Optimal control of rare events

QControl09, UCSB, July 15, 2009

Michael Khasin

khasinmi@pa.msu.edu

In collaboration with

Mark Dykman Michigan State UniversityBaruch Meerson Hebrew University of Jerusalem

Outlook

- 1. Rare events. Optimal fluctuation path
- 2. Controlling rare events
- 3. Optimal control with weak periodic force

Optimal fluctuation path

Optimal control problem

$$\dot{x} = K(x, u)$$

Cost functional S[u]

Optimal fluctuation path

Assume

$$\int e^{-\Omega S[u]} \mathcal{D}u < \infty$$

$$0 < \Omega < \infty$$

Then

$$P[u] = e^{-\Omega S[u]}$$

Probability functional of noise u

$$\dot{x} = K(x, u)$$

Stochastic dynamics driven by noise u

$$S[u^*] = \min_{u} S[u]$$

$$u^*(t)$$
 Most probable realization of noise taking system from x_i , t_i to x_f , t_f

$$x^{st}(t)$$
 Optimal fluctuation path

Optimal fluctuation path

$$\Omega^{-1} \ll 1$$

$$\Omega^{-1} \ll 1 \qquad \qquad P[u^*] = e^{-\Omega S[u^*]}$$

has exponentially large contribution to the switching

"noise strength", noise is weak on average

Switching trajectories in a parametrically excited micromechanical oscillator, Chan et al. (2008)

Optimal fluctuation path. Example

White Gaussian noise, nonlinear systems: Wentzell & Freidlin (1970); Dykman & Krivoglaz (1979)

$$\dot{x} = K(x) + u$$

$$\langle u(t)u(t')\rangle = D\delta(t-t') \qquad \qquad P[u] = e^{-\Omega\int u^2 dt} \qquad \Omega = \frac{1}{2D}$$
 Minimizing
$$\mathcal{R}[u,p,x] = \frac{1}{2}\int u^2 dt + \int \lambda(\dot{x}-K(x)-u) \ dt$$

$$p = u$$

$$\dot{x} = K(x) + \lambda$$

$$\dot{\lambda} = -\lambda K(x)'$$
 Activation barrier
$$S[u^*] = \frac{1}{2}\int (\dot{x}-K(x))^2 \ dt$$

Optimal fluctuation path. Boundary conditions

The probability of the *rare event* – following the optimal fluctuation path – defines the rate of switching or extinction of the system.

Example. Fluctuational disease extinction

Endemic state

$$\mathbf{X}_{end} = (\mathbf{I}, \mathbf{S}, ...)$$
 -

metastable State of disease extinction $X_{ext} = (I=0, S, ...)$ – stable

$$\mathbf{X}_{ext}$$
 = (\mathbf{I} =0, \mathbf{S} , ...) - stable

The population evolves from the endemic state to the state of disease extinction at **the** rate **W** exponentially small in the size of the system

$$W \propto e^{-\Omega S[x^*]}$$

$$\Omega = N$$

Intermediate summary I

Finding the probability of a rare event driven by weak noise can be formulated as an optimal control problem:

Control field – the noise

Cost functional – the probability functional of the noise

Optimal control of rare events

V.N. Smelyanskiy and M.I. Dykman, Phys. Rev. E 55, 2516 (1997). B. E. Vugmeister and H. Rabitz, Phys. Rev. E 55, 2522 (1997)

Optimal control of rare events

No constraint on the control field:

Optimal solution – to ignore the weak noise and bring the system to the target with probability 1

Weak control field (optimal fluctuation path changes slightly)

Switching/extinction is still a rare event. It is necessary to cooperate with the optimal fluctuation.

Optimal control of rare events. Numerical example

No vaccination

Vaccination

Intermediate summary II

Optimal control of rare events:

Double optimization – with respect to both noise and control field

Weak control field - cooperation with the fluctuation

Weak control field leads to an exponentially strong response in the inverse strength of the noise $\boldsymbol{\Omega}$

Part II. Controlling rare events with weak periodic control field.

Constraints on the control field:

- 1. Weak field (interesting)
- 2. Periodic field (due to the boundary conditions)
- 3. Some additional constraints (see below)

Problem: to minimize/maximize the probability of a rare event (switching or extinction)

Solution is universal!

Weak control field. Linear response.

Probability of the rare event

$$P[\xi] = e^{-\Omega S[u^*, \xi]}$$

Linear response:

$$S[\xi] = \int_{-\infty}^{\infty} L(\dot{x}^*, x^*, \xi) dt = S^{(0)} + S^{(1)}[\xi]$$

$$S^{(1)}[\xi] = \int_{-\infty}^{\infty} \frac{\partial L(\dot{x}, x, \xi)}{\partial \xi} |_{x=x^{*(0)}, \xi=0} \xi(t) dt$$

$$\equiv \int_{-\infty}^{\infty} \chi(t) \xi(t) dt$$

Logarithmic susceptibility to the control field

Weak control field. Linear response.

