{2\pi/\omega_r} \widetilde{H}_{IS}(t) dt \\ &= \frac{1}{4} \{ (\omega_{IS}^{-(p+q)} + \omega_{IS}^{(p+q)}) (2I_z S_z - 2I_y S_y) + (\omega_{IS}^{-(p-q)} + \omega_{IS}^{(p-q)}) (2I_z S_z + 2I_y S_y) \\ &- i (\omega_{IS}^{-(p+q)} - \omega_{IS}^{(p+q)}) (2I_z S_y + 2I_y S_z) + i (\omega_{IS}^{-(p-q)} - \omega_{IS}^{(p-q)}) (2I_z S_y - 2I_y S_z) \} \\ &\text{Four experiments that} \\ &\text{provide recoupling} \end{split} \qquad \begin{aligned} A: \quad p+q=-n, \quad p-q=r \\ B: \quad p+q=n, \quad p-q=r \\ C: \quad p-q=-n, \quad p+q=r \\ D: \quad p-q=n, \quad p+q=r \end{aligned} \qquad \begin{aligned} n=1,2 \\ r>|2| \end{aligned}$$

INSTI

HeteronuclearDipolarRecoupling:

One of the FourExperiments:

$$\overline{\tilde{H}}_{IS}^{D} = \frac{\kappa_n}{2} \{ c_\gamma (2I_z S_z + 2I_y S_y) + s_\gamma (2I_z S_y - 2I_y S_z) \}$$

Which n? -- the scaling factor equals the dipolarFouriercomponent => n=1 largestscaling

Note: only the difference in the rffieldstrengthsmatters – but try to avoidotherresonances!

HeteronuclearDipolarRecoupling: The DCP experiment

Experiment D:

$$\overline{H}_{IS}^{D} = \frac{\kappa_{n}}{2} \{ c_{\gamma}(2I_{z}S_{z} + 2I_{y}S_{y}) + s_{\gamma}(2I_{z}S_{y} - 2I_{y}S_{z}) \}$$

$$\rightarrow \text{Tiltedframe}_{-\pi/2 \text{ around y}} \qquad \underbrace{-\times -\times}_{ZQ_{x}} \qquad \underbrace{-\times}_{ZQ_{y}} \qquad \text{Fictitious spin-1/2}$$

$$(\overline{H}_{IS}^{D})^{T} = e^{i\frac{\pi}{2}(I_{y} + S_{y})} \overline{H}_{IS}^{D} e^{-i\frac{\pi}{2}(I_{y} + S_{y})} = \kappa_{n} e^{-i\gamma I_{z}^{23}} I_{x}^{23} e^{i\gamma I_{z}^{23}} \qquad I_{y}^{23} = I_{x}S_{x} + I_{y}S_{y}$$

$$I_{x}^{23} = I_{x}S_{x} + I_{y}S_{y}$$

$$I_{y}^{23} = I_{y}S_{x} - I_{x}S_{y}$$

$$I_{z}^{23} = \frac{1}{2}(I_{z} - S_{z})$$

$$U^{T}(t) = \exp\{-i(\overline{H}_{IS}^{D})^{T}t\} = e^{-i\gamma I_{z}^{23}} e^{-i\kappa_{n}tI_{x}^{23}} e^{i\gamma I_{z}^{23}} \qquad I_{z}^{14} = \frac{1}{2}(I_{z} + S_{z})$$

$$\rho^{T}(0) = I_{z} = I_{z}^{14} + I_{z}^{23}$$

$$\rho_{DCP}^{T}(t) = U^{T}(t)\rho^{T}(0)(U^{T})^{\dagger}(t) = I_{z}^{14} + c_{\kappa_{n}t}I_{z}^{23} - s_{\kappa_{n}t}[c_{\gamma}I_{y}^{23} + s_{\gamma}I_{x}^{23}]$$

Full transfer of I_z to S_z for $\kappa_n t = \pi$

 $\kappa = (1/2\sqrt{2})b_{IS}\sin(2\beta)$

HeteronuclearDipolarRecoupling DCP is just an inversion

Optimal Control version withReduced Dimensionality

Hansen, Kehlet, Vosegaard, Glaser, Khaneja, Nielsen, Chem. Phys. Lett. 447, 154 (2007)

Accurate distance in MAS solid-state NMR: Recoupling without dipolar truncation – NMR robotics

Niels Chr. Nielsen

The Dipolar Truncation Problem

Planar vslsingDephasing

TripleOscillatingFieldtechniqUe (TOFU)

TripleOscillatingFieldtechniqUe(TOFU)

TOFU: Some Hamiltonian stuff ...

TOFU + RADAR: U-13C, 15N-L-threonine

Accurate distances by ssNMR: U-¹³C,¹⁵N-*L*-Threonine

Larger dipolar scaling – Multiple Oscillating Field Techniques

TOFU is a good step aheadtowardsaccurate distance meausrements! But the dipolarscaling is toolow to measurelong-rangeconstraints

Straasøe, Bjerring, Khaneja, Nielsen, J. Chem. Phys., in Press (2009)

Larger dipolar scaling – Multiple Oscillating Field Techniques

Four OscillatingfieLDTechniqUe

Optimal control design of NMR experiments

- improved sensitivity
- band selective operation
- less rf power consumption

Kehlet et al, JACS, 2004 Maximov et al, J. Chem. Phys., 2008 Tosner et al, J. Magn. Reson. 2009

Optimal control => Design of \overline{U}

$$J_i = \phi_i - \lambda \int_0^T \sum_k u_k^2(t) \mathrm{d}t$$

 $\overline{\rho_{f}} = U \rho_{i} U^{+}$

Final cost Run

t Runningcost

Final cost
$$\phi_1 = \operatorname{Tr} \left\{ C^\dagger
ho (2) \right\}$$

AARHUS UNIVERSITET

Center for Insoluble Protein Structures

A specific case – many exists

Optimum control in biological solid-state NMR

Traditional recoupling vs. optimal control

3D NCOCX: U-¹³C,¹⁵N-ubiquitin

¹⁵N→¹³C in NCO and NCA at highfield– sequence&robustness

Optimization of *Effective* **Hamiltonians Sensitivity-enhanced 2D solid-state NMR**

Symmetry-based optimal control experiments for assignment

^{OC}C7 band-selective mixing for 2D CACB, CACX & 3D NCACB

inSPIN Center for Insoluble Protein Structures

AARHUS UNIVERSITET

Center for Insoluble Protein Structures

Optimal controlandDNP

OC is not limited to spin-1/2 cases: 2D MQ-MAS excitation for quadrupolar nuclei

RbNO₃ at 9.4 T

Vosegaard, Kehlet, Khaneja, Glaser, and Nielsen, *J. Am. Chem. Soc*, 127, 13768-13769 (2005)

Low-field NMR using Optimal Control for Resolution Enhancement

Optimal control in MRI:Excitation of a HALF BRAIN

NavinKhaneja, Harvard Steffen Glaser, München ZdenekTosner, Praque

Thanks to

Aarhus:

CindieKehlet Mads Sloth Vinding ZdenekTosner **MortenBjerring** Astrid ColdingSivertsen Ivan Maximov **Thomas Vosegaard** Jonas Ørbæk Hansen Anders Bodholt Nielsen Lasse Arnt **Troels Skrydstrup** Daniel Otzen Jan Enghild Torsten Kristensen Sigrid Svane Jan Mondrup Petersen Ronnie Pedersen Kim Hein Martin Jeppesen

inSPIN Center for Insoluble Protein Structures

... and YOU for your attention