Probability of the rare event

$$P[\xi] = e^{-\Omega S[u^*, \xi]}$$

Linear response:

$$S[\xi] = \int_{-\infty}^{\infty} L(\dot{x}^*, x^*, \xi) dt = S^{(0)} + S^{(1)}[\xi]$$

$$S^{(1)}[\xi] = \int_{-\infty}^{\infty} \frac{\partial L(\dot{x}, x, \xi)}{\partial \xi} |_{x=x^{*(0)}, \xi=0} \xi(t) dt$$
$$\equiv \int_{-\infty}^{\infty} \chi(t)\xi(t) dt$$

Exponentially strong effect:

$$\Omega^{-1} \ll 1$$
 weak noise

$$P[\xi] = P^{(0)}e^{-\Omega S^{(1)}[\xi]}$$

Synchronization of the optimal fluctuation path with the control field.

$$S^{(1)}[\xi] = \min_{-\infty < t_0 < \infty} \int_{-\infty}^{\infty} \chi(t - t_0) \xi(t) dt$$

$$S_{t_0}^{(1)}[\xi]$$

Synchronization of the optimal fluctuation path is a consequence of the double optimization principle

Periodic control field:
$$\xi(t) = \sum_{n=-\infty}^{\infty} \xi_n e^{\frac{i2\pi nt}{T}}$$

$$S^{(1)}[\xi] = \min_{-\infty < t_0 < \infty} \int_{-\infty}^{\infty} \chi(t - t_0) \xi(t) dt$$

$$= \min_{-\infty < t_0 < \infty} \left\{ 2\pi \xi_0 \tilde{\chi}(0) + 2\pi \sum_{n \neq 0} \xi_n e^{i\frac{2\pi n t_0}{T}} \tilde{\chi}\left(\frac{2\pi n}{T}\right) \right\}$$

$$\max_{\xi} S^{(1)}[\xi] = S^{(1)}[\xi_0]$$

Constant field is the optimal solution!

Additional constraints
$$\frac{1}{T} \int_0^T \xi(t) dt_0 = \nu \qquad \qquad \xi(t) \geq 0$$

Motivation:

$$\dot{\rho}(\mathbf{X}) = \sum_{\mathbf{r}} \left[W(\mathbf{X} - \mathbf{r}; \mathbf{r}) \rho(\mathbf{X} - \mathbf{r}) - W(\mathbf{X}; \mathbf{r}) \rho(\mathbf{X}) \right]$$

Transition probability $W(\mathbf{X};\mathbf{r}): \mathbf{X} o \mathbf{X} + \mathbf{r}$

Inflow rate $W(\mathbf{X}; \mathbf{r}') = \mu$

Additional constraints
$$\frac{1}{T} \int_0^T \xi(t) dt_0 = \nu$$
 $\xi(t) \geq 0$

Motivation:

$$\dot{\rho}(\mathbf{X}) = \sum_{r} \left[W(\mathbf{X} - \mathbf{r}; \mathbf{r}) \rho(\mathbf{X} - \mathbf{r}) - W(\mathbf{X}; \mathbf{r}) \rho(\mathbf{X}) \right]$$

Transition probability $W(\mathbf{X};\mathbf{r}): \mathbf{X} o \mathbf{X} + \mathbf{r}$

Inflow rate $W(\mathbf{X}; \mathbf{r}') = \mu \pm \xi(t)$

$$S_{opt}^{(1)} = \min_{-\infty < t_0 < \infty} \left\{ S_{t_0}^{(1)}[\xi] + \lambda \left(\frac{1}{T} \int_0^T \xi(t) dt - \nu \right) \right\}$$
$$0 \le \xi(t)$$
$$\xi(t+T) = \xi(t)$$

$$S_{t_0}^{(1)}[\xi] = \int_{-\infty}^{\infty} \chi(t - t_0)\xi(t) dt = \int_{0}^{T} f(t - t_0) \xi(t) dt$$

$$f(t) \equiv \sum_{n=-\infty}^{\infty} \chi(t + nT)$$

$$\int_{0}^{T} f(t - t_{0}) \, \xi(t) dt \leq \int_{0}^{T} \xi(t) dt \min_{0 \leq t \leq T} f(t - t_{0})$$

$$= \nu T f(\tau - t_{0})$$

$$= \int_{0}^{T} f(t - t_{0}) \, \nu T \delta[t - \tau] dt$$

$$\int_{0}^{T} f(t - t_{0}) \, \xi(t) dt \leq \int_{0}^{T} \xi(t) dt \min_{0 \leq t \leq T} f(t - t_{0})$$

$$= \nu T f(\tau - t_{0})$$

$$= \int_{0}^{T} f(t - t_{0}) \, \nu T \delta[t - \tau] dt$$

$$\xi(t)_{opt} = \nu T \sum_{n} \delta(t - nT)$$

$$S_{opt}^{(1)} = \nu T \min_{-\infty \le t_0 \le \infty} \sum_{n = -\infty}^{\infty} \chi(nT - t_0)$$

$$= \nu \min_{-\infty \le t_0 \le \infty} \left\{ \sum_{n = -\infty}^{\infty} \tilde{\chi}\left(\frac{2\pi n}{T}\right) e^{i\frac{2\pi n}{T}t_0} \right\}$$

T-dependence. Limiting cases:

$$T \ll \tau_{rel} \qquad S^{(1)} = -\nu \tilde{\chi}(0)$$

•
$$T \gg \tau_{rel}$$
 $S^{(1)} = \nu T \min_{-\infty < t < \infty} \chi(t)$

$$T \sim \tau_{rel} \qquad \mbox{Resonances on the subharmonics of the characteristic frequency}: \quad \omega^* = 2\pi n/T$$

Application: optimal vaccination in SIR model

Oscillatory behavior:

- Epidemic outburst
- -Optimal path to disease extinction

A. Kamenev and B. Meerson, PRE (2008)

Application: optimal vaccination in SIR model

Exponential increase of the extinction rate:

$$W_{extinction} = W_{extinction}^{(0)} e^{N|S^{(1)}|}$$

Practical advice: tune vaccination in resonance for exponential gain!

Summary

- Finding the probability of a rare event is formulated as an optimal control problem
- Controlling rare events is exponentially efficient
- Optimal weak periodic control of a rare event (switching or extinction) is model-independent.
- Switching or extinction rate is minimized by a constant control field.
- Switching or extinction rate is *maximized* by a sequence of δ -like pulses.